JP3130610B2 - Optical element molding die and method of manufacturing the same - Google Patents
Optical element molding die and method of manufacturing the sameInfo
- Publication number
- JP3130610B2 JP3130610B2 JP03334249A JP33424991A JP3130610B2 JP 3130610 B2 JP3130610 B2 JP 3130610B2 JP 03334249 A JP03334249 A JP 03334249A JP 33424991 A JP33424991 A JP 33424991A JP 3130610 B2 JP3130610 B2 JP 3130610B2
- Authority
- JP
- Japan
- Prior art keywords
- molding
- mold
- optical element
- molding die
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/03—Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、光学素子成形用型およ
びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for molding an optical element and a method for producing the same.
【0002】[0002]
【従来の技術】一般に、上型および下型からなる一対の
成形用型の間に加熱されたガラス素材を挿入して押圧成
形し、ガラス光学素子を製造する方法が知られている。
従来、この製造方法で用いる成形用型として多くの提案
がなされているが、特に肉厚差の大きい成形品を得よう
とする場合における成形用型として、特開平2−111
635号公報に開示されたものがある。2. Description of the Related Art In general, there is known a method of manufacturing a glass optical element by inserting a heated glass material between a pair of molding dies including an upper mold and a lower mold and press-molding the same.
Hitherto, many proposals have been made as molding dies for use in this manufacturing method. In particular, Japanese Patent Laid-Open Publication No.
No. 635 discloses this.
【0003】この光学素子成形用型は、(1) 凹状の第1
の光学面を有する第1の成形型と、(2) 凹状の第2の光
学面を有する第2の成形型と、(3) 前記第1および第2
の成形型を案内する胴型とを具備し、(4)前記第1およ
び第2の成形型の少なくとも一方の光学面の背面の外周
部に凹部を設けることを特徴とするプレスレンズの成形
用型(凸レンズおよび凸メニスカスレンズに対し適用さ
れる)であり、また、(1) 凸状の第1の光学面を有する
第1の成形型と、(2) 凸状の第2の光学面を有する第2
の成形型と、(3) 前記第1および第2の成形型を案内す
る胴型とを具備し、(4) 前記第1および第2の成形型の
少なくとも一方の光学面の背面の中心部に凹部を設ける
ことを特徴とするプレスレンズの成形用型(凹レンズお
よび凹メニスカスレンズに対し適用される)である。[0003] This mold for molding an optical element includes (1) a concave first mold.
A first mold having an optical surface of (1), (2) a second mold having a concave second optical surface, and (3) the first and second molds.
(4) for forming a press lens, wherein a concave portion is provided on an outer peripheral portion of a back surface of at least one of the optical surfaces of the first and second molding dies. A mold (applied to a convex lens and a convex meniscus lens), and (1) a first mold having a convex first optical surface; and (2) a convex second optical surface. Having a second
And (3) a barrel mold for guiding the first and second molding dies, and (4) a central portion of the back surface of at least one of the optical surfaces of the first and second molding dies. A press lens forming mold (applied to a concave lens and a concave meniscus lens), characterized in that a concave portion is provided in the press lens.
【0004】以上の構成の光学素子成形用型によれば、
各工程における加熱ステージと、前記成形用型の凹部と
は接触せず、熱伝達が抑制され、ガラス内部に温度差を
生じにくくすることができる。したがって、高精度のプ
レスレンズを製造できる。According to the optical element molding die having the above structure,
The heating stage in each step does not contact the concave portion of the molding die, heat transfer is suppressed, and it is possible to make it difficult for a temperature difference to occur inside the glass. Therefore, a highly accurate press lens can be manufactured.
【0005】[0005]
【発明が解決しようとする課題】上記従来の光学素子成
形用型は、成形用型の背面に凹部を設けて空気断熱層を
形成することにより、熱伝達を抑制してレンズ内部に温
度差を生じにくくしている。しかしながら、空気断熱層
の存在によりレンズから成形用型に移動する熱量の移動
速度は必然的に遅くなるため、加圧冷却時間は長くな
り、効率の良い成形ができない欠点があった。In the above-mentioned conventional mold for molding an optical element, a concave portion is provided on the back surface of the mold to form an air heat insulating layer, thereby suppressing heat transfer and reducing a temperature difference inside the lens. Less likely to occur. However, the movement speed of the amount of heat moving from the lens to the molding die is necessarily slow due to the presence of the air heat insulating layer, so that the pressurizing and cooling time becomes long, and there is a disadvantage that efficient molding cannot be performed.
【0006】本発明は、かかる従来の問題点に鑑みてな
されたもので、加圧冷却時間が比較的短くてもレンズ内
部の温度差が生じにくく、形状精度の良好なガラス光学
素子を得ることができる光学素子成形用型を提供するこ
とを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to obtain a glass optical element having a good shape precision even when a relatively short pressurizing and cooling time is less likely to cause a temperature difference inside a lens. It is an object of the present invention to provide an optical element molding die capable of performing the above-mentioned.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、成形面の結晶方位が径方向で異なり、製
品の厚肉部に対応する領域が熱伝導の大きい方位に、薄
肉部に対応する領域が熱伝導率の小さい方位に選択形成
して光学素子成形用型を構成した。In order to achieve the above-mentioned object, the present invention provides a method for producing a product, in which the crystal orientation of the molding surface differs in the radial direction, and the region corresponding to the thick part of the product has the thinner thickness in the direction having large heat conduction. An area corresponding to the portion was selectively formed in an orientation having a small thermal conductivity to form an optical element molding die.
【0008】また、本発明は、耐熱性材料からなる型基
材の成形面を平面または凹面に加工した後、六方晶の材
料をc軸に配向するように積層させ、その後成形面部を
凸面に加工して光学素子成形用型を製造することとし
た。Further, the present invention provides a mold base made of a heat-resistant material, which is formed into a flat or concave surface, and then a hexagonal material is laminated so as to be oriented along the c-axis. Processing was performed to produce an optical element molding die.
【0009】さらに、本発明は、耐熱性材料からなる型
基材の成形面を凹面または凸面に加工した後、六方晶の
材料をc軸に配向するように積層させ、その後成形面部
を平面に加工して光学素子成形用型を製造することとし
た。Further, the present invention provides a mold base made of a heat-resistant material, which is formed into a concave or convex surface, and then a hexagonal material is laminated so as to be oriented along the c-axis. Processing was performed to produce an optical element molding die.
【0010】[0010]
【作用】材料によっては、結晶方位によって大きく熱伝
導率の異なるものがある。そのため、同一材料で成形面
を形成するとしても、成形面の結晶方位を径方向で変化
させることができれば、熱伝導を自在に制御することが
可能である。このような熱伝導の異方性を持つ材料とし
て結晶形が六方晶のものがあげられる。一般的に、六方
晶の結晶形を有する材料は、a軸方向とc軸方向とで異
方性を示す。例えばBNの場合、熱伝導率はa軸方向で
およそ0.17cal/sec・cm・℃、c軸方向で
およそ0.02cal/sec・cm・℃と大きく異な
る。According to some materials, the thermal conductivity differs greatly depending on the crystal orientation. Therefore, even if the molding surface is formed of the same material, the heat conduction can be freely controlled if the crystal orientation of the molding surface can be changed in the radial direction. As a material having such anisotropy of heat conduction, there is a material having a hexagonal crystal form. Generally, a material having a hexagonal crystal form exhibits anisotropy in the a-axis direction and the c-axis direction. For example, in the case of BN, the thermal conductivity is significantly different from about 0.17 cal / sec · cm · ° C. in the a-axis direction and about 0.02 cal / sec · cm · ° C. in the c-axis direction.
【0011】そこで、例えば図1に示すように、成形用
型1の成形面2のうち、製品の厚肉部に対応する領域
(中心部)3をa軸配向、薄肉部に対応する領域(外周
部)4をc軸配向させれば、製品の薄肉部の冷却速度を
相対的に遅らせることができるので、短時間の成形にて
形状精度の良好な光学素子が得られる。Therefore, as shown in FIG. 1, for example, a region (center portion) 3 of the molding surface 2 of the molding die 1 corresponding to the thick portion of the product is a-axis oriented, and the region (central portion) corresponding to the thin portion ( If the outer peripheral portion 4 is oriented along the c-axis, the cooling rate of the thin portion of the product can be relatively slowed, so that an optical element having good shape accuracy can be obtained by molding in a short time.
【0012】配向を制御するには、溶融させた材料を引
き上げながら単結晶成長させる等の方法もあるが、より
簡易的に実施する方法としては、CVD法等の膜生成法
が適している。この方法によれば、比較的容易にc軸に
配向させた六方晶の膜を作製することができる。そこ
で、成形面が凸面の型を製造するには、図2および図3
に示すように、成形用型5,6の型基材7,8を平面ま
たは凹面に加工した上に、c軸に配向した膜9,10を
成長させる。その後、成形面11,12を凸面に加工す
ると、型の中央部では完全にc軸に沿って熱が伝わるこ
とになるので、熱伝導率が最も低くなり、一方、型の外
周部ではc軸とa軸の中間の方向に沿って熱が伝わるこ
とになるので、中央部よりも熱伝導率が高くなる。To control the orientation, there is a method of growing a single crystal while pulling up a molten material. However, as a simpler method, a film forming method such as a CVD method is suitable. According to this method, a hexagonal film oriented in the c-axis can be produced relatively easily. In order to manufacture a mold having a convex molding surface, FIGS.
As shown in (1), the mold bases 7, 8 of the molding dies 5, 6 are processed into flat or concave surfaces, and then films 9, 10 oriented in the c-axis are grown. Thereafter, when the molding surfaces 11 and 12 are processed into convex surfaces, heat is transmitted completely along the c-axis at the center of the mold, so that the thermal conductivity becomes lowest. Therefore, heat is transmitted along the middle direction between the center and the a-axis, so that the heat conductivity is higher than that in the central portion.
【0013】また、成形面が平面の型を製造するには、
図3および図4に示すように、成形用型6,13の型基
材8,14を凹面または凸面に加工した上に、c軸に配
向した膜10,15を成長させる。その後、成形面1
2,16を平面に加工すると、型の中央部では完全にc
軸に沿って熱が伝わることになるので、熱伝導率が最も
低くなり、一方、型の外周部ではc軸とa軸の中間の方
向に沿って熱が伝わることになるので、中央部よりも熱
伝導率が高くなる。In order to manufacture a mold having a flat molding surface,
As shown in FIGS. 3 and 4, the mold bases 8, 14 of the molding dies 6, 13 are processed into concave or convex surfaces, and then films 10, 15 oriented in the c-axis are grown. Then, molding surface 1
When 2, 16 are machined into a plane, the center of the mold is completely c
Since heat is transmitted along the axis, the thermal conductivity is lowest, while heat is transmitted along the middle direction between the c-axis and the a-axis at the outer periphery of the mold, Also has a high thermal conductivity.
【0014】[0014]
【実施例1】図5および図6に示すように、等方性グラ
ファイト製の2本の型基材17,18を用意し、成形基
礎面19,20に当たる先端部を、一方は外径ф15、
曲率R100の凹球面に、他方は外径ф15、曲率R1
5の凹球面に加工した。EXAMPLE 1 As shown in FIGS. 5 and 6, two mold bases 17 and 18 made of isotropic graphite were prepared, and the tip portions corresponding to the molding base surfaces 19 and 20 were formed. ,
On the concave spherical surface of curvature R100, the other is outer diameter ф15, curvature R1
5 was processed into a concave spherical surface.
【0015】次に、この型基材17,18の成形基礎面
19,20に、熱CVD法によりBN膜21,22を全
厚さ2.2mmで作成した。原料ガスとしては、BCl
3 とNH3 を用い、圧力5torr、基板温度1800
℃で作成した。このBN膜21,22の結晶状態をX線
回折法により調べた結果を図7に示す。図7において、
横軸はダイレクトビームの中心と回折X線とのなす角
(2θ)を、縦軸はX線強度である。基板であるグラフ
ァイトのピーク以外に、六方晶BNの(002)面のピ
ークが見られるが、他面のピークはほとんど見られず、
c軸に配向したBN膜21,22が形成されていること
が確認できた。Next, BN films 21 and 22 were formed with a total thickness of 2.2 mm on the molding base surfaces 19 and 20 of the mold bases 17 and 18 by a thermal CVD method. The source gas is BCl
3 and NH 3 , pressure 5 torr, substrate temperature 1800
Prepared at ° C. FIG. 7 shows the result of examining the crystal state of the BN films 21 and 22 by the X-ray diffraction method. In FIG.
The horizontal axis represents the angle (2θ) between the center of the direct beam and the diffracted X-ray, and the vertical axis represents the X-ray intensity. The peak of the (002) plane of hexagonal BN is seen in addition to the peak of graphite as the substrate, but the peak of the other plane is hardly seen.
It was confirmed that the c-axis oriented BN films 21 and 22 were formed.
【0016】次に、曲率R100に下加工後BN膜21
を付けたもの(図5)を研削研磨加工して、R20.0
12の凸球面に仕上げ、成形面23を形成した。また、
曲率R15に下加工後BN膜22を付けたもの(図6)
を研削研磨加工して、平面に仕上げ、成形面24を形成
した。Next, the BN film 21 after the lower working to the curvature R100
(FIG. 5) is ground and polished to obtain R20.0
Twelve convex spherical surfaces were formed, and a molding surface 23 was formed. Also,
Curvature R15 with BN film 22 after lower processing (Fig. 6)
Was ground and polished to finish it into a flat surface to form a molding surface 24.
【0017】上記のようにして製造した成形用型25,
26を図8に示すように成形装置にセットし、平凹レン
ズの成形を行った。図8において、成形用型25,26
は胴型27内に摺動自在に嵌合されており、成形用型2
5は下型に、成形用型26は上型に用いられている。こ
の成形装置によれば、形状精度の極めて良好なレンズを
短時間で得ることができた。The molding die 25 manufactured as described above,
26 was set in a forming apparatus as shown in FIG. 8, and a plano-concave lens was formed. In FIG. 8, the molding dies 25, 26
Are slidably fitted in the body mold 27, and the
5 is used for the lower die, and the molding die 26 is used for the upper die. According to this molding apparatus, a lens with extremely good shape accuracy could be obtained in a short time.
【0018】[0018]
【実施例2】型基材としてモリブデンを用い、原料ガス
として、AlBr3 、N2 、H2 を用い、圧力1tor
r、基板温度900℃でCVD法によりAlN膜を作成
した。型基材の下加工、後加工等は実施例1と全く同様
にした。Embodiment 2 Molybdenum is used as a mold base material, AlBr 3 , N 2 , and H 2 are used as source gases at a pressure of 1 torr.
r, an AlN film was formed at a substrate temperature of 900 ° C. by a CVD method. The pre-processing and post-processing of the mold base were exactly the same as in Example 1.
【0019】上記のようにして製造した成形用型を用い
て平凹レンズの成形を行ったところ、実施例1と同様に
して形状精度の極めて良好なレンズを短時間で得ること
ができた。When a plano-concave lens was molded using the molding die manufactured as described above, a lens having extremely good shape accuracy could be obtained in a short time in the same manner as in Example 1.
【0020】[0020]
【実施例3】実施例1,2と異なり、スパッタリングに
て配向性を制御した例を示す。Embodiment 3 Unlike Embodiments 1 and 2, an example in which the orientation is controlled by sputtering will be described.
【0021】超硬合金から成る型基材の成形面を外径ф
11.8、曲率R38.375の凹球面に加工した。次
に、この成形面に、ターゲットとしてAlを用い、反応
ガスとしてN2 とArを用いて、反応性RFスパッタリ
ングによりAlNを厚さ1μmで成膜した。この場合、
膜生成時の圧力が低い場合には、配向の少ない膜(熱伝
導率が0.21cal/cm・sec・℃)が、膜生成
時の圧力が高い場合には、c軸に強く配向した膜(熱伝
導率が0.13cal/cm・sec・℃)が得られ
る。例として、N2 とArの比を3:1として、全圧4
×10-3torrおよび4×10-2torrで成膜した
もののX線回折図形を図9および図10に示す。どちら
もAlNのピークがはっきりと見られるが、図9の方が
様々な方向に結晶成長していてほとんど配向していない
のに対し、図10では(002)面のピークのみが強く
表れており、c軸に配向していることがわかる。そこ
で、成形面の中心ф5より外側の範囲にマスキングをし
て、全圧4×10-3torrの条件で成膜し、続いて、
成形面の中央部(既に膜の付いている部分)をマスキン
グして、全圧4×10-2torrの条件で成膜をした。The molding surface of the mold substrate made of a cemented carbide has an outer diameter of Δ
It processed into the concave spherical surface of 11.8 and curvature R38.375. Next, on this molded surface, AlN was formed to a thickness of 1 μm by reactive RF sputtering using Al as a target and N 2 and Ar as reactive gases. in this case,
When the pressure at the time of film formation is low, a film with little orientation (thermal conductivity is 0.21 cal / cm · sec · ° C.), and when the pressure at the time of film formation is high, a film that is strongly oriented along the c-axis. (A thermal conductivity of 0.13 cal / cm · sec · ° C.) is obtained. For example, assuming that the ratio of N 2 to Ar is 3: 1 and the total pressure is 4
9 and 10 show X-ray diffraction patterns of the films formed at × 10 −3 torr and 4 × 10 −2 torr. In both cases, the peak of AlN is clearly seen, but in FIG. 9, the crystal grows in various directions and is hardly oriented, whereas in FIG. 10, only the peak in the (002) plane appears strongly. , C-axis. Therefore, masking is performed on the area outside the center # 5 of the molding surface to form a film under the condition of a total pressure of 4 × 10 −3 torr.
The central portion of the molding surface (the portion where the film was already attached) was masked, and a film was formed under the condition of a total pressure of 4 × 10 −2 torr.
【0022】上記のようにして作成した成形用型は、製
品の肉厚部に対応した中心部が比較的熱伝導が良く、薄
肉部に対応した外周部が熱伝導率が悪いため、形状精度
の良いレンズを短時間で効率良く生産することができ
た。In the molding die prepared as described above, the center portion corresponding to the thick portion of the product has relatively good heat conductivity, and the outer peripheral portion corresponding to the thin portion has poor heat conductivity. A good lens was produced efficiently in a short time.
【0023】本実施例によれば、上記実施例1,2と比
較して膜厚が薄いために、成膜時間が極めて短くて済ん
だ。また、凸レンズ成形用の成形用型なので、成膜後の
後加工も不要なために型の製造コストが安くなる。その
反面、膜厚が薄いことや中心部と外周とで熱伝導率の差
が小さいために、ヒケ防止の効果はやや小さくなるが、
レンズ形状によっては十分な効果を得ることができる。According to this embodiment, since the film thickness is smaller than those of the first and second embodiments, the film formation time can be extremely short. In addition, since the mold is a mold for forming a convex lens, post-processing after film formation is not required, so that the manufacturing cost of the mold is reduced. On the other hand, the effect of preventing sink marks is slightly reduced because the film thickness is small and the difference in thermal conductivity between the center and the outer periphery is small.
A sufficient effect can be obtained depending on the lens shape.
【0024】[0024]
【発明の効果】以上のように、本発明によれば、型の成
形面の結晶方向が径方向で異なり、ガラス製品の厚肉部
に対応する領域を熱伝導の大きい方位に、薄肉部に対応
する領域を熱伝導の小さい方位に選択形成したので、ガ
ラス全体の冷却速度を遅らせることなく、ガラス薄肉部
の冷却速度を相対的に遅延させることができ、短時間の
成形にて形状精度の良好な光学素子を得ることができ
る。As described above, according to the present invention, the crystal direction of the molding surface of the mold is different in the radial direction, and the region corresponding to the thick portion of the glass product is oriented in the direction of large heat conduction and the thin portion is formed in the thin portion. Since the corresponding region is selected and formed in a direction with small heat conduction, the cooling speed of the thin glass part can be relatively delayed without delaying the cooling speed of the entire glass, and the shape accuracy can be reduced by molding in a short time. A good optical element can be obtained.
【図1】本発明の光学素子成形用型の概念を示す縦断面
図である。FIG. 1 is a longitudinal sectional view showing the concept of an optical element molding die of the present invention.
【図2】本発明の光学素子成形用型の製造方法を示す正
面図である。FIG. 2 is a front view illustrating a method of manufacturing an optical element molding die according to the present invention.
【図3】本発明の光学素子成形用型の製造方法を示す正
面図である。FIG. 3 is a front view showing the method for manufacturing the optical element molding die of the present invention.
【図4】本発明の光学素子成形用型の製造方法を示す正
面図である。FIG. 4 is a front view showing a method for manufacturing an optical element molding die of the present invention.
【図5】本発明の実施例1の光学素子成形用型の製造方
法を示す正面図である。FIG. 5 is a front view illustrating the method for manufacturing the optical element molding die according to the first embodiment of the present invention.
【図6】本発明の実施例1の光学素子成形用型の製造方
法を示す正面図である。FIG. 6 is a front view illustrating the method for manufacturing the optical element molding die according to the first embodiment of the present invention.
【図7】本発明の実施例1の光学素子成形用型における
BN膜の結晶状態を示すX線回折図である。FIG. 7 is an X-ray diffraction diagram showing a crystal state of a BN film in the optical element molding die according to the first embodiment of the present invention.
【図8】本発明の実施例1の光学素子成形用型を用いた
成形装置の要部縦断面図である。FIG. 8 is a longitudinal sectional view of a main part of a molding apparatus using the optical element molding die according to the first embodiment of the present invention.
【図9】本発明の実施例3の光学素子成形用型において
成膜条件を4×10-3torrとした時のAlN膜の結
晶状態を示すX線回折図である。FIG. 9 is an X-ray diffraction diagram showing a crystal state of an AlN film when a film forming condition is set to 4 × 10 −3 torr in the optical element molding die of Example 3 of the present invention.
【図10】本発明の実施例3の光学素子成形用型におい
て成膜条件を4×10-2torrとした時のAlN膜の
結晶状態を示すX線回折図である。FIG. 10 is an X-ray diffraction diagram showing a crystal state of an AlN film when a film forming condition is set to 4 × 10 −2 torr in an optical element molding die of Example 3 of the present invention.
1,5,6,13,25,26 成形用型 2,11,12,16,23,24 成形面 3 厚肉部に対応する領域 4 薄肉部に対応する領域 7,8,14,17,18 型基材 9,10,15 膜 21,22 BN膜 1,5,6,13,25,26 Mold 2,11,12,16,23,24 Molding surface 3 Area corresponding to thick part 4 Area corresponding to thin part 7,8,14,17, 18 type substrate 9,10,15 film 21,22 BN film
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03B 11/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C03B 11/00
Claims (3)
品の厚肉部に対応する領域が熱伝導の大きい方位に、薄
肉部に対応する領域が熱伝導率の小さい方位に選択形成
されていることを特徴とする光学素子成形用型。1. The crystal orientation of a molding surface differs in the radial direction, and a region corresponding to a thick portion of a product is selectively formed in a direction having a large thermal conductivity, and a region corresponding to a thin portion is formed in a direction having a small thermal conductivity. A mold for molding an optical element.
面または凹面に加工した後、六方晶の材料をc軸に配向
するように積層させ、その後成形面部を凸面に加工する
ことを特徴とする光学素子成形用型の製造方法。2. Forming a molding base of a heat-resistant material into a flat or concave surface, stacking hexagonal materials so as to be oriented along the c-axis, and then processing the molding surface into a convex surface. A method for producing a mold for molding an optical element, which is characterized by the following.
面または凸面に加工した後、六方晶の材料をc軸に配向
するように積層させ、その後成形面部を平面に加工する
ことを特徴とする光学素子成形用型の製造方法。3. A method in which a molding surface of a mold base made of a heat-resistant material is processed into a concave surface or a convex surface, and then a hexagonal material is laminated so as to be oriented along the c-axis, and then the molding surface portion is processed into a flat surface. A method for producing a mold for molding an optical element, which is characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03334249A JP3130610B2 (en) | 1991-11-22 | 1991-11-22 | Optical element molding die and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03334249A JP3130610B2 (en) | 1991-11-22 | 1991-11-22 | Optical element molding die and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05139761A JPH05139761A (en) | 1993-06-08 |
JP3130610B2 true JP3130610B2 (en) | 2001-01-31 |
Family
ID=18275219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03334249A Expired - Fee Related JP3130610B2 (en) | 1991-11-22 | 1991-11-22 | Optical element molding die and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3130610B2 (en) |
-
1991
- 1991-11-22 JP JP03334249A patent/JP3130610B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05139761A (en) | 1993-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4142006A (en) | Method of making a high power laser mirror | |
JP3130610B2 (en) | Optical element molding die and method of manufacturing the same | |
JP2002226219A (en) | Methods for respectively manufacturing substrate blank, substrate and information recording medium | |
JP3273921B2 (en) | Mold for glass optical element, method for manufacturing glass optical element, and method for reproducing mold | |
CN112062450A (en) | Preparation method of amorphous glass hot-pressing mold and hot-pressing mold | |
EP1091370A3 (en) | Magnetic optical member and method of producing the same | |
JPS62207728A (en) | Glass material for molding | |
JPH0832592B2 (en) | Composite material | |
JP2002348129A (en) | Method for manufacturing molding die for optical glass element and method for molding optical glass element | |
JP2800384B2 (en) | Optical element mold | |
JPH05104536A (en) | Coating type mirror surface mold and production thereof | |
JP2800385B2 (en) | Optical element mold | |
JPH10139450A (en) | Mold for molding optical element | |
JPH10166368A (en) | Manufacture of mold for molding, and mold for molding | |
JP2662285B2 (en) | Mold for optical element molding | |
JP3199825B2 (en) | Optical element molding method | |
JPS62111713A (en) | Metal mold | |
JPH0791075B2 (en) | Molds for glass optical elements | |
JPH01138618A (en) | Production of magnetic disk substrate | |
JP2004210550A (en) | Molding mold | |
JPH05147953A (en) | Mold for molding optical element | |
JPH03153532A (en) | Mold for forming optical element | |
JPH0336011A (en) | Die for high frequency heating | |
JPS63131351A (en) | Stamper for information recording medium | |
CA2426235A1 (en) | Diffraction optical element and transfer mold therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071117 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081117 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |