JP3132658B2 - Perpendicular magnetic recording medium and magnetic recording device - Google Patents

Perpendicular magnetic recording medium and magnetic recording device

Info

Publication number
JP3132658B2
JP3132658B2 JP10257059A JP25705998A JP3132658B2 JP 3132658 B2 JP3132658 B2 JP 3132658B2 JP 10257059 A JP10257059 A JP 10257059A JP 25705998 A JP25705998 A JP 25705998A JP 3132658 B2 JP3132658 B2 JP 3132658B2
Authority
JP
Japan
Prior art keywords
film
coercive force
magnetic
soft magnetic
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10257059A
Other languages
Japanese (ja)
Other versions
JP2000090424A (en
Inventor
宏高 法橋
眞三 坪井
勝通 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10257059A priority Critical patent/JP3132658B2/en
Publication of JP2000090424A publication Critical patent/JP2000090424A/en
Application granted granted Critical
Publication of JP3132658B2 publication Critical patent/JP3132658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気ディスク等と
して用いられる垂直磁気記録媒体及び該垂直磁気記録媒
体を用いる磁気記録装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a perpendicular magnetic recording medium used as a magnetic disk or the like and a magnetic recording apparatus using the perpendicular magnetic recording medium.

【0002】[0002]

【従来の技術】近年、パーソナルコンピュータやワーク
ステーションの進歩に伴うハードディスクドライブの大
容量化及び小型化により、記録媒体である磁気ディスク
は、さらなる高面密度化が必要とされている。しかし、
現在広く普及している磁気ディスクによる長手記録方式
では、高記録密度を実現しようとすると、記録ビットの
微細化に伴う記録磁化の熱揺らぎの問題や、記録ヘッド
の記録能力を超えかねない高保磁力化の問題が発生す
る。そこで、これらの問題を解決しつつ、面記録密度を
大幅に向上できる手段として、垂直磁気記録方式が検討
されている。これを実現する垂直磁気記録媒体の一つと
して、高透磁率の軟磁性膜と高い垂直異方性の垂直磁化
膜からなる垂直2層媒体がある。
2. Description of the Related Art In recent years, with the increase in capacity and miniaturization of hard disk drives accompanying the progress of personal computers and workstations, magnetic disks as recording media are required to have higher areal densities. But,
With the longitudinal recording method using magnetic disks, which is now widely used, in order to achieve high recording density, there is a problem of thermal fluctuation of recording magnetization due to miniaturization of recording bits and a high coercive force that may exceed the recording capacity of the recording head Problems arise. Therefore, a perpendicular magnetic recording method is being studied as a means for solving these problems and greatly improving the areal recording density. As one of the perpendicular magnetic recording media for realizing this, there is a perpendicular two-layer medium composed of a soft magnetic film having a high magnetic permeability and a perpendicular magnetic film having a high perpendicular anisotropy.

【0003】図51は、このような垂直磁気記録媒体の
従来例を示す概略断面図である。
FIG. 51 is a schematic sectional view showing a conventional example of such a perpendicular magnetic recording medium.

【0004】この垂直磁気記録媒体50は、軟磁性裏打
ち層52及び垂直磁化膜54がこの順に基板56上に形
成されたものである。例えば、軟磁性膜としてはNiF
e膜、垂直磁化膜としてはCoCr系合金が用いられる
(日本応用磁気学会誌、Vol.8, No.1, 1984, p1
7)。
The perpendicular magnetic recording medium 50 has a soft magnetic backing layer 52 and a perpendicular magnetization film 54 formed on a substrate 56 in this order. For example, as a soft magnetic film, NiF
A CoCr-based alloy is used as the e film and the perpendicular magnetization film (Journal of the Japan Society of Applied Magnetics, Vol. 8, No. 1, 1984, p1).
7).

【0005】ここで、垂直磁気ヘッドの例を図52に示
して説明する。2層膜構造の垂直磁気記録媒体61は、
表面にNiPメッキ処理、或いはアルマイト処理を施し
たアルミニウム、又はガラス等からなる非磁性のディス
ク基板62上に、例えば1μmの膜厚のNiFe膜から
なる高透磁率の軟磁性層(軟磁性裏打ち層)63と、該
軟磁性層63の膜厚方向に垂直な磁化容易軸を有する
0.15μmの膜厚のCoCr膜からなる垂直記録層6
4とが順に積層された構成からなっている。
Here, an example of a perpendicular magnetic head will be described with reference to FIG. The perpendicular magnetic recording medium 61 having a two-layer film structure
On a nonmagnetic disk substrate 62 made of aluminum, glass, or the like, the surface of which has been subjected to NiP plating or alumite treatment, a soft magnetic layer having a high magnetic permeability made of, for example, a 1 μm thick NiFe film (soft magnetic underlayer) ) 63 and a perpendicular recording layer 6 made of a 0.15 μm thick CoCr film having an easy axis of magnetization perpendicular to the thickness direction of the soft magnetic layer 63.
4 are sequentially laminated.

【0006】かかる構成の垂直磁気記録媒体61に対し
て情報の記録・再生を行う垂直磁気ヘッド65からの
録磁界は、垂直記録層64を垂直に磁化した後、その直
下の軟磁性層63を水平方向に通過して、再び垂直記録
層64を垂直に通って垂直磁気ヘッド65へ帰還する磁
気回路により記録される。また、既に記録された垂直記
録層64から漏洩する記録磁界により、垂直磁気ヘッド
65の主磁極66が磁化され、それと鎖交するコイル6
7に生じる電圧を再生信号として出力することによっ
て、再生を行うことができる。
[0006] A recording magnetic field from a perpendicular magnetic head 65 for recording / reproducing information to / from the perpendicular magnetic recording medium 61 having such a configuration is obtained by vertically magnetizing the perpendicular recording layer 64 and then immediately magnetizing the perpendicular recording layer 64. Recording is performed by a magnetic circuit that passes through the soft magnetic layer 63 in the horizontal direction, passes through the vertical recording layer 64 vertically again, and returns to the perpendicular magnetic head 65. Further, the main magnetic pole 66 of the perpendicular magnetic head 65 is magnetized by the recording magnetic field leaking from the already recorded perpendicular recording layer 64, and the coil 6 interlinking with the main pole 66 of the perpendicular magnetic head 65.
By outputting the voltage generated at 7 as a reproduction signal, reproduction can be performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、図51
のような従来媒体では、外部磁界に対する記録磁化の不
安定性が問題である。これは、今まで下地軟磁性膜52
の軟磁気特性を良好にしていたために、下地軟磁性膜5
2の透磁率が大きく、外部磁界に対して下地軟磁性膜5
2の磁化が敏感に反応し、これが上述した図52に示し
た垂直磁気ヘッド65の主磁極66への外部磁場の磁束
の集中を促すためである。このために、垂直記録層に記
録された磁化の減磁、あるいは消磁が発生する。
However, FIG.
In such a conventional medium, there is a problem of instability of recording magnetization with respect to an external magnetic field. This is because the underlying soft magnetic film 52
Of the underlying soft magnetic film 5
2 has a high magnetic permeability, and has an underlying soft magnetic film 5 against an external magnetic field.
This is because the magnetization of the second magnetic field reacts sensitively, and this promotes the concentration of the magnetic flux of the external magnetic field on the main magnetic pole 66 of the perpendicular magnetic head 65 shown in FIG . For this reason, demagnetization or demagnetization of the magnetization recorded in the perpendicular recording layer occurs.

【0008】このような外部からの浮遊磁界は、磁気デ
ィスクと近接した位置に配置される磁気ディスク内のデ
ィスク回転用のモーターや、ヘッド位置決め用に用いら
れるモーターなどから発生する。これらの磁界はきわめ
て微弱であるものの、垂直磁気ヘッドの主磁極先端に集
中すると下地軟磁性膜の磁壁移動を誘発し、記録磁化を
減磁あるいは消磁してしまうことがあり、情報記憶装置
としては致命的な欠陥となる。
Such an external floating magnetic field is generated from a motor for rotating a disk in a magnetic disk disposed close to the magnetic disk, a motor used for positioning a head, and the like. Although these magnetic fields are extremely weak, if they are concentrated at the tip of the main pole of the perpendicular magnetic head, they may induce domain wall movement of the underlying soft magnetic film, demagnetizing or demagnetizing the recording magnetization. It is a fatal defect.

【0009】[発明の目的]本発明の目的は、外部磁界
に対する記録磁化の不安定性を克服した、外部磁界に対
する記録磁化の安定性に優れた、新規な垂直磁気記録媒
体を提供することにある。
An object of the present invention is to provide a novel perpendicular magnetic recording medium which overcomes the instability of recording magnetization with respect to an external magnetic field and is excellent in the stability of recording magnetization with respect to an external magnetic field. .

【0010】[0010]

【課題を解決するための手段】本発明による垂直磁気記
録媒体は、下地軟磁性膜と垂直磁化膜を組み合わせた垂
直磁気記録媒体において、前記下地軟磁性膜の透磁率が
50以上1000以下であり、前記下地軟磁性膜の全体
の保磁力が2(Oe)以上30(Oe)以下であること
を特徴とする。
A perpendicular magnetic recording medium according to the present invention is a perpendicular magnetic recording medium comprising a combination of an underlayer soft magnetic film and a perpendicular magnetization film, wherein the underlayer soft magnetic film has a magnetic permeability of 50 to 1,000. The whole of the underlying soft magnetic film
Has a coercive force of 2 (Oe) or more and 30 (Oe) or less .

【0011】また、本発明による垂直磁気記録媒体は、
下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録
媒体において、前記下地軟磁性膜の透磁率が50以上5
00以下であり、前記下地軟磁性膜の全体の保磁力が2
(Oe)以上30(Oe)以下であることを特徴とす
る。
Further, the perpendicular magnetic recording medium according to the present invention comprises:
In perpendicular magnetic recording medium that combines the soft magnetic underlayer film and a perpendicular magnetization film, the permeability of the lower soft magnetic film 50 more than 5
00 Ri der hereinafter overall coercivity of the lower soft magnetic film is 2
(Oe) or more and 30 (Oe) or less .

【0012】また、本発明による垂直磁気記録媒体は、
下地軟磁性膜と垂直磁化膜を組み合わせた垂直磁気記録
媒体において、前記下地軟磁性膜の透磁率が50以上1
00以下であり、前記下地軟磁性膜の全体の保磁力が2
(Oe)以上30(Oe)以下であることを特徴とす
る。
Further, the perpendicular magnetic recording medium according to the present invention comprises:
In perpendicular magnetic recording medium that combines the soft magnetic underlayer film and a perpendicular magnetization film, the permeability of the lower soft magnetic film 50 more than 1
00 Ri der hereinafter overall coercivity of the lower soft magnetic film is 2
(Oe) or more and 30 (Oe) or less .

【0013】[0013]

【0014】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜のうち該
磁性膜において基板側から10nmまでの磁性膜の保磁
力が30Oe以上であることを特徴とする。
Further, the perpendicular magnetic recording medium according to the present invention comprises:
In the above perpendicular magnetic recording medium, the coercive force of the magnetic film of the underlying soft magnetic film from the substrate side in the magnetic film up to 10 nm is 30 Oe or more.

【0015】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜の膜厚が
300nm以下であることを特徴とする。
Further, the perpendicular magnetic recording medium according to the present invention comprises:
In the above perpendicular magnetic recording medium, the thickness of the underlying soft magnetic film is 300 nm or less.

【0016】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜の材料が
FeSiAl合金であることを特徴とする。
Further, the perpendicular magnetic recording medium according to the present invention comprises:
In the above perpendicular magnetic recording medium, the material of the underlying soft magnetic film is an FeSiAl alloy.

【0017】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜の材料が
Fe84.9SixAl15.1-x(8.0≦X≦12.0)で
あることを特徴とする。
Also, the perpendicular magnetic recording medium according to the present invention
In the perpendicular magnetic recording medium, wherein the material of the lower soft magnetic film is a Fe 84.9 Si x Al 15.1-x (8.0 ≦ X ≦ 12.0).

【0018】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜の材料が
Fe84.9Si9.6Al5.5(wt%)であることを特徴と
する。
Also, the perpendicular magnetic recording medium according to the present invention
In the above perpendicular magnetic recording medium, the material of the underlying soft magnetic film is Fe 84.9 Si 9.6 Al 5.5 (wt%).

【0019】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜の材料に
元素Mを添加した合金とし、MとしてTa、Ti、Z
r、Mo、Nbのうち任意の2つの元素を含むことを特
徴とする。
Also, the perpendicular magnetic recording medium according to the present invention
In the above-described perpendicular magnetic recording medium, an alloy in which the element M is added to the material of the underlying soft magnetic film, where M is Ta, Ti, Z
It is characterized by containing arbitrary two elements of r, Mo, and Nb.

【0020】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、下地軟磁性膜の材料が
FeTaNであることを特徴とする。
Also, the perpendicular magnetic recording medium according to the present invention
In the above perpendicular magnetic recording medium, the material of the underlying soft magnetic film is FeTaN.

【0021】[0021]

【0022】また、本発明による垂直磁気記録媒体は、
上記垂直磁気記録媒体において、垂直磁化膜の材料がC
oCrR合金であり、RとしてPt、Ta、La、L
u、Pr、Srのうち任意の3つの元素を含むことを特
徴とする。
Further, the perpendicular magnetic recording medium according to the present invention
In the above perpendicular magnetic recording medium, the material of the perpendicular magnetization film is C
oCrR alloy, where R is Pt, Ta, La, L
It is characterized by containing any three elements of u, Pr and Sr.

【0023】本発明による磁気記録装置は、垂直磁気記
録媒体に情報を記録する磁気記録装置において、前記垂
直磁気記録媒体は基板上に下地軟磁性膜と垂直磁化膜と
を順に積層しており、前記下地軟磁性膜の透磁率が50
以上100以下であり、前記下地軟磁性膜の全体の保磁
力が2(Oe)以上30(Oe)以下であることを特徴
とする。
The magnetic recording apparatus according to the present invention is a magnetic recording apparatus for recording information on a perpendicular magnetic recording medium, wherein the perpendicular magnetic recording medium has a base soft magnetic film and a perpendicular magnetic film laminated on a substrate in order. The magnetic permeability of the underlying soft magnetic film is 50
Above 100 Ri der hereinafter the entirety of the lower soft magnetic film coercive
The force is 2 (Oe) or more and 30 (Oe) or less .

【0024】また、本発明による磁気記録装置におい
て、前記下地軟磁性膜の材料に元素Mを添加した合金と
し、前記元素MとしてTa、Ti、Zr、Mo、Nbの
うち任意の2つの元素を含むことを特徴とする。
Further, in the magnetic recording apparatus according to the present invention, an alloy in which an element M is added to the material of the underlying soft magnetic film is used, and any two of Ta, Ti, Zr, Mo, and Nb are used as the element M. It is characterized by including.

【0025】また、本発明による磁気記録装置におい
て、前記垂直磁化膜の材料がCoCrR合金であり、前
記RとしてPt、Ta、La、Lu、Pr、Srのうち
任意の3つの元素を含むことを特徴とする。
Further, in the magnetic recording apparatus according to the present invention, the material of the perpendicular magnetization film is a CoCrR alloy, and the R includes any three elements of Pt, Ta, La, Lu, Pr, and Sr. Features.

【0026】[作用]本発明の垂直磁気記録媒体では、
下地軟磁性膜を良好な軟磁気特性をもつ膜とせず、透磁
率を従来よりも小さくすることにより、外部磁界に対す
る下地軟磁性膜の磁化の反応性を従来よりも鈍化させ、
垂直磁気ヘッドの主磁極への外部磁場の磁束の集中を抑
制している。
[Operation] In the perpendicular magnetic recording medium of the present invention,
Rather than making the underlying soft magnetic film a film with good soft magnetic properties, the permeability of the underlying soft magnetic film is made less responsive to an external magnetic field by lowering the magnetic permeability than before,
The concentration of the magnetic flux of the external magnetic field on the main pole of the perpendicular magnetic head is suppressed.

【0027】このために、垂直記録層に記録された磁化
の減磁、あるいは消磁が発生しにくく、外部磁場に対し
て記録磁化の安定性に優れた垂直媒体とすることができ
る。
For this reason, it is possible to obtain a perpendicular medium which is hardly demagnetized or demagnetized in the magnetization recorded in the perpendicular recording layer and has excellent stability of the recorded magnetization against an external magnetic field.

【0028】また、本発明の磁気記録装置では、上述の
垂直磁気記録媒体をもちいることにより、外部磁界に対
する下地軟磁性膜の磁化の反応性を最適化した透磁率と
し、浮遊磁界の影響を容易に受けない装置とすることが
できる。
Further, in the magnetic recording apparatus of the present invention, by using the above-described perpendicular magnetic recording medium, the magnetic permeability of the underlying soft magnetic film is optimized so as to optimize the reactivity of the magnetization of the underlying soft magnetic film to the external magnetic field, and the influence of the stray magnetic field is reduced. A device that is not easily received can be provided.

【0029】[0029]

【発明の実施の形態】本発明による実施形態について、
図面を参照しつつ詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments according to the present invention will be described.
This will be described in detail with reference to the drawings.

【0030】[構成の説明]図1は、本発明に関わる垂
直磁気記録媒体の一実施形態を示す概略断面図である。
[Description of Structure] FIG. 1 is a schematic sectional view showing an embodiment of a perpendicular magnetic recording medium according to the present invention.

【0031】本実施形態に関わる垂直磁気記録媒体20
は、透磁率の小さい下地軟磁性膜24と、垂直磁化膜2
8とが基板22上に形成されたものである。
The perpendicular magnetic recording medium 20 according to the present embodiment
Are a soft magnetic underlayer 24 having a low magnetic permeability and a perpendicular magnetic film 2
8 are formed on the substrate 22.

【0032】[動作の説明]下地軟磁性膜24として、
以下の材料、すなわちFeSiAl膜、FeSiAlM
膜、FeTaN膜、又は、FeTaNM膜(Mは、T
a、Ti、Zr、Mo、Nbのうちの任意の2つの元素
とする)を用い、下地軟磁性膜24の透磁率を低く抑え
ることにより、従来、下地軟磁性膜24の軟磁気特性が
良好で大きな透磁率をもっていたときに発生する問題、
すなわち外部磁場に対する記録磁化の不安定性を解決す
ることができる。
[Explanation of Operation] As the underlying soft magnetic film 24,
The following materials: FeSiAl film, FeSiAlM
Film, FeTaN film, or FeTaNM film (M is T
a, Ti, Zr, Mo, and Nb) to suppress the magnetic permeability of the underlying soft magnetic film 24, thereby improving the soft magnetic characteristics of the underlying soft magnetic film 24. Problems that occur when the material has a large magnetic permeability,
That is, the instability of the recording magnetization with respect to the external magnetic field can be solved.

【0033】[0033]

【実施例】[実施例1] [実施例1の構成の説明]本発明の実施例について図2
を参照して詳細に説明する。磁気ディスク径2.5イン
チの基板12上にスパッタ法により6インチのFe84.9
Si9.6Al5.5(wt%)ターゲットを用いて、Fe
84.9Si9.6Al5.5膜16を基板温度500℃で500
nm成膜した。成膜条件は、初期真空度5x10-7mTor
rにおいて、投入電力0.5kw、アルゴンガス圧4mT
orr、成膜速度3nm/secとした。その上にCo78Cr
19PtLaLu(at%)ターゲットを用いてCo78Cr19PtLaLu膜1
8を100nm成膜した。更にその上にC保護膜を10
nm成膜した。この媒体を従来媒体A1とする。これに
対し、Fe84.9Si9.6Al5.5膜成膜時の基板温度のみ
を変え、基板温度400℃、350℃、300℃、25
0℃、200℃、100℃、及び室温で成膜して作製し
た媒体を、それぞれ本発明媒体A2、A3、A4、A
5、A6、A7、A8とする。また、本発明媒体A2の
下地軟磁性膜の膜厚を250nm、350nmとした媒
体を本発明媒体A9、従来媒体AA1とする。
[Embodiment 1] [Description of Configuration of Embodiment 1] FIG. 2 shows an embodiment of the present invention.
This will be described in detail with reference to FIG. A 6-inch Fe 84.9 layer was formed on a substrate 12 having a magnetic disk diameter of 2.5 inches by sputtering.
Using a Si 9.6 Al 5.5 (wt%) target, Fe
84.9 Si 9.6 Al 5.5 film 16 is deposited at a substrate temperature of 500 ° C. for 500 times.
nm. The film formation conditions are as follows: Initial vacuum 5 × 10 −7 mTor
At r, input power 0.5kw, argon gas pressure 4mT
orr, and the film formation rate was 3 nm / sec. Co 78 Cr on it
Co 78 Cr 19 PtLaLu film 1 using 19 PtLaLu (at%) target
8 was deposited to a thickness of 100 nm. Furthermore, a C protective film is further
nm. This medium is referred to as a conventional medium A1. On the other hand, only the substrate temperature at the time of forming the Fe 84.9 Si 9.6 Al 5.5 film was changed, and the substrate temperature was changed to 400 ° C., 350 ° C., 300 ° C., 25 ° C.
Media prepared by forming a film at 0 ° C., 200 ° C., 100 ° C., and room temperature are respectively referred to as media A2, A3, A4, and A
5, A6, A7, and A8. A medium in which the thickness of the underlying soft magnetic film of the medium A2 of the present invention is 250 nm and 350 nm is referred to as a medium A9 of the present invention and a conventional medium AA1.

【0034】[実施例1の動作の説明]各々の基板温度
で成膜したFe84.9Si9.6Al5.5膜の透磁率、膜全体
の保磁力、Fe84.9Si9.6Al5.5膜を10nmのみ成
膜した膜の保磁力を測定した。各々の測定値を図3に示
す。
[Explanation of Operation of Embodiment 1] The magnetic permeability of the Fe 84.9 Si 9.6 Al 5.5 film formed at each substrate temperature, the coercive force of the whole film, and the Fe 84.9 Si 9.6 Al 5.5 film of only 10 nm were formed. The coercive force of the film was measured. Each measurement value is shown in FIG.

【0035】図3において、従来媒体A1及び本発明媒
体A2〜A10の記録再生の実験は、単磁極ヘッド、I
D/MR複合ヘッドを用いて行った。ここで、ID/M
R複合ヘッド記録トラック幅は4μm、再生トラック幅
は3μm、記録ギャップ長は0.4μm、再生ギャップ
長は0.32μmである。また、単磁極ヘッドのトラッ
ク幅は10μm、主磁極膜厚は0.4μmである。評価
は記録電流10mAop、センス電流12mA、周速度
12.7m/s、浮上量45nm、ノイズのバンド帯域
45MHzの条件下で行った。
In FIG. 3, an experiment of recording / reproducing with respect to the conventional medium A1 and the mediums A2 to A10 of the present invention was conducted by using a single pole head
This was performed using a D / MR composite head. Where ID / M
The recording track width of the R composite head is 4 μm, the reproduction track width is 3 μm, the recording gap length is 0.4 μm, and the reproduction gap length is 0.32 μm. The track width of the single pole head is 10 μm, and the main pole film thickness is 0.4 μm. The evaluation was performed under the conditions of a recording current of 10 mAop, a sense current of 12 mA, a peripheral speed of 12.7 m / s, a flying height of 45 nm, and a noise band band of 45 MHz.

【0036】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体A1、AA1及び本発明媒体
A2〜A9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oe
の範囲で印加し、磁場印加前の再生出力と磁場印加後の
再生出力の比較をおこなった。この結果を図4に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。FeSiAl膜は元
来、磁壁構造をとらないため、垂直2層媒体の下地軟磁
性膜として用いた場合、NiFe膜等、磁壁構造をとる
下地軟磁性膜を用いた場合よりも単磁極ヘッドの主磁極
に磁束を集中させにくく、出力信号を外部磁場に対して
安定化させやすいという利点がある。
First, in order to examine the stability of recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media A1, AA1 and the media A2 to A9 of the present invention with a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. 1-30 Oe
The reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage. Since the FeSiAl film originally does not have a domain wall structure, when it is used as an underlayer soft magnetic film having a domain wall structure such as a NiFe film, the use of an underlayer soft magnetic film having a domain wall structure in the perpendicular double-layered medium is more difficult. There is an advantage that the magnetic flux is not easily concentrated on the magnetic pole, and the output signal is easily stabilized with respect to the external magnetic field.

【0037】図4から分かるように、従来媒体A1、A
A1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十
分大きく、保磁力が十分小さいため、4Oeの外部磁場
で出力が減少し始めるが、本発明媒体A2〜A9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。
As can be seen from FIG. 4, the conventional media A1, A
A1 shows that the soft magnetic properties of the underlying soft magnetic film are good, the magnetic permeability is sufficiently large, and the coercive force is sufficiently small, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more.

【0038】一般に、膜の成長初期層の保磁力は大きい
が、この成長初期層の保磁力が大きいことで膜全体の保
磁力を大きくすることができる。本発明媒体A2〜A9
の場合、下地軟磁性膜の透磁率が小さいこと、及び膜全
体の保磁力が大きいことにより、外部からの磁束を単磁
極ヘッドの主磁極に集中しにくくすることができ、外部
磁場に強い垂直2層媒体とすることができた。また、従
来媒体AA1の場合、本発明媒体A2よりも下地軟磁性
膜の膜厚が厚い分、膜全体の保磁力に占める初期保磁力
の割合が小さくなり、膜全体の保磁力が本発明媒体A2
よりも小さくなり、外部磁場に対して弱くなったと考え
られる。
Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can be increased to increase the coercive force of the entire film. Invention media A2 to A9
In the case of, because the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is possible to make it difficult for external magnetic flux to be concentrated on the main pole of the single-pole head, and to provide a strong perpendicular to the external magnetic field. A two-layer medium could be obtained. Further, in the case of the conventional medium AA1, the ratio of the initial coercive force to the coercive force of the entire film becomes smaller because the thickness of the underlying soft magnetic film is larger than that of the medium A2 of the present invention, and the coercive force of the entire film is reduced. A2
It is thought that it became weaker to an external magnetic field.

【0039】以上のことから、下地軟磁性膜の透磁率を
1000以下、膜全体の保磁力を2Oe〜30Oe、初
期保磁力を30Oe以上、下地軟磁性膜の膜厚を300
nm以下とすることにより、外部磁場に強い垂直2層媒
体とすることができる。
From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the whole film is 2 Oe to 30 Oe, the initial coercive force is 30 Oe or more, and the thickness of the underlying soft magnetic film is 300
By setting the thickness to be equal to or less than nm, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0040】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図5に示す。図5からわ
かるように、再生出力の大きさは、下地軟磁性膜の透磁
率が大きいほど大きい。従来媒体A1、AA1、本発明
媒体A2、A3、A9は下地軟磁性膜の透磁率の大きさ
が大きく、十分な再生出力を得ることができる。本発明
媒体A4、A5は下地軟磁性膜の透磁率の大きさが本発
明媒体A2、A3、A9よりも小さいため、再生出力が
小さくなるが、本発明媒体A2、A3、A9の再生出力
の約8割であり、依然再生出力の絶対値として十分であ
ると言える。本発明媒体A6、A7は下地軟磁性膜の透
磁率の大きさが本発明媒体A4、A5よりも小さいた
め、再生出力がさらに小さくなるが、本発明媒体A2、
A3、A9の再生出力の約6割であり、依然再生出力の
絶対値として十分であると言える。しかし、本発明媒体
A8の場合、下地軟磁性膜の透磁率が小さすぎるため、
再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 5 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 5, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media A1 and AA1 and the media A2, A3 and A9 of the present invention have large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. The mediums A4, A5 of the present invention have smaller magnetic permeability of the underlying soft magnetic film than the mediums A2, A3, A9 of the present invention, so that the reproduction output is small. However, the reproduction output of the mediums A2, A3, A9 of the present invention is small. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media A6 and A7 of the present invention, since the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media A4 and A5 of the present invention, the reproduction output is further reduced.
It is about 60% of the reproduction output of A3 and A9, and it can be said that the reproduction output is still sufficient as an absolute value. However, in the case of the medium A8 of the present invention, the magnetic permeability of the underlying soft magnetic film is too small.
Playback output is not enough.

【0041】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体A2〜A9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎる
と、再生出力の低下を招く。このことから、下地軟磁性
膜の透磁率は50以上である必要がある。そして、再生
出力の観点から、下地軟磁性膜の透磁率は50以上10
0以下、より望ましくは50以上500以下、さらによ
り望ましくは50以上1000以下であることが望まし
い。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media A2 to A9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is 50 or more and 10 or more.
It is preferably 0 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0042】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
Further, the durability of the output signal to the external magnetic field is caused by the interaction between the main pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0043】[実施例2]実施例1においてCo78Cr19Pt
LaLu(at%)ターゲットの代わりにCo78Cr19TaLaSr
(at%)ターゲットを用いて実施例1と同様にして媒
体を作製した。実施例1と同様に作製した媒体を、実施
例1にならい、それぞれ従来媒体B1、BB1、本発明
媒体B2、B3、B4、B5、B6、B7、B8、B9
とする。各々の基板温度で成膜したFe84.9Si9.6
5.5膜の透磁率を測定した。各々の透磁率の値を図6
に示す。
Example 2 In Example 1, Co 78 Cr 19 Pt was used.
Co 78 Cr 19 TaLaSr instead of LaLu (at%) target
(At%) A medium was produced in the same manner as in Example 1 using a target. The media prepared in the same manner as in Example 1 were prepared in the same manner as in Example 1, except that the conventional media B1, BB1, and the media B2, B3, B4, B5, B6, B7, B8, B9 of the present invention were used.
And Fe 84.9 Si 9.6 A deposited at each substrate temperature
The magnetic permeability of the l5.5 film was measured. Fig. 6 shows the value of each magnetic permeability.
Shown in

【0044】従来媒体B1、BB1及び本発明媒体B2
〜B9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media B1, BB1 and media B2 of the present invention
Experiments on recording and reproduction of B9 to B9 were performed under the same recording and reproduction conditions as in Example 1.

【0045】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体B1、BB1及び本発明媒体
B2〜B9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図7に示す。こ
こでは、磁場印加前の再生出力に対する磁場印加後の再
生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media B1, BB1 and the media B2 to B9 of the present invention by a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG. Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0046】図7から分かるように、従来媒体B1、B
B1は、下地軟磁性膜の軟磁気特性が良好で透磁率が十
分大きく、保磁力が十分小さいため、4Oeの外部磁場
で出力が減少し始めるが、本発明媒体B2〜B9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 7, the conventional media B1, B
B1 has good soft magnetic properties of the underlying soft magnetic film, has sufficiently large magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0047】本発明媒体B2〜B9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体BB1の場
合、本発明媒体B2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体B2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media B2 to B9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the whole film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium BB1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium B2 of the present invention, and the coercive force of the entire film is reduced. It is considered that it became smaller than B2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0048】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図8に示す。図8から分
かるように、再生出力の大きさは、下地軟磁性膜の透磁
率が大きいほど大きい。従来媒体B1、BB1、本発明
媒体B2、B3、B9は下地軟磁性膜の透磁率の大きさ
が大きく、十分な再生出力を得ることができる。本発明
媒体B4、B5は下地軟磁性膜の透磁率の大きさが本発
明媒体B2、B3、B9よりも小さいため、再生出力が
小さくなるが、本発明媒体B2、B3、B9の再生出力
の約8割であり、依然再生出力の絶対値として十分であ
ると言える。本発明媒体B6、B7は下地軟磁性膜の透
磁率の大きさが本発明媒体B4、B5よりも小さいた
め、再生出力がさらに小さくなるが、本発明媒体B2、
B3、B9の再生出力の約6割であり、依然再生出力の
絶対値として十分であると言える。しかし、本発明媒体
B8の場合、下地軟磁性膜の透磁率が小さすぎるため、
再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 8 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 8, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media B1 and BB1 and the media B2, B3 and B9 of the present invention have large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. The mediums B4, B5 of the present invention have a smaller reproduction output because the magnetic permeability of the underlying soft magnetic film is smaller than the mediums B2, B3, B9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. Since the mediums B6 and B7 of the present invention have smaller magnetic permeability of the underlying soft magnetic film than the mediums B4 and B5 of the present invention, the reproduction output is further reduced.
This is about 60% of the reproduction output of B3 and B9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium B8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small,
Playback output is not enough.

【0049】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体B2〜B9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media B2 to B9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0050】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0051】[実施例3]実施例1においてCo78Cr19Pt
LaLu(at%)ターゲットの代わりにCo78Cr19PtLuPr
(at%)ターゲットを用いて実施例1と同様にして媒
体を作製した。実施例1と同様に作製した媒体を、実施
例1にならい、それぞれ従来媒体C1、CC1、本発明
媒体C2、C3、C4、C5、C6、C7、C8、C9
とする。各々の基板温度で成膜したFe84.9Si9.6
5.5膜の透磁率を測定した。各々の透磁率の値を図9
に示す。
Example 3 In Example 1, Co 78 Cr 19 Pt was used.
Co 78 Cr 19 PtLuPr instead of LaLu (at%) target
(At%) A medium was produced in the same manner as in Example 1 using a target. The media produced in the same manner as in Example 1 were prepared in the same manner as in Example 1, except that the conventional media C1, CC1, and the media C2, C3, C4, C5, C6, C7, C8, C9 of the present invention were obtained.
And Fe 84.9 Si 9.6 A deposited at each substrate temperature
The magnetic permeability of the l5.5 film was measured. FIG. 9 shows the values of the respective magnetic permeability.
Shown in

【0052】従来媒体C1、CC1及び本発明媒体C2
〜C9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media C1, CC1 and media C2 of the present invention
Experiments of recording and reproduction of C9 to C9 were performed under the same recording and reproduction conditions as in Example 1.

【0053】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体C1、CC1及び本発明媒体
C2〜C9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図10に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media C1 and CC1 and the media C2 to C9 of the present invention with a single pole head, and then a direct current magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0054】図10から分かるように、従来媒体C1、
CC1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体C2〜C9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 10, the conventional media C1,
CC1 has good soft magnetic properties of the underlying soft magnetic film, has a sufficiently large magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0055】本発明媒体C2〜C9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体CC1の場
合、本発明媒体C2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体C2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media C2 to C9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium CC1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium C2 of the present invention. It is considered that it became smaller than C2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0056】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図11に示す。図11か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体C1、CC1、本
発明媒体C2、C3、C9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体B4、B5は下地軟磁性膜の透磁率の大きさが
本発明媒体C2、C3、C9よりも小さいため、再生出
力が小さくなるが、本発明媒体C2、C3、C9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。
Next, the reproduction output was measured. FIG. 11 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 11, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media C1 and CC1 and the media C2, C3 and C9 of the present invention have large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media B4 and B5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media C2, C3 and C9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output.

【0057】本発明媒体C6、C7は下地軟磁性膜の透
磁率の大きさが本発明媒体C4、C5よりも小さいた
め、再生出力がさらに小さくなるが、本発明媒体C2、
C3、C9の再生出力の約6割であり、依然再生出力の
絶対値として十分であると言える。しかし、本発明媒体
C8の場合、下地軟磁性膜の透磁率が小さすぎるため、
再生出力が十分に取れない。
In the media C6 and C7 of the present invention, since the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media C4 and C5 of the present invention, the reproduction output is further reduced.
This is about 60% of the reproduction output of C3 and C9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium C8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small,
Playback output is not enough.

【0058】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体C2〜C9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media C2 to C9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0059】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal to an external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0060】[実施例4]実施例1においてFe84.9
9.6Al5.5(wt%)ターゲットの代わりにFe84.9
Si8.0Al7.1(wt%)ターゲットを、Co78Cr19
PtLaLu(at%)ターゲットの代わりにCo78
19TaPrLu(at%)ターゲットを用いて実施例
1と同様にして媒体を作製した。ただし、Fe84.9Si
8.0Al7.1膜成膜時の基板温度を450℃、400℃、
350℃、300℃、250℃、200℃、及び室温で
成膜して作製した媒体をそれぞれ本発明媒体D2、D
3、D4、D5、D6、D7、D8とする。また、本発
明媒体D2の下地軟磁性膜の膜厚を250nm、350
nmとした媒体を本発明媒体D9、従来媒体DD1とす
る。
[Example 4] In Example 1, Fe 84.9 S
i 9.6 Al 5.5 Fe instead of (wt%) Target 84.9
The Si 8.0 Al 7.1 (wt%) target was changed to Co 78 Cr 19
Co 78 C instead of PtLaLu (at%) target
A medium was produced in the same manner as in Example 1 using an r 19 TaPrLu (at%) target. However, Fe 84.9 Si
The substrate temperature at the time of forming the 8.0 Al 7.1 film was 450 ° C, 400 ° C,
Media prepared by forming a film at 350 ° C., 300 ° C., 250 ° C., 200 ° C., and room temperature are referred to as mediums D2 and D of the present invention, respectively.
3, D4, D5, D6, D7, D8. Further, the thickness of the underlying soft magnetic film of the medium D2 of the present invention is set to 250 nm, 350 nm.
The medium of nm is referred to as a medium D9 of the present invention and a conventional medium DD1.

【0061】各々の基板温度で成膜したFe84.9Si
8.0Al7.1膜の透磁率を測定した。各々の透磁率の値を
図12に示す。
Fe 84.9 Si deposited at each substrate temperature
The magnetic permeability of the 8.0 Al 7.1 film was measured. FIG. 12 shows the values of the respective magnetic permeability.

【0062】従来媒体D1、DD1及び本発明媒体D2
〜D9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media D1, DD1 and media D2 of the present invention
Experiments on recording and reproduction of D9 to D9 were performed under the same recording and reproduction conditions as in Example 1.

【0063】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体D1、DD1及び本発明媒体
D2〜D9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図13に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media D1 and DD1 and the media D2 to D9 of the present invention by a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. FIG. 13 shows the result.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0064】図13から分かるように、従来媒体D1、
DD1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体D2〜D9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 13, the conventional media D1,
DD1 has good soft magnetic properties of the underlying soft magnetic film, has a sufficiently high magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0065】本発明媒体D2〜D9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体DD1の場
合、本発明媒体D2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体D2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media D2 to D9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for external magnetic flux to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. In addition, in the case of the conventional medium DD1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium D2 of the present invention, and the coercive force of the entire film is reduced. It is considered that it became smaller than D2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0066】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図14に示す。図14か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体D1、DD1、本
発明媒体D2、D3、D9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体D4、D5は下地軟磁性膜の透磁率の大きさが
本発明媒体D2、D3、D9よりも小さいため、再生出
力が小さくなるが、本発明媒体D2、D3、D9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体D6、D7は下地軟磁性膜
の透磁率の大きさが本発明媒体D4、D5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体D
2、D3、D9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体D8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 14 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 14, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media D1 and DD1 and the media D2, D3 and D9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media D4 and D5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media D2, D3 and D9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media D6 and D7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media D4 and D5 of the present invention.
2, 60% of the reproduction output of D3 and D9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium D8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0067】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体D2〜D9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media D2 to D9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0068】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and thus does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0069】[実施例5]実施例1においてFe84.9
9.6Al5.5(wt%)ターゲットの代わりにFe84.9
Si12.0Al3.1(wt%)ターゲットを、Co78Cr
19PtLaLu(at%)ターゲットの代わりにCo78
Cr19TaPrSr(at%)ターゲットを用いて実施
例1と同様にして媒体を作製した。ただし、Fe84.9
12.0Al 3.1膜成膜時の基板温度を450℃、400
℃、350℃、300℃、250℃、200℃、及び室
温で成膜して作製した媒体をそれぞれ本発明媒体E2、
E3、E4、E5、E6、E7、E8とする。また、本
発明媒体E2の下地軟磁性膜の膜厚を250nm、35
0nmとした媒体を本発明媒体E9、従来媒体EE1と
する。
[Embodiment 5]84.9S
i9.6Al5.5(Wt%) Fe instead of target84.9
Si12.0Al3.1(Wt%)78Cr
19Co instead of PtLaLu (at%) target78
Cr19Implemented using TaPrSr (at%) target
A medium was produced in the same manner as in Example 1. Where Fe84.9S
i12.0Al 3.1The substrate temperature during film formation is 450 ° C., 400
℃, 350 ℃, 300 ℃, 250 ℃, 200 ℃, and room
The medium prepared by forming a film at a high temperature is a medium E2 of the present invention,
E3, E4, E5, E6, E7, E8. Also book
The thickness of the underlying soft magnetic film of the invention medium E2 is set to 250 nm and 35
The medium having a thickness of 0 nm is referred to as a medium E9 of the present invention or a conventional medium EE1.
I do.

【0070】各々の基板温度で成膜したFe84.9Si
12.0Al3.1膜の透磁率を測定した。各々の透磁率の値
を図15に示す。
Fe 84.9 Si deposited at each substrate temperature
The magnetic permeability of the 12.0 Al 3.1 film was measured. FIG. 15 shows the values of the respective magnetic permeability.

【0071】従来媒体E1、EE1及び本発明媒体E2
〜E9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。まず、外部磁界に対する記録磁化の
安定性を調べるために、従来媒体E1、EE1及び本発
明媒体E2〜E9に単磁極ヘッドで信号を記録後、ヘル
ムホルツコイルによって媒体に直流磁場を大きさ1〜3
0Oeの範囲で印加し、磁場印加前の再生出力と磁場印加
後の再生出力の比較をおこなった。この結果を図16に
示す。ここでは、磁場印加前の再生出力に対する磁場印
加後の再生出力を百分率で示してある。
Conventional media E1, EE1 and media E2 of the present invention
The recording and reproduction experiments of E9 to E9 were performed under the same recording and reproduction conditions as in Example 1. First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media E1 and EE1 and the media E2 to E9 of the present invention with a single pole head, and then a DC magnetic field was applied to the media with a Helmholtz coil.
The voltage was applied in the range of 0 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG. Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0072】図16から分かるように、従来媒体E1、
EE1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体E2〜E9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 16, the conventional media E1,
EE1 shows that the soft magnetic characteristics of the underlying soft magnetic film are good, the magnetic permeability is sufficiently large, and the coercive force is sufficiently small, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0073】本発明媒体E2〜E9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体EE1の場
合、本発明媒体E2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体EE2よりも小さく
なり、外部磁場に対して弱くなったと考えられる。以上
のことから、下地軟磁性膜の透磁率を1000以下、膜
全体の保磁力を2Oe〜30Oe、初期保磁力を30O
e以上、下地軟磁性膜の膜厚を300nm以下とするこ
とにより、外部磁場に強い垂直2層媒体とすることがで
きる。
In the case of the media E2 to E9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the whole film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium EE1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium E2 of the present invention. It is considered that it became smaller than EE2 and became weak to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
By setting the thickness of the soft magnetic underlayer to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0074】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図17に示す。図17か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体E1、EE1、本
発明媒体E2、E3、E9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体E4、E5は下地軟磁性膜の透磁率の大きさが
本発明媒体E2、E3、E9よりも小さいため、再生出
力が小さくなるが、本発明媒体E2、E3、E9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体E6、E7は下地軟磁性膜
の透磁率の大きさが本発明媒体E4、E5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体E
2、E3、E9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体E8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 17 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 17, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media E1 and EE1 and the media E2, E3 and E9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and a sufficient reproduction output can be obtained. In the media E4 and E5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media E2, E3 and E9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media E6 and E7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media E4 and E5 of the present invention.
It is about 60% of the reproduction output of 2, E3, and E9, and it can be said that it is still sufficient as the absolute value of the reproduction output. However, in the case of the medium E8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0075】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体E2〜E9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media E2 to E9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0076】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0077】[実施例6]実施例1においてFe84.9
9.6Al5.5(wt%)ターゲットの代わりにFe82.9
Si9.6Al5.5TaZr(wt%)ターゲットを用いて
実施例1と同様にして媒体を作製した。TaZrの添加
は、結晶粒を微細化する効果がある。実施例1と同様に
作製した媒体を、実施例1にならい、それぞれ従来媒体
F1、FF1、本発明媒体F2、F3、F4、F5、F
6、F7、F8、F9とする。各々の基板温度で成膜し
たFe82.9Si9.6Al5.5TaZr膜の透磁率を測定し
た。各々の透磁率の値を図18に示す。
[Embodiment 6] In the embodiment 1, Fe 84.9 S
i 9.6 Al 5.5 Fe instead of (wt%) Target 82.9
A medium was produced in the same manner as in Example 1 using a Si 9.6 Al 5.5 TaZr (wt%) target. Addition of TaZr has an effect of making crystal grains fine. The media manufactured in the same manner as in Example 1 were manufactured in the same manner as in Example 1 except that the conventional media F1 and FF1, and the media F2, F3, F4, F5, and F of the present invention, respectively.
6, F7, F8, and F9. The magnetic permeability of the Fe 82.9 Si 9.6 Al 5.5 TaZr film formed at each substrate temperature was measured. FIG. 18 shows the values of the respective magnetic permeability.

【0078】従来媒体F1、FF1及び本発明媒体F2
〜F9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media F1, FF1 and media F2 of the present invention
The experiments of recording and reproduction of F9 to F9 were performed under the same recording and reproduction conditions as in Example 1.

【0079】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体F1、FF1及び本発明媒体
F2〜F9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図19に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media F1 and FF1 and the media F2 to F9 of the present invention with a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0080】図19から分かるように、従来媒体F1、
FF1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体F2〜F9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 19, the conventional medium F1,
FF1 has good soft magnetic properties of the underlying soft magnetic film, has sufficiently high magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0081】本発明媒体F2〜F9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体FF1の場
合、本発明媒体F2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体F2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media F2 to F9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, the magnetic flux from the outside is hardly concentrated on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium FF1, the ratio of the initial coercive force to the coercive force of the entire film becomes smaller because the thickness of the underlying soft magnetic film is larger than that of the medium F2 of the present invention. It is considered that it became smaller than F2 and became weak to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0082】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図20に示す。図20か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体F1、FF1、本
発明媒体F2、F3、F9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体F4、F5は下地軟磁性膜の透磁率の大きさが
本発明媒体F2、F3、F9よりも小さいため、再生出
力が小さくなるが、本発明媒体F2、F3、F9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体F6、F7は下地軟磁性膜
の透磁率の大きさが本発明媒体F4、F5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体F
2、F3、F9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体F8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 20 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 20, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media F1 and FF1 and the media F2, F3 and F9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and a sufficient reproduction output can be obtained. In the media F4 and F5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media F2, F3 and F9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media F6 and F7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media F4 and F5 of the present invention.
2, 60% of the reproduction output of F3 and F9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium F8 of the present invention, the reproduction output cannot be sufficiently obtained because the magnetic permeability of the underlying soft magnetic film is too small.

【0083】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体F2〜F9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media F2 to F9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0084】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and thus does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0085】[実施例7]実施例2においてFe84.9
9.6Al5.5(wt%)ターゲットの代わりにFe82.9
Si9.6Al5.5TiMo(wt%)ターゲットを用いて
実施例1と同様にして媒体を作製した。TiMoの添加
は、結晶粒を微細化する効果がある。実施例1と同様に
作製した媒体を、実施例1にならい、それぞれ従来媒体
G1、GG1、本発明媒体G2、G3、G4、G5、G
6、G7、G8、G9とする。
[Embodiment 7] In Example 2, Fe 84.9 S
i 9.6 Al 5.5 Fe instead of (wt%) Target 82.9
A medium was manufactured in the same manner as in Example 1 using a Si 9.6 Al 5.5 TiMo (wt%) target. Addition of TiMo has an effect of making crystal grains fine. The media manufactured in the same manner as in Example 1 were manufactured in the same manner as in Example 1, except that the conventional media G1 and GG1, and the media G2, G3, G4, G5, and G of the present invention, respectively.
6, G7, G8, and G9.

【0086】各々の基板温度で成膜したFe82.9Si
9.6Al5.5TiMo膜の透磁率を測定した。各々の透磁
率の値を図21に示す。
Fe 82.9 Si deposited at each substrate temperature
The magnetic permeability of the 9.6 Al 5.5 TiMo film was measured. FIG. 21 shows the values of the respective magnetic permeability.

【0087】従来媒体G1、GG1及び本発明媒体G2
〜G9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media G1, GG1 and media G2 of the present invention
The experiments of recording and reproduction of G9 to G9 were performed under the same recording and reproduction conditions as in Example 1.

【0088】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体G1、GG1及び本発明媒体
G2〜G9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図22に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, signals were recorded on the conventional media G1, GG1 and the media G2 to G9 of the present invention with a single-pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0089】図22から分かるように、従来媒体G1、
GG1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体G2〜G9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 22, the conventional media G1,
GG1 has good soft magnetic properties of the underlying soft magnetic film, has sufficiently high magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0090】本発明媒体G2〜G9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体GG1の場
合、本発明媒体G2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体G2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the mediums G2 to G9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the whole film is large, it is difficult for external magnetic flux to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. In addition, in the case of the conventional medium GG1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is thicker than that of the medium G2 of the present invention, and the coercive force of the entire film is reduced. It is considered that the value became smaller than G2 and became weaker against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0091】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図23に示す。図23か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体G1、GG1、本
発明媒体G2、G3、G9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体G4、G5は下地軟磁性膜の透磁率の大きさが
本発明媒体G2、G3、G9よりも小さいため、再生出
力が小さくなるが、本発明媒体G2、G3、G9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体G6、G7は下地軟磁性膜
の透磁率の大きさが本発明媒体G4、G5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体G
2、G3、G9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体G8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 23 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 23, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media G1 and GG1 and the media G2, G3 and G9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and a sufficient reproduction output can be obtained. The mediums G4 and G5 of the present invention have a smaller reproducing output because the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than the mediums G2, G3 and G9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media G6 and G7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media G4 and G5 of the present invention.
2, 60% of the reproduction output of G3 and G9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium G8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0092】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体G2〜G9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media G2 to G9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0093】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0094】[実施例8]実施例3においてFe84.9
9.6Al5.5(wt%)ターゲットの代わりにFe82.9
Si9.6Al5.5ZrNb(wt%)ターゲットを用いて
実施例1と同様にして媒体を作製した。ZrNbの添加
は、結晶粒を微細化する効果がある。実施例1と同様に
作製した媒体を、実施例1にならい、それぞれ従来媒体
H1、HH1、本発明媒体H2、H3、H4、H5、H
6、H7、H8、H9とする。各々の基板温度で成膜し
たFe82.9Si9.6Al5.5ZrNb膜の透磁率を測定し
た。各々の透磁率の値を図24に示す。
[Embodiment 8] In the third embodiment, Fe 84.9 S
i 9.6 Al 5.5 Fe instead of (wt%) Target 82.9
A medium was manufactured in the same manner as in Example 1 using a Si 9.6 Al 5.5 ZrNb (wt%) target. Addition of ZrNb has an effect of making crystal grains fine. The media manufactured in the same manner as in Example 1 were manufactured in the same manner as in Example 1 except that the conventional media H1, HH1, and the media H2, H3, H4, H5, and H of the present invention were used.
6, H7, H8, and H9. The magnetic permeability of the Fe 82.9 Si 9.6 Al 5.5 ZrNb film formed at each substrate temperature was measured. FIG. 24 shows the values of the respective magnetic permeability.

【0095】従来媒体H1、HH1及び本発明媒体H2
〜H9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media H1, HH1 and media H2 of the present invention
The experiments of recording and reproduction of H9 to H9 were performed under the same recording and reproduction conditions as in Example 1.

【0096】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体H1、HH1及び本発明媒体
H2〜H9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図25に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of recording magnetization with respect to an external magnetic field, signals were recorded on the conventional media H1 and HH1 and the media H2 to H9 of the present invention with a single-pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. FIG. 25 shows the result.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0097】図25から分かるように、従来媒体H1、
HH1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体H2〜H9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 25, the conventional medium H1,
HH1 has an excellent soft magnetic property of the underlying soft magnetic film, has sufficiently high magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0098】本発明媒体H2〜H9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体HH1の場
合、本発明媒体H2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体H2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media H2 to H9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the whole film is large, it is difficult for the magnetic flux from the outside to be concentrated on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Also, in the case of the conventional medium HH1, the ratio of the initial coercive force to the coercive force of the entire film becomes smaller because the thickness of the underlying soft magnetic film is larger than that of the medium H2 of the present invention, and the coercive force of the entire film is reduced. It is considered that it became smaller than H2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0099】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図26に示す。図26か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体H1、HH1、本
発明媒体H2、H3、H9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体H4、H5は下地軟磁性膜の透磁率の大きさが
本発明媒体H2、H3、H9よりも小さいため、再生出
力が小さくなるが、本発明媒体H2、H3、H9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体H6、H7は下地軟磁性膜
の透磁率の大きさが本発明媒体H4、H5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体H
2、H3、H9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体H8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 26 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 26, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media H1, HH1 and the media H2, H3, H9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media H4 and H5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media H2, H3 and H9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media H6 and H7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media H4 and H5 of the present invention.
2, 60% of the reproduction output of H3 and H9, which is still sufficient as the absolute value of the reproduction output. However, in the case of the medium H8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0100】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体H2〜H9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the mediums H2 to H9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0101】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0102】[実施例9]実施例4においてFe84.9
8.0Al7.1(wt%)ターゲットの代わりにFe82.9
Si8.0Al7.1TaZr(wt%)ターゲットを用いて
実施例4と同様にして媒体を作製した。TaZrの添加
は、結晶粒を微細化する効果がある。それぞれ本発明媒
体J2、J3、J4、J5、J6、J7、J8とする。
また、本発明媒体J2の下地軟磁性膜の膜厚を250n
m、350nmとした媒体を本発明媒体J9、従来媒体
JJ1とする。
[Embodiment 9] In Embodiment 4, Fe 84.9 S
Fe 82.9 instead of i 8.0 Al 7.1 (wt%) target
A medium was produced in the same manner as in Example 4 using a Si 8.0 Al 7.1 TaZr (wt%) target. Addition of TaZr has an effect of making crystal grains fine. The mediums of the present invention are J2, J3, J4, J5, J6, J7, and J8, respectively.
Further, the thickness of the underlying soft magnetic film of the medium J2 of the present invention is set to 250 n.
The medium having m and 350 nm is referred to as a medium J9 of the present invention and a conventional medium JJ1.

【0103】各々の基板温度で成膜したFe82.9Si
8.0Al7.1TaZr膜の透磁率を測定した。各々の透磁
率の値を図27に示す。
Fe 82.9 Si deposited at each substrate temperature
The magnetic permeability of the 8.0 Al 7.1 TaZr film was measured. FIG. 27 shows the values of the respective magnetic permeability.

【0104】従来媒体J1、JJ1及び本発明媒体J2
〜J9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media J1, JJ1 and media J2 of the present invention
Experiments on recording and reproduction of J9 to J9 were performed under the same recording and reproduction conditions as in Example 1.

【0105】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体J1、JJ1及び本発明媒体
J2〜J9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図28に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of recording magnetization with respect to an external magnetic field, signals were recorded on the conventional media J1 and JJ1 and the media J2 to J9 of the present invention using a single-pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0106】図28から分かるように、従来媒体J1、
JJ1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体J2〜J9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 28, the conventional media J1,
JJ1 indicates that the soft magnetic property of the underlying soft magnetic film is good, the magnetic permeability is sufficiently large, and the coercive force is sufficiently small, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0107】本発明媒体J2〜J9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体JJ1の場
合、本発明媒体J2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体J2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media J2 to J9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the whole film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium JJ1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the film thickness of the underlying soft magnetic film is thicker than that of the medium J2 of the present invention, and the coercive force of the entire film is reduced. J2 is considered to be smaller than J2 and weaker to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0108】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図29に示す。図29か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体J1、JJ1、本
発明媒体J2、J3、J9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体J4、J5は下地軟磁性膜の透磁率の大きさが
本発明媒体J2、J3、J9よりも小さいため、再生出
力が小さくなるが、本発明媒体J2、J3、J9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体J6、J7は下地軟磁性膜
の透磁率の大きさが本発明媒体J4、J5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体J
2、J3、J9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体J8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 29 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 29, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media J1 and JJ1 and the media J2, J3 and J9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and a sufficient reproduction output can be obtained. In the media J4 and J5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media J2, J3 and J9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media J6 and J7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media J4 and J5 of the present invention.
2, 60% of the reproduction output of J3 and J9, which is still sufficient as the absolute value of the reproduction output. However, in the case of the medium J8 of the present invention, the reproduction output cannot be sufficiently obtained because the magnetic permeability of the underlying soft magnetic film is too small.

【0109】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体J2〜J9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal to the external magnetic field, it is necessary to use the media J2 to J9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0110】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0111】[実施例10]実施例5においてFe84.9
Si12.0Al3.1(wt%)ターゲットの代わりにFe
82.9Si12.0Al3.1TiMo(wt%)ターゲットを
用いて実施例5と同様にして媒体を作製した。TiMo
の添加は、結晶粒を微細化する効果がある。それぞれ本
発明媒体K2、K3、K4、K5、K6、K7、K8と
する。また、本発明媒体E2の下地軟磁性膜の膜厚を2
50nm、350nmとした媒体を本発明媒体K9、従
来媒体KK1とする。
[Embodiment 10] In Example 5, Fe 84.9 was used.
Fe instead of Si 12.0 Al 3.1 (wt%) target
A medium was manufactured in the same manner as in Example 5 using an 82.9 Si 12.0 Al 3.1 TiMo (wt%) target. TiMo
Has an effect of making crystal grains fine. These are the media K2, K3, K4, K5, K6, K7, and K8 of the present invention, respectively. Further, the thickness of the underlying soft magnetic film of the medium E2 of the present invention is set to 2
The media having a thickness of 50 nm and 350 nm are referred to as a medium K9 of the present invention and a conventional medium KK1.

【0112】各々の基板温度で成膜したFe82.9Si
12.0Al3.1TiMo膜の透磁率を測定した。各々の透
磁率の値を図30に示す。
Fe 82.9 Si deposited at each substrate temperature
The magnetic permeability of the 12.0 Al 3.1 TiMo film was measured. FIG. 30 shows the values of the respective magnetic permeability.

【0113】従来媒体K1、KK1及び本発明媒体K2
〜K9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media K1 and KK1 and media K2 of the present invention
Experiments on recording and reproduction of K9 to K9 were performed under the same recording and reproduction conditions as in Example 1.

【0114】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体K1、KK1及び本発明媒体
K2〜K9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図31に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media K1 and KK1 and the media K2 to K9 of the present invention with a single-pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0115】図31から分かるように、従来媒体K1、
KK1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体K2〜K9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 31, the conventional medium K1,
KK1 has good soft magnetic properties of the underlying soft magnetic film, has a sufficiently large magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0116】本発明媒体K2〜K9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体KK1の場
合、本発明媒体K2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体KK2よりも小さく
なり、外部磁場に対して弱くなったと考えられる。以上
のことから、下地軟磁性膜の透磁率を1000以下、膜
全体の保磁力を2Oe〜30Oe、初期保磁力を30O
e以上、下地軟磁性膜の膜厚を300nm以下とするこ
とにより、外部磁場に強い垂直2層媒体とすることがで
きる。
In the case of the mediums K2 to K9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium KK1, the ratio of the initial coercive force to the coercive force of the entire film becomes smaller because the thickness of the underlying soft magnetic film is larger than that of the medium K2 of the present invention, and the coercive force of the entire film is reduced. It is considered that it became smaller than KK2 and became weak to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
By setting the thickness of the soft magnetic underlayer to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0117】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図32に示す。図32か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体K1、KK1、本
発明媒体K2、K3、K9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体K4、K5は下地軟磁性膜の透磁率の大きさが
本発明媒体K2、K3、K9よりも小さいため、再生出
力が小さくなるが、本発明媒体K2、K3、K9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体K6、K7は下地軟磁性膜
の透磁率の大きさが本発明媒体K4、K5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体K
2、K3、K9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体K8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 32 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 32, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media K1 and KK1 and the media K2, K3 and K9 of the present invention have large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media K4 and K5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media K2, K3 and K9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media K6 and K7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media K4 and K5 of the present invention.
2, 60% of the reproduction output of K3 and K9, which is still sufficient as the absolute value of the reproduction output. However, in the case of the medium K8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0118】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体K2〜K9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media K2 to K9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0119】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0120】[実施例11]実施例1においてFe84.9
Si9.6Al5.5(wt%)ターゲットの代わりにFeT
aNターゲットを用いて実施例1と同様にして媒体を作
製した。実施例1と同様に作製した媒体を、実施例1に
ならい、それぞれ従来媒体L1、LL1、本発明媒体L
2、L3、L4、L5、L6、L7、L8、L9とす
る。各々の基板温度で成膜したFeTaN膜の透磁率を
測定した。各々の透磁率の値を図33に示す。
[Embodiment 11] In Example 1, Fe 84.9 was used.
FeT instead of Si 9.6 Al 5.5 (wt%) target
A medium was produced in the same manner as in Example 1 using an aN target. The media manufactured in the same manner as in Example 1 were replaced with the conventional media L1 and LL1 and the media L of the present invention, respectively, in the same manner as in Example 1.
2, L3, L4, L5, L6, L7, L8, and L9. The magnetic permeability of the FeTaN film formed at each substrate temperature was measured. FIG. 33 shows the values of the respective magnetic permeability.

【0121】従来媒体L1、LL1及び本発明媒体L2
〜L9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
The conventional media L1, LL1 and the present invention medium L2
The experiments of recording and reproduction of L9 to L9 were performed under the same recording and reproduction conditions as in Example 1.

【0122】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体L1、LL1及び本発明媒体
L2〜L9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図34に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal is recorded on the conventional media L1, LL1 and the media L2 to L9 of the present invention with a single pole head, and then a DC magnetic field is applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. FIG. 34 shows the result.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0123】図34から分かるように、従来媒体L1、
LL1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体L2〜L9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 34, the conventional medium L1,
LL1 has good soft magnetic properties of the underlying soft magnetic film, has a sufficiently high magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0124】本発明媒体L2〜L9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体LL1の場
合、本発明媒体L2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体L2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media L2 to L9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for external magnetic flux to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium LL1, the ratio of the initial coercive force to the coercive force of the entire film becomes smaller because the thickness of the underlying soft magnetic film is larger than that of the medium L2 of the present invention. It is considered that it became smaller than L2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0125】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図35に示す。図35か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体L1、LL1、本
発明媒体L2、L3、L9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体L4、L5は下地軟磁性膜の透磁率の大きさが
本発明媒体L2、L3、L9よりも小さいため、再生出
力が小さくなるが、本発明媒体L2、L3、L9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体L6、L7は下地軟磁性膜
の透磁率の大きさが本発明媒体L4、L5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体L
2、L3、L9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体L8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 35 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 35, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media L1, LL1 and the media L2, L3, L9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media L4 and L5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media L2, L3 and L9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media L6 and L7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media L4 and L5 of the present invention.
2, 60% of the reproduction output of L3 and L9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium L8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0126】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体L2〜L9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal to the external magnetic field, it is necessary to use the media L2 to L9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0127】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0128】[実施例12]実施例2においてFe84.9
Si9.6Al5.5(wt%)ターゲットの代わりにFeT
aNターゲットを用いて実施例2と同様にして媒体を作
製した。実施例2と同様に作製した媒体を、実施例2に
ならい、それぞれ従来媒体M1、MM1、本発明媒体M
2、M3、M4、M5、M6、M7、M8、M9とす
る。
[Example 12] In Example 2, Fe 84.9 was used.
FeT instead of Si 9.6 Al 5.5 (wt%) target
A medium was produced in the same manner as in Example 2 using an aN target. A medium manufactured in the same manner as in Example 2 was manufactured in the same manner as in Example 2 except that the conventional medium M1, MM1, and the medium M of the present invention were used.
2, M3, M4, M5, M6, M7, M8, M9.

【0129】各々の基板温度で成膜したFeTaN膜の
透磁率を測定した。各々の透磁率の値を図36に示す。
The magnetic permeability of the FeTaN film formed at each substrate temperature was measured. FIG. 36 shows the values of the respective magnetic permeability.

【0130】従来媒体M1、MM1及び本発明媒体M2
〜M9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media M1, MM1 and media M2 of the present invention
Experiments of recording and reproduction of M9 to M9 were performed under the same recording and reproduction conditions as in Example 1.

【0131】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体M1、MM1及び本発明媒体
M2〜M9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図37に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, signals were recorded on the conventional media M1 and MM1 and the media M2 to M9 of the present invention with a single-pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0132】図37から分かるように、従来媒体M1、
MM1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体M2〜M9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 37, the conventional media M1,
MM1 has good soft magnetic properties of the underlying soft magnetic film, has a sufficiently large magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0133】本発明媒体M2〜M9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体MM1の場
合、本発明媒体M2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体M2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media M2 to M9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for external magnetic flux to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. In addition, in the case of the conventional medium MM1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is thicker than that of the medium M2 of the present invention, and the coercive force of the entire film is reduced. It is considered that it became smaller than M2 and became weak to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0134】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図38に示す。図38か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体M1、MM1、本
発明媒体M2、M3、M9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体M4、M5は下地軟磁性膜の透磁率の大きさが
本発明媒体M2、M3、M9よりも小さいため、再生出
力が小さくなるが、本発明媒体M2、M3、M9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体M6、M7は下地軟磁性膜
の透磁率の大きさが本発明媒体M4、M5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体M
2、M3、M9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体M8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 38 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 38, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media M1 and MM1 and the media M2, M3 and M9 of the present invention have large magnetic permeability of the underlying soft magnetic film, and can provide a sufficient reproduction output. In the media M4 and M5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media M2, M3 and M9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. Since the mediums M6 and M7 of the present invention have smaller magnetic permeability of the underlying soft magnetic film than the mediums M4 and M5 of the present invention, the reproduction output is further reduced.
It is about 60% of the reproduction output of M2, M3 and M9, and it can be said that it is still sufficient as the absolute value of the reproduction output. However, in the case of the medium M8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0135】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体M2〜M9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media M2 to M9 of the present invention, but if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0136】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetization film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0137】[実施例13]実施例3においてFe84.9
Si9.6Al5.5(wt%)ターゲットの代わりにFeT
aNターゲットを用いて実施例1と同様にして媒体を作
製した。実施例1と同様に作製した媒体を、実施例1に
ならい、それぞれ従来媒体N1、NN1、本発明媒体N
2、N3、N4、N5、N6、N7、N8、N9とす
る。
[Example 13] In Example 3, Fe 84.9 was used.
FeT instead of Si 9.6 Al 5.5 (wt%) target
A medium was produced in the same manner as in Example 1 using an aN target. The media manufactured in the same manner as in Example 1 were replaced with the conventional media N1, NN1, and the medium N of the present invention, respectively.
2, N3, N4, N5, N6, N7, N8, and N9.

【0138】各々の基板温度で成膜したFeTaN膜の
透磁率を測定した。各々の透磁率の値を図39に示す。
The magnetic permeability of the FeTaN film formed at each substrate temperature was measured. FIG. 39 shows the values of the respective magnetic permeability.

【0139】従来媒体N1、NN1及び本発明媒体N2
〜N9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。まず、外部磁界に対する記録磁化の
安定性を調べるために、従来媒体N1、NN1及び本発
明媒体N2〜N9に単磁極ヘッドで信号を記録後、ヘル
ムホルツコイルによって媒体に直流磁場を大きさ1〜3
0Oeの範囲で印加し、磁場印加前の再生出力と磁場印加
後の再生出力の比較をおこなった。この結果を図40に
示す。ここでは、磁場印加前の再生出力に対する磁場印
加後の再生出力を百分率で示してある。
Conventional media N1, NN1 and media N2 of the present invention
Experiments of recording and reproduction of N9 to N9 were performed under the same recording and reproduction conditions as in Example 1. First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal is recorded on the conventional media N1, NN1 and the media N2 to N9 of the present invention with a single-pole head, and then a DC magnetic field is applied to the media by a Helmholtz coil.
The voltage was applied in the range of 0 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG. Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0140】図40からわかるように、従来媒体N1、
NN1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体N2〜N9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 40, the conventional medium N1,
NN1 has good soft magnetic properties of the underlying soft magnetic film, has sufficiently large magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0141】本発明媒体N2〜N9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体NN1の場
合、本発明媒体N2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体N2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media N2 to N9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Also, in the case of the conventional medium NN1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium N2 of the present invention. It is considered that it became smaller than N2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0142】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図41に示す。図41か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体N1、NN1、本
発明媒体N2、N3、N9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体N4、N5は下地軟磁性膜の透磁率の大きさが
本発明媒体N2、N3、N9よりも小さいため、再生出
力が小さくなるが、本発明媒体N2、N3、N9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体N6、N7は下地軟磁性膜
の透磁率の大きさが本発明媒体N4、N5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体N
2、N3、N9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体N8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 41 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 41, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media N1, NN1 and the media N2, N3, N9 of the present invention have large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media N4 and N5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media N2, N3 and N9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media N6 and N7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media N4 and N5 of the present invention.
2, 60% of the reproduction output of N3 and N9, which is still sufficient as the absolute value of the reproduction output. However, in the case of the medium N8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0143】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体N2〜N9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media N2 to N9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0144】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0145】[実施例14]実施例11においてFeT
aNターゲットの代わりにFeTaNTaZrターゲッ
トを用いて実施例11と同様にして媒体を作製した。T
aZrの添加は、結晶粒を微細化する効果がある。実施
例11と同様に作製した媒体を、実施例11にならい、
それぞれ従来媒体P1、PP1、本発明媒体P2、P
3、P4、P5、P6、P7、P8、P9とする。
[Embodiment 14] In the eleventh embodiment, the FeT
A medium was produced in the same manner as in Example 11, except that an FeTaNTaZr target was used instead of the aN target. T
Addition of aZr has an effect of making crystal grains fine. A medium prepared in the same manner as in Example 11 was prepared according to Example 11,
Conventional media P1, PP1, present media P2, P
3, P4, P5, P6, P7, P8, and P9.

【0146】各々の基板温度で成膜したFeTaNTa
Zr膜の透磁率を測定した。各々の透磁率の値を図42
に示す。
FeTaNTa films formed at each substrate temperature
The magnetic permeability of the Zr film was measured. FIG. 42 shows the values of each magnetic permeability.
Shown in

【0147】従来媒体P1、PP1及び本発明媒体P2
〜P9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media P1, PP1 and media P2 of the present invention
The recording / reproducing experiments P9 to P9 were performed under the same recording / reproducing conditions as in Example 1.

【0148】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体P1、PP1及び本発明媒体
P2〜P9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図43に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of recording magnetization with respect to an external magnetic field, signals were recorded on the conventional media P1, PP1 and the media P2 to P9 of the present invention with a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. FIG. 43 shows the result.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0149】図43から分かるように、従来媒体P1、
PP1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体P2〜P9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 43, the conventional media P1,
PP1 has good soft magnetic properties of the underlying soft magnetic film, has sufficiently large magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0150】本発明媒体P2〜P9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体PP1の場
合、本発明媒体P2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体P2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media P2 to P9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for the magnetic flux from the outside to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. In addition, in the case of the conventional medium PP1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is thicker than that of the medium P2 of the present invention, and the coercive force of the entire film is reduced. It is considered that it became smaller than P2 and became weak against an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0151】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図44に示す。図44か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体P1、PP1、本
発明媒体P2、P3、P9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体P4、P5は下地軟磁性膜の透磁率の大きさが
本発明媒体P2、P3、P9よりも小さいため、再生出
力が小さくなるが、本発明媒体P2、P3、P9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体P6、P7は下地軟磁性膜
の透磁率の大きさが本発明媒体P4、P5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体P
2、P3、P9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体P8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, the reproduction output was measured. FIG. 44 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 44, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media P1 and PP1, and the media P2, P3 and P9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media P4 and P5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media P2, P3 and P9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media P6 and P7 of the present invention, since the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than those of the media P4 and P5 of the present invention, the reproduction output is further reduced.
2, 60% of the reproduction output of P3 and P9, and it can be said that the absolute value of the reproduction output is still sufficient. However, in the case of the medium P8 of the present invention, the reproduction output cannot be sufficiently obtained because the magnetic permeability of the underlying soft magnetic film is too small.

【0152】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体P2〜P9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal to the external magnetic field, it is necessary to use the media P2 to P9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0153】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0154】[実施例15]実施例12においてFeT
aNターゲットの代わりにFeTaNTiMoターゲッ
トを用いて実施例12と同様にして媒体を作製した。T
iMoの添加は、結晶粒を微細化する効果がある。実施
例12と同様に作製した媒体を、実施例12にならい、
それぞれ従来媒体Q1、QQ1、本発明媒体Q2、Q
3、Q4、Q5、Q6、Q7、Q8、Q9とする。
[Embodiment 15] In the twelfth embodiment, the FeT
A medium was produced in the same manner as in Example 12, except that a FeTaNTiMo target was used instead of the aN target. T
Addition of iMo has an effect of making crystal grains fine. A medium prepared in the same manner as in Example 12 was prepared according to Example 12,
Conventional media Q1, QQ1, inventive media Q2, Q
3, Q4, Q5, Q6, Q7, Q8, and Q9.

【0155】各々の基板温度で成膜したFeTaNTi
Mo膜の透磁率を測定した。各々の透磁率の値を図45
に示す。
FeTaNTi deposited at each substrate temperature
The magnetic permeability of the Mo film was measured. FIG. 45 shows the values of each magnetic permeability.
Shown in

【0156】従来媒体Q1、QQ1及び本発明媒体Q2
〜Q9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media Q1, QQ1 and media Q2 of the present invention
The recording / reproduction experiments of Q9 to Q9 were performed under the same recording / reproduction conditions as in Example 1.

【0157】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体Q1、QQ1及び本発明媒体
Q2〜Q9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図46に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media Q1, QQ1 and the media Q2 to Q9 of the present invention with a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0158】図46から分かるように、従来媒体Q1、
QQ1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体Q2〜Q9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 46, the conventional media Q1,
QQ1 has an excellent soft magnetic property of the underlying soft magnetic film, has sufficiently high magnetic permeability, and has a sufficiently small coercive force, so that the output starts to decrease with an external magnetic field of 4 Oe. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0159】本発明媒体Q2〜Q9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体QQ1の場
合、本発明媒体Q2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体Q2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media Q2 to Q9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the whole film is large, it is difficult for external magnetic flux to concentrate on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium QQ1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium Q2 of the present invention. It is considered that it became smaller than Q2 and became weak to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0160】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図47に示す。図47か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体Q1、QQ1、本
発明媒体Q2、Q3、Q9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体Q4、Q5は下地軟磁性膜の透磁率の大きさが
本発明媒体Q2、Q3、Q9よりも小さいため、再生出
力が小さくなるが、本発明媒体Q2、Q3、Q9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体Q6、Q7は下地軟磁性膜
の透磁率の大きさが本発明媒体Q4、Q5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体Q
2、Q3、Q9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体M8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, a reproduction output was measured. FIG. 47 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 47, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media Q1, QQ1 and the media Q2, Q3, Q9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media Q4 and Q5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media Q2, Q3 and Q9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. Since the mediums Q6 and Q7 of the present invention have smaller magnetic permeability of the underlying soft magnetic film than the mediums Q4 and Q5 of the present invention, the reproduction output is further reduced.
2, 60% of the reproduction output of Q3 and Q9, which is still sufficient as the absolute value of the reproduction output. However, in the case of the medium M8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0161】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体Q2〜Q9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media Q2 to Q9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0162】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0163】[実施例16]実施例13においてFeT
aNターゲットの代わりにFeTaNZrNbターゲッ
トを用いて実施例13と同様にして媒体を作製した。Z
rNbの添加は、結晶粒を微細化する効果がある。実施
例13と同様に作製した媒体を、実施例13にならい、
それぞれ従来媒体R1、RR1、本発明媒体R2、R
3、R4、R5、R6、R7、R8、R9とする。
[Embodiment 16] In the embodiment 13, the FeT
A medium was produced in the same manner as in Example 13 except that an FeTaNZrNb target was used instead of the aN target. Z
The addition of rNb has an effect of making crystal grains fine. A medium prepared in the same manner as in Example 13 was prepared according to Example 13,
Conventional media R1, RR1, media R2, R
3, R4, R5, R6, R7, R8, and R9.

【0164】各々の基板温度で成膜したFeTaNZr
Nb膜の透磁率を測定した。各々の透磁率の値を図48
に示す。
FeTaNZr formed at each substrate temperature
The magnetic permeability of the Nb film was measured. FIG. 48 shows the values of each magnetic permeability.
Shown in

【0165】従来媒体R1、RR1及び本発明媒体R2
〜R9の記録再生の実験は、実施例1と同様な記録再生
条件の下で行った。
Conventional media R1, RR1 and media R2 of the present invention
Experiments for recording and reproduction of R9 to R9 were performed under the same recording and reproduction conditions as in Example 1.

【0166】まず、外部磁界に対する記録磁化の安定性
を調べるために、従来媒体R1、RR1及び本発明媒体
R2〜R9に単磁極ヘッドで信号を記録後、ヘルムホル
ツコイルによって媒体に直流磁場を大きさ1〜30Oeの
範囲で印加し、磁場印加前の再生出力と磁場印加後の再
生出力の比較をおこなった。この結果を図49に示す。
ここでは、磁場印加前の再生出力に対する磁場印加後の
再生出力を百分率で示してある。
First, in order to examine the stability of the recording magnetization with respect to an external magnetic field, a signal was recorded on the conventional media R1, RR1 and the media R2 to R9 of the present invention with a single pole head, and then a DC magnetic field was applied to the media by a Helmholtz coil. The voltage was applied in the range of 1 to 30 Oe, and the reproduction output before applying the magnetic field and the reproduction output after applying the magnetic field were compared. The result is shown in FIG.
Here, the reproduction output after applying the magnetic field with respect to the reproduction output before applying the magnetic field is shown as a percentage.

【0167】図49から分かるように、従来媒体R1、
RR1は、下地軟磁性膜の軟磁気特性が良好で透磁率が
十分大きく、保磁力が十分小さいため、4Oeの外部磁
場で出力が減少し始めるが、本発明媒体R2〜R9の場
合、透磁率を小さくし、保磁力を比較的大きくしたた
め、いずれの媒体も20Oeの外部磁場まで出力は減少
しない。この時、保磁力の値は2Oe〜30Oeの範囲
に分布しているが、10nmのみ成膜した場合の各々の
膜の保磁力(これを便宜上、初期保磁力と呼ぶこととす
る)を見ると、膜全体の保磁力が2Oe以上を示す場
合、初期保磁力は30Oe以上の値を示していることが
分かる。一般に膜の成長初期層の保磁力は大きいが、こ
の成長初期層の保磁力が大きいことで膜全体の保磁力を
大きくすることができる。
As can be seen from FIG. 49, the conventional medium R1,
In RR1, the output starts to decrease with an external magnetic field of 4 Oe because the soft magnetic characteristics of the underlying soft magnetic film are good, the magnetic permeability is sufficiently large, and the coercive force is sufficiently small. And the coercive force is made relatively large, so that the output of any medium does not decrease to an external magnetic field of 20 Oe. At this time, the value of the coercive force is distributed in the range of 2 Oe to 30 Oe, but the coercive force of each film when only 10 nm is formed (referred to as the initial coercive force for convenience). When the coercive force of the entire film is 2 Oe or more, it can be seen that the initial coercive force shows a value of 30 Oe or more. Generally, the coercive force of the initial layer of film growth is large, but the coercive force of the initial layer of growth can increase the coercive force of the entire film.

【0168】本発明媒体R2〜R9の場合、下地軟磁性
膜の透磁率が小さいこと、及び膜全体の保磁力が大きい
ことにより、外部からの磁束を単磁極ヘッドの主磁極に
集中しにくくすることができ、外部磁場に強い垂直2層
媒体とすることができた。また、従来媒体RR1の場
合、本発明媒体R2よりも下地軟磁性膜の膜厚が厚い
分、膜全体の保磁力に占める初期保磁力の割合が小さく
なり、膜全体の保磁力が本発明媒体R2よりも小さくな
り、外部磁場に対して弱くなったと考えられる。以上の
ことから、下地軟磁性膜の透磁率を1000以下、膜全
体の保磁力を2Oe〜30Oe、初期保磁力を30Oe
以上、下地軟磁性膜の膜厚を300nm以下とすること
により、外部磁場に強い垂直2層媒体とすることができ
る。
In the case of the media R2 to R9 of the present invention, since the magnetic permeability of the underlying soft magnetic film is small and the coercive force of the entire film is large, it is difficult for external magnetic flux to be concentrated on the main pole of the single pole head. Thus, a perpendicular two-layer medium resistant to an external magnetic field could be obtained. Further, in the case of the conventional medium RR1, the ratio of the initial coercive force to the coercive force of the entire film is smaller because the thickness of the underlying soft magnetic film is larger than that of the medium R2 of the present invention. It is considered that it became smaller than R2 and became weak to an external magnetic field. From the above, the magnetic permeability of the underlying soft magnetic film is 1000 or less, the coercive force of the entire film is 2 Oe to 30 Oe, and the initial coercive force is 30 Oe.
As described above, by setting the thickness of the underlying soft magnetic film to 300 nm or less, a perpendicular two-layer medium resistant to an external magnetic field can be obtained.

【0169】次に、再生出力の測定を行った。再生出力
の記録密度依存性の測定結果を図50に示す。図50か
ら分かるように、再生出力の大きさは、下地軟磁性膜の
透磁率が大きいほど大きい。従来媒体R1、RR1、本
発明媒体R2、R3、R9は下地軟磁性膜の透磁率の大
きさが大きく、十分な再生出力を得ることができる。本
発明媒体R4、R5は下地軟磁性膜の透磁率の大きさが
本発明媒体R2、R3、R9よりも小さいため、再生出
力が小さくなるが、本発明媒体R2、R3、R9の再生
出力の約8割であり、依然再生出力の絶対値として十分
であると言える。本発明媒体R6、R7は下地軟磁性膜
の透磁率の大きさが本発明媒体R4、R5よりも小さい
ため、再生出力がさらに小さくなるが、本発明媒体R
2、R3、R9の再生出力の約6割であり、依然再生出
力の絶対値として十分であると言える。しかし、本発明
媒体R8の場合、下地軟磁性膜の透磁率が小さすぎるた
め、再生出力が十分に取れない。
Next, a reproduction output was measured. FIG. 50 shows the measurement results of the recording density dependence of the reproduction output. As can be seen from FIG. 50, the magnitude of the reproduction output increases as the magnetic permeability of the underlying soft magnetic film increases. The conventional media R1, RR1, and the media R2, R3, R9 of the present invention have a large magnetic permeability of the underlying soft magnetic film, and can obtain a sufficient reproduction output. In the media R4 and R5 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media R2, R3 and R9 of the present invention. It is about 80%, which is still sufficient as the absolute value of the reproduction output. In the media R6 and R7 of the present invention, the magnitude of the magnetic permeability of the underlying soft magnetic film is smaller than that of the media R4 and R5 of the present invention.
2, 60% of the reproduction output of R3 and R9, which is still sufficient as the absolute value of the reproduction output. However, in the case of the medium R8 of the present invention, since the magnetic permeability of the underlying soft magnetic film is too small, a sufficient reproduction output cannot be obtained.

【0170】以上のことから、外部磁場に対する出力信
号の耐久性の観点からは、本発明媒体R2〜R9を用い
る必要があるが、下地軟磁性膜の透磁率を下げすぎると
再生出力の低下を招く。このことから、下地軟磁性膜の
透磁率は50以上である必要がある。そして、再生出力
の観点から、下地軟磁性膜の透磁率は50以上100以
下、より望ましくは50以上500以下、さらにより望
ましくは50以上1000以下であることが望ましい。
From the above, from the viewpoint of the durability of the output signal with respect to the external magnetic field, it is necessary to use the media R2 to R9 of the present invention. However, if the magnetic permeability of the underlying soft magnetic film is too low, the reproduction output will not decrease. Invite. For this reason, the magnetic permeability of the underlying soft magnetic film needs to be 50 or more. From the viewpoint of reproduction output, the magnetic permeability of the underlying soft magnetic film is preferably 50 or more and 100 or less, more preferably 50 or more and 500 or less, and even more preferably 50 or more and 1000 or less.

【0171】また、外部磁場に対する出力信号の耐久性
は、単磁極ヘッドの主磁極と下地軟磁性膜との相互作用
によって起こるため、垂直磁化膜の膜厚にはあまり依存
しない。このため、垂直磁化膜の膜厚をある程度変化さ
せても同様な結果となる。
The durability of the output signal with respect to the external magnetic field is generated by the interaction between the main magnetic pole of the single pole head and the underlying soft magnetic film, and therefore does not depend much on the thickness of the perpendicular magnetic film. Therefore, the same result is obtained even if the thickness of the perpendicular magnetization film is changed to some extent.

【0172】また、上記実施形態及び実施例では、記録
媒体を垂直2層記録媒体として説明したが、少なくとも
垂直磁化膜と透磁率の小さい軟磁性膜を用いるという技
術的思想を備えているものであるならば、垂直複数層の
記録媒体であってもよいことは勿論である。
In the above embodiments and examples, the recording medium is described as a two-layer perpendicular recording medium. However, the present invention has a technical idea of using at least a perpendicular magnetization film and a soft magnetic film having a small magnetic permeability. If there is, it is needless to say that the recording medium may have a plurality of perpendicular recording layers.

【0173】以上説明したように本発明によれば、下地
軟磁性膜を良好な軟磁気特性をもつ膜とせず、下地軟磁
性膜の透磁率を従来よりも小さくして、50以上100
0以下、50以上500以下、又は50以上100以下
とし、且つ、下地軟磁性膜の全体の保磁力を2(Oe)
以上30(Oe)以下とすることにより、外部磁界に対
する下地軟磁性膜の磁化の反応性を鈍化させ、垂直磁気
ヘッドの主磁極への外部磁場の磁束の集中を抑制するこ
とができる。そのため、垂直記録層に記録された磁化の
減磁、あるいは消磁が発生しにくく、外部磁場に対して
記録磁化の安定性を優れたものにすることができる
[0173] According to the present invention described above, without the film with the lower soft magnetic film excellent soft magnetic characteristics, the magnetic permeability of the lower soft magnetic film is made smaller than the conventional, more than 50 100
0 or less, 50 or more and 500 or less, or 50 or more and 100 or less
And the overall coercive force of the underlying soft magnetic film is 2 (Oe).
Or by a 30 (Oe) or less, to slow down the reactivity of the magnetization of the soft magnetic underlayer film to an external magnetic field, child suppress concentration of magnetic flux of the external magnetic field to the main magnetic pole of a perpendicular magnetic head
Can be. Therefore , demagnetization or demagnetization of the magnetization recorded in the perpendicular recording layer hardly occurs, and the stability of the recorded magnetization with respect to an external magnetic field can be improved .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に関わる垂直磁気記録媒体の一実施形態
を示す概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a perpendicular magnetic recording medium according to the present invention.

【図2】本発明の実施例1における垂直磁気記録媒体の
形態を示す概略断面図である。
FIG. 2 is a schematic cross-sectional view illustrating a form of a perpendicular magnetic recording medium according to a first embodiment of the present invention.

【図3】本発明の実施例1における、透磁率、全体保磁
力、初期保磁力、膜厚の値を示す図表である。
FIG. 3 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 1 of the present invention.

【図4】本発明の実施例1における、外部磁場と磁場印
加前後の再生出力の比を示すグラフである。
FIG. 4 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 1 of the present invention.

【図5】本発明の実施例1における、出力の記録密度依
存性を示すグラフである。
FIG. 5 is a graph showing a recording density dependency of an output in the first embodiment of the present invention.

【図6】本発明の実施例2における、透磁率、全体保磁
力、初期保磁力、膜厚の値を示す図表である。
FIG. 6 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 2 of the present invention.

【図7】本発明の実施例2における、外部磁場と磁場印
加前後の再生出力の比を示すグラフである。
FIG. 7 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 2 of the present invention.

【図8】本発明の実施例2における、出力の記録密度依
存性を示すグラフである。
FIG. 8 is a graph showing a recording density dependency of an output in the second embodiment of the present invention.

【図9】本発明の実施例3における、透磁率、全体保磁
力、初期保磁力、膜厚の値を示す図表である。
FIG. 9 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 3 of the present invention.

【図10】本発明の実施例3における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 10 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 3 of the present invention.

【図11】本発明の実施例3における、出力の記録密度
依存性を示すグラフである。
FIG. 11 is a graph showing a recording density dependency of an output in a third embodiment of the present invention.

【図12】本発明の実施例4における、透磁率、全体保
磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 12 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 4 of the present invention.

【図13】本発明の実施例4における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 13 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 4 of the present invention.

【図14】本発明の実施例4における、出力の記録密度
依存性を示すグラフである。
FIG. 14 is a graph showing the recording density dependency of the output in Example 4 of the present invention.

【図15】本発明の実施例5における、透磁率、全体保
磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 15 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 5 of the present invention.

【図16】本発明の実施例5における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 16 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 5 of the present invention.

【図17】本発明の実施例5における、出力の記録密度
依存性を示すグラフである。
FIG. 17 is a graph showing recording density dependency of output in Example 5 of the present invention.

【図18】本発明の実施例6における、透磁率、全体保
磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 18 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 6 of the present invention.

【図19】本発明の実施例6における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 19 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 6 of the present invention.

【図20】本発明の実施例6における、出力の記録密度
依存性を示すグラフである。
FIG. 20 is a graph showing the recording density dependency of the output in Example 6 of the present invention.

【図21】本発明の実施例7における、透磁率、全体保
磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 21 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 7 of the present invention.

【図22】本発明の実施例7における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 22 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 7 of the present invention.

【図23】本発明の実施例7における、出力の記録密度
依存性を示すグラフである。
FIG. 23 is a graph showing the recording density dependency of the output in Example 7 of the present invention.

【図24】本発明の実施例8における、透磁率、全体保
磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 24 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 8 of the present invention.

【図25】本発明の実施例8における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 25 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 8 of the present invention.

【図26】本発明の実施例8における、出力の記録密度
依存性を示すグラフである。
FIG. 26 is a graph showing the recording density dependency of output in Example 8 of the present invention.

【図27】本発明の実施例9における、透磁率、全体保
磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 27 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 9 of the present invention.

【図28】本発明の実施例9における、外部磁場と磁場
印加前後の再生出力の比を示すグラフである。
FIG. 28 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 9 of the present invention.

【図29】本発明の実施例9における、出力の記録密度
依存性を示すグラフである。
FIG. 29 is a graph showing recording density dependency of output in Example 9 of the present invention.

【図30】本発明の実施例10における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 30 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 10 of the present invention.

【図31】本発明の実施例10における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 31 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 10 of the present invention.

【図32】本発明の実施例10における、出力の記録密
度依存性を示すグラフである。
FIG. 32 is a graph showing recording density dependence of output in Example 10 of the present invention.

【図33】本発明の実施例11における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 33 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 11 of the present invention.

【図34】本発明の実施例11における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 34 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 11 of the present invention.

【図35】本発明の実施例11における、出力の記録密
度依存性を示すグラフである。
FIG. 35 is a graph showing the recording density dependency of the output in Example 11 of the present invention.

【図36】本発明の実施例12における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 36 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 12 of the present invention.

【図37】本発明の実施例12における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 37 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 12 of the present invention.

【図38】本発明の実施例12における、出力の記録密
度依存性を示すグラフである。
FIG. 38 is a graph showing recording density dependency of output in Example 12 of the present invention.

【図39】本発明の実施例13における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 39 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 13 of the present invention.

【図40】本発明の実施例13における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 40 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 13 of the present invention.

【図41】本発明の実施例13における、出力の記録密
度依存性を示すグラフである。
FIG. 41 is a graph showing recording density dependency of output in Example 13 of the present invention.

【図42】本発明の実施例14における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 42 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 14 of the present invention.

【図43】本発明の実施例14における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 43 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 14 of the present invention.

【図44】本発明の実施例14における、出力の記録密
度依存性を示すグラフである。
FIG. 44 is a graph showing the recording density dependence of the output in Example 14 of the present invention.

【図45】本発明の実施例15における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 45 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 15 of the present invention.

【図46】本発明の実施例15における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 46 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 15 of the present invention.

【図47】本発明の実施例15における、出力の記録密
度依存性を示すグラフである。
FIG. 47 is a graph showing the recording density dependence of the output in Example 15 of the present invention.

【図48】本発明の実施例16における、透磁率、全体
保磁力、初期保磁力、膜厚の値を示す図表である。
FIG. 48 is a table showing values of magnetic permeability, overall coercive force, initial coercive force, and film thickness in Example 16 of the present invention.

【図49】本発明の実施例16における、外部磁場と磁
場印加前後の再生出力の比を示すグラフである。
FIG. 49 is a graph showing a ratio between an external magnetic field and a reproduction output before and after application of a magnetic field in Example 16 of the present invention.

【図50】本発明の実施例16における、出力の記録密
度依存性を示すグラフである。
FIG. 50 is a graph showing the recording density dependency of the output in Example 16 of the present invention.

【図51】従来の垂直磁気記録媒体の形態を示す概略断
面図である。
FIG. 51 is a schematic sectional view showing a form of a conventional perpendicular magnetic recording medium.

【図52】従来の垂直磁気記録装置の磁気ヘッドと磁気
媒体の形態を示す概略断面図である。
FIG. 52 is a schematic sectional view showing a form of a magnetic head and a magnetic medium of a conventional perpendicular magnetic recording apparatus.

【符号の説明】[Explanation of symbols]

10 垂直磁気記録媒体 12 基板 16 FeSiAl軟磁性膜 18 Co78Cr19PtLaLu垂直磁化膜 20 垂直磁気記録媒体 22 基板 24 透磁率の小さい軟磁性膜 28 垂直磁化膜 50,61 垂直磁気記録媒体 52,63 軟磁性裏打ち層 54,64 垂直磁化膜 56,62 基板 65 垂直磁気ヘッド 66 主磁極 67 コイル10 perpendicular magnetic recording medium 12 substrate 16 FeSiAl soft magnetic film 18 Co 78 Cr 19 PtLaLu perpendicular magnetization film 20 perpendicular magnetic recording medium 22 small soft magnetic film 28 perpendicularly magnetized film of the substrate 24 permeability 50,61 perpendicular magnetic recording medium 52 and 63 Soft magnetic backing layer 54, 64 Perpendicular magnetization film 56, 62 Substrate 65 Perpendicular magnetic head 66 Main pole 67 Coil

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−183011(JP,A) 特開 平6−139542(JP,A) 特開 昭57−36435(JP,A) 特開 平2−123705(JP,A) 特開 平4−12508(JP,A) 特開 平8−213235(JP,A) 特開 平2−103715(JP,A) 特開 昭59−218626(JP,A) 特開 昭63−39123(JP,A) 特開 平3−224122(JP,A) 特開 平10−228620(JP,A) 特開 平11−149628(JP,A) 特開 平11−238223(JP,A) (58)調査した分野(Int.Cl.7,DB名) G11B 5/667 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-183011 (JP, A) JP-A-6-139542 (JP, A) JP-A-57-36435 (JP, A) JP-A-2- 123705 (JP, A) JP-A-4-12508 (JP, A) JP-A-8-213235 (JP, A) JP-A-2-103715 (JP, A) JP-A-59-218626 (JP, A) JP-A-63-39123 (JP, A) JP-A-3-224122 (JP, A) JP-A-10-228620 (JP, A) JP-A-11-149628 (JP, A) JP-A-11-238223 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G11B 5/667

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下地軟磁性膜と垂直磁化膜を組み合わせ
た垂直磁気記録媒体において、前記下地軟磁性膜の透磁
率が50以上1000以下であり、前記下地軟磁性膜の
全体の保磁力が2(Oe)以上30(Oe)以下である
ことを特徴とする垂直磁気記録媒体。
1. A soft magnetic underlayer film and a perpendicular magnetic recording medium that is a combination of perpendicular magnetization film, the permeability of the lower soft magnetic film is Ri der 50 to 1000, of the lower soft magnetic film
A perpendicular magnetic recording medium having an overall coercive force of 2 (Oe) or more and 30 (Oe) or less .
【請求項2】 下地軟磁性膜と垂直磁化膜を組み合わせ
た垂直磁気記録媒体において、前記下地軟磁性膜の透磁
率が50以上500以下であり、前記下地軟磁性膜の全
体の保磁力が2(Oe)以上30(Oe)以下である
とを特徴とする垂直磁気記録媒体。
2. A soft magnetic underlayer film and a perpendicular magnetic recording medium that is a combination of perpendicular magnetization film, the permeability of the lower soft magnetic film is Ri der 50 to 500, all of the lower soft magnetic film
A perpendicular magnetic recording medium , wherein the coercive force of the body is 2 (Oe) or more and 30 (Oe) or less .
【請求項3】 下地軟磁性膜と垂直磁化膜を組み合わせ
た垂直磁気記録媒体において、前記下地軟磁性膜の透磁
率が50以上100以下であり、前記下地軟磁性膜の全
体の保磁力が2(Oe)以上30(Oe)以下である
とを特徴とする垂直磁気記録媒体。
3. A soft magnetic underlayer film and a perpendicular magnetic recording medium that is a combination of perpendicular magnetization film, the permeability of the lower soft magnetic film is Ri der 50 or more and 100 or less, the total of the lower soft magnetic film
A perpendicular magnetic recording medium , wherein the coercive force of the body is 2 (Oe) or more and 30 (Oe) or less .
【請求項4】 請求項1乃至3のいずれか1項に記載の
垂直磁気記録媒体において、前記下地軟磁性膜のうち該
下地軟磁性膜において基板側から10nmまでの前記下
地軟磁性膜の保磁力が30(Oe)以上であることを特
徴とする垂直磁気記録媒体。
4. The perpendicular magnetic recording medium according to claim 1 , wherein the underlying soft magnetic film of the underlying soft magnetic film has a thickness of 10 nm from the substrate side. A perpendicular magnetic recording medium having a magnetic force of 30 (Oe) or more.
【請求項5】 請求項1乃至のいずれか1項に記載の
垂直磁気記録媒体において、前記下地軟磁性膜の膜厚が
300nm以下であることを特徴とする垂直磁気記録媒
体。
5. A perpendicular magnetic recording medium according to any one of claims 1 to 4, the perpendicular magnetic recording medium, wherein the thickness of the lower soft magnetic film is 300nm or less.
【請求項6】 請求項1乃至のいずれか1項に記載の
垂直磁気記録媒体において、前記下地軟磁性膜の材料が
FeSiAl合金であることを特徴とする垂直磁気記録
媒体。
6. The perpendicular magnetic recording medium according to any one of claims 1 to 5, a perpendicular magnetic recording medium, wherein the material of the lower soft magnetic film is a FeSiAl alloy.
【請求項7】 請求項1乃至のいずれか1項に記載の
垂直磁気記録媒体において、前記下地軟磁性膜の材料が
Fe84.9Six Al15.1-x(8.0≦X≦12.0)で
あることを特徴とする垂直磁気記録媒体。
7. The perpendicular magnetic recording medium according to any one of claims 1 to 5, the material of the lower soft magnetic film is Fe 84.9 Si x Al 15.1-x (8.0 ≦ X ≦ 12.0 A) a perpendicular magnetic recording medium;
【請求項8】 請求項1乃至のいずれか1項に記載の
垂直磁気記録媒体において、前記下地軟磁性膜の材料が
Fe84.9Si9.6 Al5.5 (wt%)であることを特徴
とする垂直磁気記録媒体。
8. The perpendicular magnetic recording medium according to any one of claims 1 to 5, a vertical, wherein the material of the lower soft magnetic film is a Fe 84.9 Si 9.6 Al 5.5 (wt %) Magnetic recording medium.
【請求項9】 請求項1乃至のいずれか1項に記載の
垂直磁気記録媒体において、前記下地軟磁性膜の材料に
元素Mを添加した合金とし、前記元素MとしてTa、T
i、Zr、Mo、Nbのうち任意の2つの元素を含むこ
とを特徴とする垂直磁気記録媒体。
The perpendicular magnetic recording medium according to any one of 9. claims 1 to 8, and the lower soft magnetic film material element M is added to the alloy, Ta as the element M, T
A perpendicular magnetic recording medium comprising any two elements of i, Zr, Mo, and Nb.
【請求項10】 請求項1乃至のいずれか1項に記載
の垂直磁気記録媒体において、前記下地軟磁性膜の材料
がFeTaNであることを特徴とする垂直磁気記録媒
体。
10. The perpendicular magnetic recording medium according to any one of claims 1 to 5, a perpendicular magnetic recording medium, wherein the material of the lower soft magnetic film is FeTaN.
【請求項11】 請求項1乃至10のいずれか1項に記
載の垂直磁気記録媒体において、前記垂直磁化膜の材料
がCoCrR合金であり、前記RとしてPt、Ta、L
a、Lu、Pr、Srのうち任意の3つの元素を含むこ
とを特徴とする垂直磁気記録媒体。
11. The perpendicular magnetic recording medium according to any one of claims 1 to 10, the material of the perpendicular magnetization film is CoCrR alloy, Pt as the R, Ta, L
A perpendicular magnetic recording medium comprising any three of a, Lu, Pr, and Sr.
【請求項12】 垂直磁気記録媒体に情報を記録する磁
気記録装置において、前記垂直磁気記録媒体は基板上に
下地軟磁性膜と垂直磁化膜とを順に積層しており、前記
下地軟磁性膜の透磁率が50以上100以下であり、前
記下地軟磁性膜の全体の保磁力が2(Oe)以上30
(Oe)以下であることを特徴とする磁気記録装置。
12. A magnetic recording apparatus for recording information on a perpendicular magnetic recording medium, wherein the perpendicular magnetic recording medium has a base soft magnetic film and a perpendicular magnetic film sequentially laminated on a substrate, permeability Ri der 50 or more and 100 or less, before
The overall coercive force of the underlying soft magnetic film is 2 (Oe) or more and 30
(Oe) A magnetic recording device characterized by the following .
【請求項13】 請求項12に記載の磁気記録装置にお
いて、前記下地軟磁性膜の材料に元素Mを添加した合金
とし、前記元素MとしてTa、Ti、Zr、Mo、Nb
のうち任意の2つの元素を含むことを特徴とする磁気記
録装置。
13. The magnetic recording apparatus according to claim 12 , wherein the base soft magnetic film is made of an alloy in which an element M is added, and the element M is Ta, Ti, Zr, Mo, or Nb.
A magnetic recording device containing any two of the above elements.
【請求項14】 請求項12に記載の磁気記録装置にお
いて、前記垂直磁化膜の材料がCoCrR合金であり、
前記RとしてPt、Ta、La、Lu、PrSrのうち
任意の3つの元素を含むことを特徴とする磁気記録装
置。
14. The magnetic recording apparatus according to claim 12 , wherein a material of the perpendicular magnetization film is a CoCrR alloy,
A magnetic recording apparatus, wherein R includes any three elements of Pt, Ta, La, Lu, and PrSr.
JP10257059A 1998-09-10 1998-09-10 Perpendicular magnetic recording medium and magnetic recording device Expired - Fee Related JP3132658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257059A JP3132658B2 (en) 1998-09-10 1998-09-10 Perpendicular magnetic recording medium and magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257059A JP3132658B2 (en) 1998-09-10 1998-09-10 Perpendicular magnetic recording medium and magnetic recording device

Publications (2)

Publication Number Publication Date
JP2000090424A JP2000090424A (en) 2000-03-31
JP3132658B2 true JP3132658B2 (en) 2001-02-05

Family

ID=17301175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257059A Expired - Fee Related JP3132658B2 (en) 1998-09-10 1998-09-10 Perpendicular magnetic recording medium and magnetic recording device

Country Status (1)

Country Link
JP (1) JP3132658B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4198873B2 (en) 2000-09-21 2008-12-17 株式会社東芝 Perpendicular magnetic recording type magnetic disk drive
WO2002061647A1 (en) * 2001-01-31 2002-08-08 Hitachi, Ltd. Method and system or displaying information about infectious disease and method for accepting order of analysis of infectious disease
JP3688666B2 (en) 2002-07-31 2005-08-31 株式会社東芝 Magnetic disk unit

Also Published As

Publication number Publication date
JP2000090424A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP3099790B2 (en) Perpendicular magnetic recording media
US6204995B1 (en) Magnetic disc apparatus
US7955723B2 (en) Magnetic recording medium substrate and perpendicular magnetic recording medium
US7348078B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus
US6881504B2 (en) Perpendicular magnetic recording medium and magnetic storage apparatus using the same
US8367229B2 (en) Perpendicular magnetic recording medium and magnetic recording and reproducing apparatus
JP2001155321A (en) Magnetic recording medium
JP4515690B2 (en) Perpendicular multilayer magnetic recording medium
JP2002334424A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording and reproducing device
JP3132658B2 (en) Perpendicular magnetic recording medium and magnetic recording device
US7799445B2 (en) Perpendicular magnetic recording media with soft magnetic underlayer
JP2002203307A (en) Vertical magnetic recording medium and magnetic storage device
JP2000268339A (en) In-plane magnetic recording medium and magnetic storage device
US7092209B2 (en) Longitudinal magnetic recording using magnetic media with a soft underlayer
JPH06295431A (en) Perpendicular magnetic recording medium
JPH0660333A (en) Magneto-resistance effect head
JP2002197635A (en) Magnetic recording medium, method of manufacturing for the same and magnetic recording and reproducing device
US6462916B1 (en) Magnetic disc apparatus
JP3340420B2 (en) Perpendicular magnetic recording medium and magnetic storage device
JPWO2004019322A1 (en) Backed magnetic film
JPH09298114A (en) Vertical magnetic recording medium and magnetic recording device using it
JPH08273140A (en) Perpendicular magnetic recording medium and its production
JP2001118234A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2002216339A (en) Perpendicular magnetic recording media
JP2002109714A (en) Information recording medium and information recording device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees