JP3128966B2 - Flame retardant thermoplastic resin composition - Google Patents

Flame retardant thermoplastic resin composition

Info

Publication number
JP3128966B2
JP3128966B2 JP04193453A JP19345392A JP3128966B2 JP 3128966 B2 JP3128966 B2 JP 3128966B2 JP 04193453 A JP04193453 A JP 04193453A JP 19345392 A JP19345392 A JP 19345392A JP 3128966 B2 JP3128966 B2 JP 3128966B2
Authority
JP
Japan
Prior art keywords
group
parts
weight
water
synthesis example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04193453A
Other languages
Japanese (ja)
Other versions
JPH069870A (en
Inventor
満寿夫 岩田
憲昭 成田
幸次 井上
英雄 佐藤
良次 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP04193453A priority Critical patent/JP3128966B2/en
Publication of JPH069870A publication Critical patent/JPH069870A/en
Application granted granted Critical
Publication of JP3128966B2 publication Critical patent/JP3128966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性ポリマーまた
はそのエラストマーをベースとする難燃性組成物に関す
る。
The present invention relates to a flame-retardant composition based on a thermoplastic polymer or an elastomer thereof.

【0002】[0002]

【従来の技術とその問題点】既にポリマーの燃焼性を減
少させるための技術がいくつか知られている。例えば、
水酸化金属化合物である水和アルミナや水酸化マグネシ
ウム等を用いた例があり、他の例としてはハロゲン系の
有機難燃剤と酸化アンチモンを組み合わせた物が広く知
られている。しかし前者の場合は、ポリマーに対して多
量に添加する必要があり、後者の場合は燃焼時に人体に
有害なハロゲン化合物の気体や粉塵が発生するといった
欠点があった。上記の問題を解決すべく最近の研究で
は、無機または有機燐化合物と含窒素化合物との組み合
わせによって、比較的低添加量でポリマーを難燃化させ
ようとする手法も現れている。例えば特開昭59−14
7050に示されるトリアジン骨格にアルキルアミンを
付与し、ジアミンでオリゴマーまたはポリマー化した物
質と燐化合物との組み合わせの例や特開昭54−531
56、特開昭61−261334、特開昭63−610
55に示されるトリス−(2−ヒドロキシエチル)−イ
ソシアヌレ−トと燐化合物の組み合わせの例などが知ら
れている。しかし前者の例では十分な難燃性が低添加量
で得られなかったり、後者の例では難燃剤が水溶性であ
るため空気中の水分によってポリマーからのしみだし
(いわゆるブリード)が起こる。さらに、特願平3−3
50959に示されるヒドロキシアルキルアミンをトリ
アジン骨格に付与しジアミンでオリゴマーまたはポリマ
ー化した単独重合体物質と燐化合物の組み合わせでは、
ヒドロキシル基の影響によって難燃性組成物の着火時に
おける溶融樹脂のドリップ性が著しい、など難燃性の組
成物に要求される性能を十分に充たしているとは言い得
ない。
2. Description of the Related Art Several techniques for reducing the flammability of a polymer are already known. For example,
There are examples using hydrated alumina, magnesium hydroxide, or the like, which is a metal hydroxide compound, and as another example, a combination of a halogen-based organic flame retardant and antimony oxide is widely known. However, in the former case, it is necessary to add a large amount to the polymer, and in the latter case, there is a drawback that halogen compound gas and dust harmful to the human body are generated during combustion. In order to solve the above-mentioned problems, recent studies have revealed a method of making a polymer flame-retardant with a relatively low addition amount by a combination of an inorganic or organic phosphorus compound and a nitrogen-containing compound. For example, JP-A-59-14
Examples of combinations of a phosphorus compound with a substance obtained by providing an alkylamine to the triazine skeleton shown in No. 7050 and oligomerizing or polymerizing with a diamine,
56, JP-A-61-261334, JP-A-63-610
Examples of combinations of tris- (2-hydroxyethyl) -isocyanurate and phosphorus compounds shown in No. 55 are known. However, in the former case, sufficient flame retardancy cannot be obtained with a low addition amount, and in the latter case, since the flame retardant is water-soluble, exudation from the polymer (so-called bleed) occurs due to moisture in the air. Furthermore, Japanese Patent Application Hei 3-3
In a combination of a homopolymer material obtained by adding a hydroxyalkylamine represented by 50959 to a triazine skeleton and oligomerizing or polymerizing with a diamine and a phosphorus compound,
It cannot be said that the performance required for the flame-retardant composition such as the dripping property of the molten resin at the time of ignition of the flame-retardant composition due to the influence of the hydroxyl group is sufficiently satisfied.

【0003】上記問題点を解決すべく鋭意研究した結
果、特定の燐化合物と組み合わせることによって低添加
量でしかも組合わせるべき特定の燐化合物に対し、重量
比で1/5という従来では考えられない低配合割合で燃
焼時にドリップすることなく優れた難燃性を示す含窒素
共重合体物質を見出した。しかも燃焼の際に煙やすすの
放出も少なく且つ耐水性に優れている。このものとポリ
リン酸アンモニウムを組み合わせたものを難燃剤として
熱可塑性樹脂に配合することにより、上記問題点を解決
し得ることを見いだして本発明に到着した。すなわち、
該組合わせとは、 (A)本発明による含窒素共重合体物質。 (B)ポリリン酸アンモニウムまたはポリリン酸アミ
ド。 との組み合わせである。以上の記述から明らかなように
本発明の目的は、新規なポリマー化した含窒素化合物
と、このものをリン酸化合物と組合せた難燃剤組成物を
提供することである。
[0003] As a result of intensive studies to solve the above-mentioned problems, as a result of combining with a specific phosphorus compound, a low addition amount and a weight ratio of 1/5 to the specific phosphorus compound to be combined cannot be considered conventionally. A nitrogen-containing copolymer substance having excellent flame retardancy without dripping at the time of combustion at a low blending ratio was found. Moreover, it emits less smoke and soot during combustion and has excellent water resistance. The present inventors have found that the above problems can be solved by blending a thermoplastic resin with a mixture of this and ammonium polyphosphate as a flame retardant, and arrived at the present invention. That is,
The combination is (A) a nitrogen-containing copolymer material according to the present invention. (B) Ammonium polyphosphate or polyphosphoramide. It is a combination with As apparent from the above description, an object of the present invention is to provide a novel polymerized nitrogen-containing compound and a flame retardant composition obtained by combining the compound with a phosphoric acid compound.

【0004】[0004]

【問題を解決するための手段】本発明は、下記(1)な
いし(2)の構成を有する。 (1)熱可塑性樹脂に A.一般式(I)及び一般式(II)で表されるモノマー
を基本単位とするランダム共重合体物質、
The present invention has the following configurations (1) and (2). (1) For thermoplastic resin: A random copolymer material having a monomer represented by the general formula (I) and the general formula (II) as a basic unit,

【化1】(式(I)中X1 は−NH(R1 )または−N
(R2 )(R3 )の基で表されるアルキルアミノ基、も
しくはモルホリノ基、ピペリジノ基であり、R1
2、R3 の炭素数は1〜6である。X2 は、−NH
(R4 )または−N(R5 )(R6 )の基でありR4
炭素数2〜6のヒドロキシアルキル基であり、R5 、R
6 は一方または両方が炭素数2〜6のヒドロキシアルキ
ル基であり、同一の基であっても異なっても良い。ま
た、式(I)中Y1 、Y2 はピペラジンの二価の基また
は−N(R7 )(Cn2n)N(R8 )−で表される基
であり、Y1 、Y2は同一の基であっても異なった基で
あっても良い。R7 、R8 はそれぞれH及び炭素数1〜
5のアルキル基であり、nは2〜6の整数を表す。さら
に一般式(I)と一般式(II)の組成モル比が0.3≦
(I)/(II)≦3.0)と、 B.ポリリン酸アンモニウムまたはポリリン酸アミドで
構成される難燃剤であって前記A/Bの重量比が0.1
〜10であるものを C.組成物重量の1〜50重量%混合してなる難燃性熱
可塑性樹脂組成物。 (2)熱可塑性樹脂がポリオレフィンまたはそのエラス
トマーである請求項1に記載の難燃性樹脂組成物。
Embedded image (wherein X 1 represents —NH (R 1 ) or —N
(R 2) alkylamino group represented by group (R 3) or a morpholino group, a piperidino group, R 1,
R 2 and R 3 each have 1 to 6 carbon atoms. X 2 is —NH
(R 4) or a group of -N (R 5) (R 6 ) R 4 is a hydroxyalkyl group having 2 to 6 carbon atoms, R 5, R
6 is a hydroxyalkyl group having one or both carbon atoms of 2 to 6, which may be the same or different. Further, in the formula (I), Y 1 and Y 2 are piperazine divalent groups or groups represented by —N (R 7 ) (C n H 2n ) N (R 8 ) —, and Y 1 and Y 2 2 may be the same group or different groups. R 7 and R 8 each represent H and carbon number 1 to
5 is an alkyl group, and n represents an integer of 2 to 6. Furthermore, the composition molar ratio of the general formula (I) and the general formula (II) is 0.3 ≦
(I) / (II) ≦ 3.0); A flame retardant comprising ammonium polyphosphate or polyphosphoramide, wherein the weight ratio of A / B is 0.1
C. to 10. A flame-retardant thermoplastic resin composition obtained by mixing 1 to 50% by weight of the composition. (2) The flame-retardant resin composition according to claim 1, wherein the thermoplastic resin is a polyolefin or an elastomer thereof.

【0005】本発明の構成と効果につき以下に記述す
る。前記(B)のリン酸化合物は一般式(NH4n+2
n3n+1(式中nは2以上の整数である)で例示され
るポリリン酸アンモニウムであり、ポリリン酸アンモニ
ウムの分子量は著しく水溶性の低くなるに十分な程大き
い物ほど好ましい。また水溶性を更に改良するために該
物質の粒子を熱硬化性樹脂で被覆した物も用いることが
出来る。この様なポリリン酸アンモニウムの例はExo
lit422(商品名、ヘキスト社製)やPhos−c
heckP/40(商品名、モンサント社製)が挙げら
れ、熱硬化性樹脂で被覆されたポリリン酸アンモニウム
の例としてはExolit462(商品名、ヘキスト社
製)が挙げられる。
The configuration and effect of the present invention will be described below. The phosphoric acid compound (B) has the general formula (NH 4 ) n + 2
P n O 3n + 1 (wherein n is an integer of 2 or more) and ammonium polyphosphate exemplified by the molecular weight of the ammonium polyphosphate is preferably as large ones enough to become significantly water-soluble low. In order to further improve the water solubility, a substance obtained by coating particles of the substance with a thermosetting resin can also be used. An example of such an ammonium polyphosphate is Exo
lit422 (trade name, manufactured by Hoechst) or Phos-c
HeckP / 40 (trade name, manufactured by Monsanto Co., Ltd.), and Exolit 462 (trade name, manufactured by Hoechst Co., Ltd.) as an example of ammonium polyphosphate coated with a thermosetting resin.

【0006】前記(A)で表される含窒素共重合体物質
とは下式(I)及び(II)で表されるモノマーを基本単
位とするランダム共重合体物質であり、
The nitrogen-containing copolymer material represented by the above (A) is a random copolymer material having a monomer represented by the following formulas (I) and (II) as a basic unit:

【0007】[0007]

【化3】 (式(I)中X1 は−NH(R1 )または−N(R2
(R3 )の基で表されるアルキルアミノ基、もしくはモ
ルホリノ基、ピペリジノ基であり、R1 、R2、R3
炭素数は1〜6である。X2 は、−NH(R4 )または
−N(R5 )(R6 )の基でありR4 は炭素数2〜6の
ヒドロキシアルキル基であり、R5 、R6 は一方または
両方が炭素数2〜6のヒドロキシアルキル基であり、同
一の基であっても異なっても良い。また、式(I)中Y
1 、Y2 はピペラジンの二価の基または−N(R7
(Cn2n)N(R8 )−で表される基であり、Y1
2は同一の基であっても異なった基であっても良い。
7 、R8 はそれぞれH及び炭素数1〜5のアルキル基
であり、nは2〜6の整数を表す。さらに一般式(I)
と一般式(II)の組成モル比が0.3≦(I)/(II)
≦3.0である。)X1 の基の例としてはモノメチルア
ミノ基、ジメチルアミノ基、メチルエチルアミノ基、モ
ノエチルアミノ基、ジエチルアミノ基、モノプロピルア
ミノ基、ジプロピルアミノ基、メチルプロピルアミノ
基、エチルプロピルアミノ基、メチルイソプロピルアミ
ノ基、エチルイソプロピルアミノ基、ジイソプロピルア
ミノ基、モノn−ブチルアミノ基、ジn−ブチルアミノ
基、メチルn−ブチルアミノ基、エチルn−ブチルアミ
ノ基、プロピルn−ブチルアミノ基、イソプロピルn−
ブチルアミノ基、モノイソブチルアミノ基、ジイソブチ
ルアミノ基、メチルイソブチルアミノ基、エチルイソブ
チルアミノ基、プロピルイソブチルアミノ基、イソプロ
ピルイソブチルアミノ基、モノペンチルアミノ基、ジペ
ンチルアミノ基、メチルペンチルアミノ基、エチルペン
チルアミノ基、プロピルペンチルアミノ基、イソプロピ
ルペンチルアミノ基、n−ブチルペンチルアミノ基、イ
ソブチルペンチルアミノ基、モノヘキシルアミノ基、ジ
ヘキシルアミノ基、メチルヘキシルアミノ基、エチルヘ
キシルアミノ基、プロピルヘキシルアミノ基、イソプロ
ピルヘキシルアミノ基、n−ブチルヘキシルアミノ基、
イソブチルヘキシルアミノ基、ペンチルヘキシルアミノ
基、モルホリノ基、ピペリジノ基等が挙げられる。X2
の基の例としてはモノヒドロキシエチルアミノ基、ジヒ
ドロキシエチルアミノ基、モノヒドロキシプロピルアミ
ノ基、ジヒドロキシプロピルアミノ基、モノヒドロキシ
イソプロピルアミノ基、ジヒドロキシイソプロピルアミ
ノ基、モノヒドロキシn−ブチルアミノ基、ジヒドロキ
シn−ブチルアミノ基、ジヒドロキシイソブチルアミノ
基、モノヒドロキシペンチルアミノ基、ジヒドロキシペ
ンチルアミノ基、モノヒドロキシヘキシルアミノ基、ジ
ヒドロキシヘキシルアミノ基、N−メチルヒドロキシエ
チルアミノ基等が挙げられる。Y1 、Y2 の基の例とし
てはエチレンジアミン、N,N' −ジメチルエチレンジ
アミン、N,N' −ジエチルエチレンジアミン、テトラ
メチレンジアミン、ペンタメチレンジアミン、ヘキサメ
チレンジアミン、ピペラジン、trans−2,5−ジ
メチルピペラジン等が挙げられる。又(B)に対する
(A)の重量比は0.1〜10の範囲で用いることがで
き、好ましくは0.15〜1の範囲である。本発明に係
わる含窒素共重合体物質は、トリアジン骨格1個に対し
少なくとも1個のヒドロキシアルキル基を有するトリア
ジンと、トリアジン骨格1個に対し少なくとも1個のア
ルキルアミノ基若しくはモルホリノ基、ピペリジノ基を
有するトリアジンとをランダム共重合したことを特徴と
する物質である。更に本発明による共重合体物質は水に
対して難溶性であるので空気中の水分によってポリマー
からしみだすことはない。しかも驚くべき事に従来の発
明に基づく化合物と比較した場合、低添加量でありなが
ら一層優れた難燃効果を発揮する事が見いだされた。
Embedded image (In the formula (I), X 1 is —NH (R 1 ) or —N (R 2 )
An alkylamino group, a morpholino group or a piperidino group represented by the group (R 3 ), wherein R 1 , R 2 and R 3 have 1 to 6 carbon atoms. X 2 is a group of —NH (R 4 ) or —N (R 5 ) (R 6 ), R 4 is a hydroxyalkyl group having 2 to 6 carbon atoms, and one or both of R 5 and R 6 are It is a hydroxyalkyl group having 2 to 6 carbon atoms, which may be the same or different. In addition, Y in the formula (I)
1 , Y 2 is a divalent group of piperazine or —N (R 7 )
(C n H 2n) N ( R 8) - with a group represented, Y 1,
Y 2 may be the same group or different groups.
R 7 and R 8 are each H and an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 2 to 6. Furthermore, the general formula (I)
And the composition molar ratio of the general formula (II) is 0.3 ≦ (I) / (II)
≦ 3.0. ) Monomethyl amino group examples of X 1 in the group, dimethylamino group, methylethylamino group, mono ethylamino group, diethylamino group, mono-propylamino group, dipropylamino group, methylpropylamino group, ethylpropylamino group, Methyl isopropyl amino group, ethyl isopropyl amino group, diisopropyl amino group, mono n-butyl amino group, di n-butyl amino group, methyl n-butyl amino group, ethyl n-butyl amino group, propyl n-butyl amino group, isopropyl n-
Butylamino group, monoisobutylamino group, diisobutylamino group, methylisobutylamino group, ethylisobutylamino group, propylisobutylamino group, isopropylisobutylamino group, monopentylamino group, dipentylamino group, methylpentylamino group, ethylpentylamino Group, propylpentylamino group, isopropylpentylamino group, n-butylpentylamino group, isobutylpentylamino group, monohexylamino group, dihexylamino group, methylhexylamino group, ethylhexylamino group, propylhexylamino group, isopropylhexylamino Group, n-butylhexylamino group,
Examples include an isobutylhexylamino group, a pentylhexylamino group, a morpholino group, and a piperidino group. X 2
Examples of the group of the monohydroxyethylamino group, dihydroxyethylamino group, monohydroxypropylamino group, dihydroxypropylamino group, monohydroxyisopropylamino group, dihydroxyisopropylamino group, monohydroxy n-butylamino group, dihydroxy n- Examples include a butylamino group, a dihydroxyisobutylamino group, a monohydroxypentylamino group, a dihydroxypentylamino group, a monohydroxyhexylamino group, a dihydroxyhexylamino group, and an N-methylhydroxyethylamino group. Y 1, ethylenediamine Examples of Y 2 groups, N, N '- dimethylethylenediamine, N, N' - diethyl ethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, piperazine, trans-2,5-dimethyl And piperazine. The weight ratio of (A) to (B) can be used in the range of 0.1 to 10, and preferably in the range of 0.15 to 1. The nitrogen-containing copolymer material according to the present invention comprises a triazine having at least one hydroxyalkyl group per triazine skeleton and at least one alkylamino group, morpholino group, or piperidino group per triazine skeleton. It is a substance characterized by being random copolymerized with triazine. Furthermore, the copolymer material according to the invention is sparingly soluble in water and does not seep out of the polymer due to moisture in the air. Moreover, surprisingly, it has been found that, when compared with the compound according to the conventional invention, a more excellent flame-retardant effect is exhibited even though the amount is low.

【0008】[0008]

【実施例】本発明を具体的に説明するために、以下に合
成例、実施例、比較例を示すが本発明はこれによって限
定されるものではない。また特にことわりの無い限り合
成例、実施例で示される部は重量部である。
EXAMPLES In order to specifically explain the present invention, synthesis examples, examples and comparative examples are shown below, but the present invention is not limited thereto. Unless otherwise specified, parts shown in Synthesis Examples and Examples are parts by weight.

【0009】合成例1 撹拌機、温度計、滴下漏斗を備えた2Lの反応容器にシ
アヌル酸クロライド92.2部(0.5mol)と水3
00部を仕込んだ。0〜5℃の温度に保ち撹拌しつつモ
ルホリン21.8部(0.25mol)とジエタノール
アミン26.3部(0.25mol)を水100部に溶
解した溶液と水酸化ナトリウム20部を水50部に溶解
した溶液を同時に滴下した。全てを滴下するのに要した
時間は2時間であった。滴下終了後更に同温度で3時間
撹拌後室温まで放置し、ピペラジン43.1部(0.5
mol)を水200部に溶解した溶液を約30分かけて
滴下した。滴下と同時に反応熱によって反応液の温度は
約40℃まで上昇した。ピペラジン水溶液の滴下終了後
水酸化ナトリウム40部を水100部に溶解した溶液を
滴下し、滴下終了後、反応溶液を100℃に加熱し同温
度で4時間保持した。冷却後、生成物をろ過し、水およ
び熱水で洗浄し、乾燥した。収率88%であった。得ら
れた生成物は、通常の有機溶媒に不溶性であり、室温で
の水に対する溶解度は0.1%以下であった。また残存
する塩素は元素分析の結果0.35%であった。示差熱
天秤で分解温度を測定した分解開始温度は290℃であ
った。反応生成物は下記式(III)及び(IV)のモノマー
基本単位とするランダム共重合体であり、その組成モル
比は(III)/(IV)=1である。
Synthesis Example 1 92.2 parts (0.5 mol) of cyanuric chloride and water 3 were placed in a 2 L reaction vessel equipped with a stirrer, a thermometer, and a dropping funnel.
00 parts were charged. A solution prepared by dissolving 21.8 parts (0.25 mol) of morpholine and 26.3 parts (0.25 mol) of diethanolamine in 100 parts of water and 20 parts of sodium hydroxide in 50 parts of water while stirring and maintaining the temperature at 0 to 5 ° C. Was simultaneously added dropwise. The time required to drop all was 2 hours. After completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours and allowed to stand at room temperature.
mol) in 200 parts of water was added dropwise over about 30 minutes. At the same time as the dropwise addition, the temperature of the reaction solution rose to about 40 ° C. due to the heat of the reaction. After the completion of the dropping of the aqueous piperazine solution, a solution prepared by dissolving 40 parts of sodium hydroxide in 100 parts of water was dropped. After the completion of the dropping, the reaction solution was heated to 100 ° C. and maintained at the same temperature for 4 hours. After cooling, the product was filtered, washed with water and hot water and dried. The yield was 88%. The obtained product was insoluble in ordinary organic solvents, and had a solubility in water at room temperature of 0.1% or less. Further, the residual chlorine was 0.35% as a result of elemental analysis. The decomposition start temperature was 290 ° C. as measured by a differential thermal balance. The reaction product is a random copolymer having monomeric basic units of the following formulas (III) and (IV), and the composition molar ratio is (III) / (IV) = 1.

【0010】[0010]

【化4】 Embedded image

【0011】合成例2 合成例1と同様の装置にシアヌル酸クロライド92.2
部(0.5mol)と水300部を仕込んだ。0〜5℃
の温度に保ち撹拌しつつモルホリン10.9部(0.1
25mol)とジエタノールアミン39.4部(0.3
75mol)を水100部に溶解した溶液と水酸化ナト
リウム20部を水50部に溶解した溶液を同時に滴下し
た。全てを滴下するのに要した時間は2時間であった。
滴下終了後更に同温度で3時間撹拌後室温まで放置し、
ピペラジン43.1部(0.5mol)を水200部に
溶解した溶液を約30分かけて滴下した。滴下と同時に
反応熱によって反応液の温度は約40℃まで上昇した。
ピペラジン水溶液の滴下終了後水酸化ナトリウム40部
を水100部に溶解した溶液を滴下し、滴下終了後、反
応溶液を100℃に加熱し同温度で4時間保持した。冷
却後、生成物をろ過し、水および熱水で洗浄し、乾燥し
た。収率87.6%であった。得られた生成物は、通常
の有機溶媒に不溶性であり、室温での水に対する溶解度
は0.1%以下であった。また残存する塩素は元素分析
の結果0.53%であった。示差熱天秤で分解温度を測
定した分解開始温度は284℃であった。反応生成物は
合成例1と同様に下記式 (III)及び(IV)のモノマー基
本単位とするランダム共重合体であり、その組成モル比
は (III)/(IV)=0.33である。
Synthesis Example 2 Cyanuric acid chloride 92.2 was prepared in the same apparatus as in Synthesis Example 1.
Parts (0.5 mol) and 300 parts of water. 0-5 ° C
While stirring and maintaining 10.9 parts of morpholine (0.1
25mol) and 39.4 parts (0.3
(75 mol) in 100 parts of water and a solution of 20 parts of sodium hydroxide in 50 parts of water were simultaneously added dropwise. The time required to drop all was 2 hours.
After completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours and allowed to stand at room temperature.
A solution in which 43.1 parts (0.5 mol) of piperazine was dissolved in 200 parts of water was added dropwise over about 30 minutes. At the same time as the dropwise addition, the temperature of the reaction solution rose to about 40 ° C. due to the heat of the reaction.
After the completion of the dropping of the aqueous piperazine solution, a solution prepared by dissolving 40 parts of sodium hydroxide in 100 parts of water was dropped. After the completion of the dropping, the reaction solution was heated to 100 ° C. and maintained at the same temperature for 4 hours. After cooling, the product was filtered, washed with water and hot water and dried. The yield was 87.6%. The obtained product was insoluble in ordinary organic solvents, and had a solubility in water at room temperature of 0.1% or less. The residual chlorine was found to be 0.53% by elemental analysis. The decomposition start temperature was 284 ° C. when the decomposition temperature was measured with a differential thermobalance. The reaction product is a random copolymer having monomeric basic units of the following formulas (III) and (IV) as in Synthesis Example 1, and the composition molar ratio is (III) / (IV) = 0.33. .

【0012】合成例3 合成例1と同様の装置にシアヌル酸クロライド92.2
部(0.5mol)と水300部を仕込んだ。0〜5℃
の温度に保ち撹拌しつつモルホリン32.7部(0.3
75mol)とジエタノールアミン13.1部(0.1
25mol)を水100部に溶解した溶液と水酸化ナト
リウム20部を水50部に溶解した溶液を同時に滴下し
た。全てを滴下するのに要した時間は2時間であった。
滴下終了後更に同温度で3時間撹拌後室温まで放置し、
ピペラジン43.1部(0.5mol)を水200部に
溶解した溶液を約30分かけて滴下した。滴下と同時に
反応熱によって反応液の温度は約40℃まで上昇した。
ピペラジン水溶液の滴下終了後水酸化ナトリウム40部
を水100部に溶解した溶液を滴下し、滴下終了後、反
応溶液を100℃に加熱し同温度で4時間保持した。冷
却後、生成物をろ過し、水および熱水で洗浄し、乾燥し
た。収率73.8%であった。得られた生成物は、通常
の有機溶媒に不溶性であり、室温での水に対する溶解度
は0.1%以下であった。また残存する塩素は元素分析
の結果3.8%であった。示差熱天秤で分解温度を測定
した分解開始温度は295℃であった。反応生成物は合
成例1と同様に下記式 (III)及び(IV)のモノマー基本
単位とするランダム共重合体であり、その組成モル比は
(III)/(IV)=3.0である。
Synthesis Example 3 Cyanuric chloride 92.2 was prepared in the same apparatus as in Synthesis Example 1.
Parts (0.5 mol) and 300 parts of water. 0-5 ° C
32.7 parts of morpholine (0.3
75 mol) and 13.1 parts (0.1
(25 mol) in 100 parts of water and a solution of 20 parts of sodium hydroxide in 50 parts of water were simultaneously added dropwise. The time required to drop all was 2 hours.
After completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours, and then allowed to stand at room temperature.
A solution in which 43.1 parts (0.5 mol) of piperazine was dissolved in 200 parts of water was added dropwise over about 30 minutes. At the same time as the dropwise addition, the temperature of the reaction solution rose to about 40 ° C. due to the heat of reaction.
After the completion of the dropping of the aqueous piperazine solution, a solution prepared by dissolving 40 parts of sodium hydroxide in 100 parts of water was dropped. After the completion of the dropping, the reaction solution was heated to 100 ° C. and maintained at the same temperature for 4 hours. After cooling, the product was filtered, washed with water and hot water and dried. The yield was 73.8%. The obtained product was insoluble in ordinary organic solvents, and had a solubility in water at room temperature of 0.1% or less. The residual chlorine was 3.8% as a result of elemental analysis. The decomposition temperature was 295 ° C. when the decomposition temperature was measured with a differential thermobalance. The reaction product is a random copolymer having monomeric basic units of the following formulas (III) and (IV) as in Synthesis Example 1, and the composition molar ratio is
(III) / (IV) = 3.0.

【0013】合成例4 合成例1と同様の装置にシアヌル酸クロライド92.2
部(0.5mol)と水300部を仕込んだ。0〜5℃
の温度に保ち撹拌しつつN−メチルピペラジン24.8
部(0.25mol)とジエタノールアミン26.2部
(0.25mol)を水100部に溶解した溶液と水酸
化ナトリウム20部を水50部に溶解した溶液を同時に
滴下した。全てを滴下するのに要した時間は2時間であ
った。滴下終了後更に同温度で3時間撹拌後室温まで放
置し、ピペラジン43.1部(0.5mol)を水20
0部に溶解した溶液を約30分かけて滴下した。滴下と
同時に反応熱によって反応液の温度は約40℃まで上昇
した。ピペラジン水溶液の滴下終了後水酸化ナトリウム
40部を水100部に溶解した溶液を滴下し、滴下終了
後、反応溶液を100℃に加熱し同温度で4時間保持し
た。冷却後、生成物をろ過し、水および熱水で洗浄し、
乾燥した。収率82.2%であった。得られた生成物
は、通常の有機溶媒に不溶性であり、室温での水に対す
る溶解度は0.1%以下であった。また残存する塩素は
元素分析の結果2.5%であった。示差熱天秤で分解温
度を測定した分解開始温度は292℃であった。反応生
成物は下記式(V)及び(VI)のモノマー基本単位とす
るランダム共重合体であり、その組成モル比は(V)/
(VI)=1である。
Synthesis Example 4 Cyanuric acid chloride 92.2 was prepared in the same apparatus as in Synthesis Example 1.
Parts (0.5 mol) and 300 parts of water. 0-5 ° C
While stirring and keeping N-methylpiperazine 24.8.
(0.25 mol) and a solution of 26.2 parts (0.25 mol) of diethanolamine in 100 parts of water and a solution of 20 parts of sodium hydroxide in 50 parts of water were simultaneously dropped. The time required to drop all was 2 hours. After completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours, and then allowed to stand at room temperature. 43.1 parts (0.5 mol) of piperazine was added to water 20
The solution dissolved in 0 parts was added dropwise over about 30 minutes. At the same time as the dropwise addition, the temperature of the reaction solution rose to about 40 ° C. due to the heat of reaction. After the completion of the dropping of the aqueous piperazine solution, a solution prepared by dissolving 40 parts of sodium hydroxide in 100 parts of water was dropped. After the completion of the dropping, the reaction solution was heated to 100 ° C. and maintained at the same temperature for 4 hours. After cooling, the product is filtered, washed with water and hot water,
Dried. The yield was 82.2%. The obtained product was insoluble in ordinary organic solvents, and had a solubility in water at room temperature of 0.1% or less. Further, the residual chlorine was 2.5% as a result of elemental analysis. The decomposition start temperature was 292 ° C. when the decomposition temperature was measured with a differential thermobalance. The reaction product is a random copolymer having monomer basic units of the following formulas (V) and (VI), and the composition molar ratio thereof is (V) /
(VI) = 1.

【0014】[0014]

【化5】 Embedded image

【0015】合成例5 合成例1と同様の装置にシアヌル酸クロライド92.2
部(0.5mol)と水300部を仕込んだ。0〜5℃
の温度に保ち撹拌しつつモルホリン21.8部(0.2
5mol)とジエタノールアミン26.3部(0.25
mol)を水100部に溶解した溶液と水酸化ナトリウ
ム20部を水50部に溶解した溶液を同時に滴下した。
全てを滴下するのに要した時間は2時間であった。滴下
終了後更に同温度で3時間撹拌後室温まで放置し、エチ
レンジアミン30.0部(0.5mol)を水200部
に溶解した溶液を約30分かけて滴下した。滴下と同時
に反応熱によって反応液の温度は約35℃まで上昇し
た。エチレンジアミン水溶液の滴下終了後水酸化ナトリ
ウム40部を水100部に溶解した溶液を滴下し、滴下
終了後、反応溶液を100℃に加熱し同温度で4時間保
持した。冷却後、生成物をろ過し、水および熱水で洗浄
し、乾燥した。収率67.4%であった。得られた生成
物は、通常の有機溶媒に不溶性であり、室温での水に対
する溶解度は0.1%以下であった。また残存する塩素
は元素分析の結果3.2%であった。示差熱天秤で分解
温度を測定した分解開始温度は280℃であった。反応
生成物は下記式 (VII)及び(VIII)のモノマー基本単位
とするランダム共重合体であり、その組成モル比は (VI
I)/(VIII)=1である。
Synthesis Example 5 Cyanuric acid chloride 92.2 was prepared in the same apparatus as in Synthesis Example 1.
Parts (0.5 mol) and 300 parts of water. 0-5 ° C
21.8 parts of morpholine (0.2
5 mol) and 26.3 parts (0.25 parts) of diethanolamine.
(mol) in 100 parts of water and a solution of 20 parts of sodium hydroxide in 50 parts of water were simultaneously dropped.
The time required to drop all was 2 hours. After completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours and then allowed to stand at room temperature, and a solution of 30.0 parts (0.5 mol) of ethylenediamine dissolved in 200 parts of water was added dropwise over about 30 minutes. At the same time as the dropwise addition, the temperature of the reaction solution rose to about 35 ° C. due to the heat of the reaction. After completion of the dropping of the aqueous solution of ethylenediamine, a solution prepared by dissolving 40 parts of sodium hydroxide in 100 parts of water was dropped. After the completion of the dropping, the reaction solution was heated to 100 ° C. and maintained at the same temperature for 4 hours. After cooling, the product was filtered, washed with water and hot water and dried. The yield was 67.4%. The obtained product was insoluble in ordinary organic solvents, and had a solubility in water at room temperature of 0.1% or less. Further, the residual chlorine was 3.2% as a result of elemental analysis. The decomposition temperature was 280 ° C. when the decomposition temperature was measured with a differential thermobalance. The reaction product is a random copolymer having monomeric basic units of the following formulas (VII) and (VIII), and the composition molar ratio thereof is (VI
I) / (VIII) = 1.

【0016】[0016]

【化6】 Embedded image

【0017】合成例6 合成例1と同様の装置にシアヌル酸クロライド92.2
部(0.5mol)と水300部を仕込んだ。0〜5℃
の温度に保ち撹拌しつつジエチルアミン18.3部
(0.25mol)とジエタノールアミン26.3部
(0.25mol)を水100部に溶解した溶液と水酸
化ナトリウム20部を水50部に溶解した溶液を同時に
滴下した。全てを滴下するのに要した時間は2時間であ
った。滴下終了後更に同温度で3時間撹拌後室温まで放
置し、エチレンジアミン30.0部(0.5mol)を
水200部に溶解した溶液を約30分かけて滴下した。
滴下と同時に反応熱によって反応液の温度は約35℃ま
で上昇した。エチレンジアミン水溶液の滴下終了後水酸
化ナトリウム40部を水100部に溶解した溶液を滴下
し、滴下終了後、反応溶液を100℃に加熱し同温度で
4時間保持した。冷却後、生成物をろ過し、水および熱
水で洗浄し、乾燥した。収率65.2%であった。得ら
れた生成物は、通常の有機溶媒に不溶性であり、室温で
の水に対する溶解度は0.1%以下であった。また残存
する塩素は元素分析の結果3.6%であった。示差熱天
秤で分解温度を測定した分解開始温度は282℃であっ
た。反応生成物は下記式(IX)及び(X)のモノマー基
本単位とするランダム共重合体であり、その組成モル比
は(IX)/(X)=1である。
Synthesis Example 6 Cyanuric acid chloride 92.2 was prepared in the same apparatus as in Synthesis Example 1.
Parts (0.5 mol) and 300 parts of water. 0-5 ° C
A solution of 18.3 parts (0.25 mol) of diethylamine and 26.3 parts (0.25 mol) of diethanolamine in 100 parts of water and a solution of 20 parts of sodium hydroxide in 50 parts of water with stirring at a temperature of At the same time. The time required to drop all was 2 hours. After completion of the dropwise addition, the mixture was further stirred at the same temperature for 3 hours and then allowed to stand at room temperature, and a solution of 30.0 parts (0.5 mol) of ethylenediamine dissolved in 200 parts of water was added dropwise over about 30 minutes.
At the same time as the dropwise addition, the temperature of the reaction solution rose to about 35 ° C. due to the heat of the reaction. After completion of the dropping of the aqueous solution of ethylenediamine, a solution prepared by dissolving 40 parts of sodium hydroxide in 100 parts of water was dropped. After the completion of the dropping, the reaction solution was heated to 100 ° C. and maintained at the same temperature for 4 hours. After cooling, the product was filtered, washed with water and hot water and dried. The yield was 65.2%. The obtained product was insoluble in ordinary organic solvents, and had a solubility in water at room temperature of 0.1% or less. The residual chlorine was found to be 3.6% by elemental analysis. The decomposition start temperature was 282 ° C. when the decomposition temperature was measured with a differential thermobalance. The reaction product is a random copolymer having monomeric basic units of the following formulas (IX) and (X), and the composition molar ratio is (IX) / (X) = 1.

【0018】[0018]

【化7】 Embedded image

【0019】比較合成例1 合成例1のモルホリン21.8部(0.25mol)と
ジエタノールアミン26.3部(0.25mol)の替
わりにジエタノールアミン52.6部(0.5mol)
を用いた以外は合成例1と同様の装置、方法によって合
成した。その推定構造式は、下記式(XI)のとおり。
Comparative Synthesis Example 1 In place of 21.8 parts (0.25 mol) of morpholine and 26.3 parts (0.25 mol) of diethanolamine in Synthesis Example 1, 52.6 parts (0.5 mol) of diethanolamine.
The synthesis was carried out by the same apparatus and method as in Synthesis Example 1 except that was used. The estimated structural formula is as shown in the following formula (XI).

【0020】[0020]

【化8】 Embedded image

【0021】比較合成例2 合成例1のモルホリン21.8部(0.25mol)と
ジエタノールアミン26.3部(0.25mol)の替
わりにモルホリン43.6部(0.5mol)を用いた
以外は合成例1と同様の装置、方法によって合成した。
その推定構造式は、下記式 (XII)のとおり。
Comparative Synthesis Example 2 Except that 43.6 parts (0.5 mol) of morpholine were used instead of 21.8 parts (0.25 mol) of morpholine and 26.3 parts (0.25 mol) of diethanolamine of Synthesis Example 1. The compound was synthesized by the same apparatus and method as in Synthesis Example 1.
The estimated structural formula is as shown in the following formula (XII).

【0022】[0022]

【化9】 Embedded image

【0023】比較合成例3 合成例1のモルホリン21.8部(0.25mol)と
ジエタノールアミン26.3部(0.25mol)の替
わりにピペリジン42.6部(0.5mol)を用いた
以外は合成例1と同様の装置、方法によって合成した。
その推定構造式は、下記式(XIII)のとおり。
Comparative Synthetic Example 3 Except that 42.6 parts (0.5 mol) of piperidine were used instead of 21.8 parts (0.25 mol) of morpholine and 26.3 parts (0.25 mol) of diethanolamine of Synthetic Example 1. The compound was synthesized by the same apparatus and method as in Synthesis Example 1.
The estimated structural formula is as shown in the following formula (XIII).

【0024】[0024]

【化10】 Embedded image

【0025】合成例1〜6、比較例1〜3で合成した化
合物の分解開始温度、室温における水100gに対する
溶解度を表1に示した。
Table 1 shows the decomposition start temperatures of the compounds synthesized in Synthesis Examples 1 to 6 and Comparative Examples 1 to 3, and the solubility in 100 g of water at room temperature.

【0026】[0026]

【表1】 [Table 1]

【0027】実施例1 ポリプロピレン樹脂として、エチレン含有量8.5重量
%、メルトフローレート(温度230℃、荷重2.16
kgを加えたときの10分間の溶融樹脂の吐出量)20
g/10分の結晶性エチレン−プロピレンブロック共重
合体49.5重量%、ポリエチレン樹脂(成分A)とし
てメルトインデックス(温度190℃、荷重2.16k
gを加えたときの10分間の溶融樹脂の吐出量)6.5
g/10分のエチレン単独重合体(チッソポリエチ(商
標)M680、チッソ(株)製)10重量%、エチレン
系合成ゴムもしくはエラストマー(成分B)としてエチ
レン−プロピレンゴム(JSR EP(商標)02P、
日本合成ゴム(株)製)10重量%、ポリリン酸アンモ
ニウム(成分C)としてExolit−422(商品
名、ヘキスト製)を24.2重量%、合成例1(成分D
1)で合成した化合物を通常知られている粉砕機で粉砕
したもの4.8重量%、シランカップリング剤(成分
E)としてビニルトリメトキシシランを1重量%、その
他安定剤として2,6−ジ−t−ブチル−p−クレゾー
ル0.2重量%、ジ−ミリスチル−β,β’−チオジプ
ロピオネート0.2重量%及びステアリン酸カルシウム
0.1重量%をヘンシェルミキサー(商品名)に入れ、
3分間撹拌混合した。得られた混合物を口径30mmの
押し出し機で溶融混練温度200℃で溶融混練押し出
し、ペレット化した。得られたペレットを100℃の温
度で3時間乾燥した後、該ペレットを用いて温度を20
0℃に設定した熱プレスで難燃性評価用の所定の試験片
を作成した。該試験片を用いて、難燃性を評価した。難
燃性は、ASTM D−2863に準拠した酸素指数の
測定と、UL−94(Underweriters Laboratories)に準
じた垂直燃焼試験を肉厚1.2mmt で行った。綿着火
率に関しては、試験片の下方30cmに置いた外科用脱
脂綿に溶融物が落下し外科用脱脂綿が着火したか否かを
確認した。難燃性の評価結果を表2に示した。
Example 1 As a polypropylene resin, an ethylene content of 8.5% by weight, a melt flow rate (temperature of 230 ° C., load 2.16)
(discharge rate of molten resin for 10 minutes when kg is added) 20
g / 10 minutes of a crystalline ethylene-propylene block copolymer (49.5% by weight) and a polyethylene resin (component A) having a melt index (at a temperature of 190 ° C. under a load of 2.16 k)
g of molten resin for 10 minutes when g is added) 6.5
g / 10 minutes of ethylene homopolymer (Nissopolyethylene (trademark) M680, manufactured by Chisso Corporation) 10% by weight, ethylene-propylene rubber (JSR EP (trademark) 02P, ethylene-based synthetic rubber or elastomer (component B))
10% by weight of Nippon Synthetic Rubber Co., Ltd., 24.2% by weight of Exolit-422 (trade name, manufactured by Hoechst) as ammonium polyphosphate (Component C), Synthesis Example 1 (Component D)
4.8% by weight of the compound synthesized in 1), which is pulverized by a commonly known pulverizer, 1% by weight of vinyltrimethoxysilane as a silane coupling agent (component E), and 2,6- 0.2% by weight of di-t-butyl-p-cresol, 0.2% by weight of di-myristyl-β, β′-thiodipropionate and 0.1% by weight of calcium stearate are put into a Henschel mixer (trade name). ,
Stir and mix for 3 minutes. The obtained mixture was melt-kneaded and extruded at a melt-kneading temperature of 200 ° C. with an extruder having a diameter of 30 mm, and pelletized. After drying the obtained pellets at a temperature of 100 ° C. for 3 hours, the temperature was adjusted to 20
A predetermined test piece for flame retardancy evaluation was prepared by a hot press set at 0 ° C. Flame retardancy was evaluated using the test piece. Flame retardancy was performed by ASTM and measuring the compliant oxygen index in D-2863, UL-94 ( Underweriters Laboratories) thick vertical combustion test according to the 1.2 mm t. Regarding the cotton ignition rate, it was confirmed whether the melt dropped on the surgical absorbent cotton placed 30 cm below the test piece and the surgical absorbent cotton ignited. Table 2 shows the evaluation results of the flame retardancy.

【0028】[0028]

【表2】 [Table 2]

【0029】 成分A ポリエチレン樹脂:チッソポリエチ M6
80(チッソ(株)製) 成分B エチレン−プロピレンゴム:JSR EP
02P(日本合成ゴム(株)製) 成分C ポリリン酸アンモニウム:Exolit−
422(商品名、ヘキスト社製) 成分D1 合成例1の化合物 成分D2 合成例2の化合物 成分D3 合成例3の化合物 成分D4 合成例4の化合物 成分D5 合成例5の化合物 成分D6 合成例6の化合物 成分D7 比較合成例1の化合物 成分D8 比較合成例2の化合物 成分D9 比較合成例3の化合物 成分D10 トリス(2−ヒドロキシエチル)イソシア
ヌレート 成分E シランカップリング剤:ビニルトリメトキ
シシラン 安定剤 2,6−ジ−t−ブチル−p−クレゾール ジ−ミリスチル−β,β’−チオジプロピオネート ステアリン酸カルシウム
Component A Polyethylene resin: Chissopoly M6
80 (manufactured by Chisso Corporation) Component B Ethylene-propylene rubber: JSR EP
02P (Nippon Synthetic Rubber Co., Ltd.) Component C Ammonium polyphosphate: Exolit-
422 (trade name, manufactured by Hoechst) Component D1 Compound of Synthesis Example 1 Component D2 Compound of Synthesis Example 2 Component D3 Compound of Synthesis Example 3 Component D4 Compound of Synthesis Example 4 Component D5 Compound of Synthesis Example 5 Component D6 Synthesis Example 6 Compound Component D7 Compound of Comparative Synthesis Example 1 Component D8 Compound of Comparative Synthesis Example 2 Component D9 Compound of Comparative Synthesis Example 3 Component D10 Tris (2-hydroxyethyl) isocyanurate Component E Silane coupling agent: vinyltrimethoxysilane stabilizer 2 , 6-Di-t-butyl-p-cresol di-myristyl-β, β′-thiodipropionate calcium stearate

【0030】実施例2 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、合成例1(成分D1)で合成し
た化合物を通常知られている粉砕機で粉砕したもの8.
0重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例3 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、合成例2(成分D2)で合成し
た化合物を通常知られている粉砕機で粉砕したもの4.
8重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例4 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、合成例2(成分D2)で合成し
た化合物を通常知られている粉砕機で粉砕したもの8.
0重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例5 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、合成例3(成分D3)で合成し
た化合物を通常知られている粉砕機で粉砕したもの4.
8重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例6 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、合成例3(成分D3)で合成し
た化合物を通常知られている粉砕機で粉砕したもの8.
0重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例7 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、合成例4(成分D4)で合成し
た化合物を通常知られている粉砕機で粉砕したもの4.
8重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例8 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、合成例4(成分D4)で合成し
た化合物を通常知られている粉砕機で粉砕したもの8.
0重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例9 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、合成例5(成分D5)で合成し
た化合物を通常知られている粉砕機で粉砕したもの4.
8重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例10 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、合成例5(成分D5)で合成し
た化合物を通常知られている粉砕機で粉砕したもの8.
0重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表2に示
す。 実施例11 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、合成例6(成分D6)で合成し
た化合物を通常知られている粉砕機で粉砕したもの4.
8重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表3に示
す。 実施例12 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、合成例6(成分D6)で合成し
た化合物を通常知られている粉砕機で粉砕したもの8.
0重量%、とした以外は実施例1と同様な方法、装置を
用いて難燃性を評価した。難燃性の評価結果を表3に示
す。
Example 2 As an APP, 21.0% by weight of Exolit-422 (trade name, manufactured by Hoechst), and the compound synthesized in Synthesis Example 1 (component D1) was pulverized with a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the weight was 0% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 3 24.2% by weight of Exolit-422 (trade name, manufactured by Hoechst) as an APP, and the compound synthesized in Synthesis Example 2 (component D2) was pulverized by a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the content was 8% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 4 As an APP, 21.0% by weight of Exolit-422 (trade name, manufactured by Hoechst) and the compound synthesized in Synthesis Example 2 (component D2) pulverized with a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the weight was 0% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 5 As an APP, Exolit-422 (trade name, manufactured by Hoechst) was 24.2% by weight, and the compound synthesized in Synthesis Example 3 (component D3) was pulverized with a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the content was 8% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 6 APP was Exolit-422 (trade name, manufactured by Hoechst) 21.0% by weight, and the compound synthesized in Synthesis Example 3 (component D3) was pulverized by a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the weight was 0% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 7 As an APP, Exolit-422 (trade name, manufactured by Hoechst) was 24.2% by weight, and the compound synthesized in Synthesis Example 4 (component D4) was pulverized with a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the content was 8% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 8 APP was 21.0% by weight of Exolit-422 (trade name, manufactured by Hoechst), and the compound synthesized in Synthesis Example 4 (component D4) was pulverized by a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the weight was 0% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 9 As an APP, 24.2% by weight of Exolit-422 (trade name, manufactured by Hoechst) and the compound synthesized in Synthesis Example 5 (component D5) pulverized with a generally known pulverizer are used.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the content was 8% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 10 APP was Exolit-422 (trade name, manufactured by Hoechst) 21.0% by weight, and the compound synthesized in Synthesis Example 5 (component D5) was pulverized with a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the weight was 0% by weight. Table 2 shows the evaluation results of the flame retardancy. Example 11 As an APP, Exolit-422 (trade name, manufactured by Hoechst) was 24.2% by weight, and the compound synthesized in Synthesis Example 6 (component D6) was pulverized by a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the content was 8% by weight. Table 3 shows the evaluation results of the flame retardancy. Example 12 APP was Exolit-422 (trade name, manufactured by Hoechst) 21.0% by weight, and the compound synthesized in Synthesis Example 6 (component D6) was pulverized with a commonly known pulverizer.
The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the weight was 0% by weight. Table 3 shows the evaluation results of the flame retardancy.

【0031】比較例1 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、比較合成例1(成分D7)で合
成した化合物を通常知られている粉砕機で粉砕したもの
4.8重量%、とした以外は実施例1と同様な方法、装
置を用いて難燃性を評価した。難燃性の評価結果を表3
に示す。 比較例2 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、比較合成例2(成分D8)で合
成した化合物を通常知られている粉砕機で粉砕したもの
4.8重量%、とした以外は実施例1と同様な方法、装
置を用いて難燃性を評価した。難燃性の評価結果を表3
に示す。 比較例3 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、比較合成例2(成分D8)で合
成した化合物を通常知られている粉砕機で粉砕したもの
8.0重量%、とした以外は実施例1と同様な方法、装
置を用いて難燃性を評価した。難燃性の評価結果を表3
に示す。 比較例4 APPとしてExolit−422(商品名、ヘキスト
製)を24.2重量%、比較合成例3(成分D9)で合
成した化合物を通常知られている粉砕機で粉砕したもの
4.8重量%、とした以外は実施例1と同様な方法、装
置を用いて難燃性を評価した。難燃性の評価結果を表3
に示す。 比較例5 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、比較合成例3(成分D9)で合
成した化合物を通常知られている粉砕機で粉砕したもの
8.0重量%、とした以外は実施例1と同様な方法、装
置を用いて難燃性を評価した。難燃性の評価結果を表3
に示す。 比較例6 APPとしてExolit−422(商品名、ヘキスト
製)を21.0重量%、トリス(2−ヒドロキシエチ
ル)イソシアヌレート(成分D8)を8.0重量%、と
した以外は実施例1と同様な方法、装置を用いて難燃性
を評価した。難燃性の評価結果を表3に示す。
Comparative Example 1 24.2% by weight of Exolit-422 (trade name, manufactured by Hoechst) as an APP, and the compound synthesized in Comparative Synthesis Example 1 (component D7) was pulverized by a commonly known pulverizer. The flame retardancy was evaluated using the same method and apparatus as in Example 1 except that the content was set to 0.8% by weight. Table 3 shows the evaluation results of flame retardancy.
Shown in Comparative Example 2 24.2% by weight of Exolit-422 (trade name, manufactured by Hoechst) as APP, and 4.8% by weight of a compound synthesized in Comparative Synthesis Example 2 (component D8) crushed by a commonly known crusher. %, The flame retardancy was evaluated using the same method and apparatus as in Example 1. Table 3 shows the evaluation results of flame retardancy.
Shown in Comparative Example 3 Exolit-422 (trade name, manufactured by Hoechst) as an APP was 21.0% by weight, and the compound synthesized in Comparative Synthesis Example 2 (Component D8) was pulverized with a commonly known pulverizer to 8.0% by weight. %, The flame retardancy was evaluated using the same method and apparatus as in Example 1. Table 3 shows the evaluation results of flame retardancy.
Shown in Comparative Example 4 24.2% by weight of Exolit-422 (trade name, manufactured by Hoechst) as APP, and 4.8% by weight of a compound synthesized in Comparative Synthesis Example 3 (component D9) crushed by a commonly known crusher. %, The flame retardancy was evaluated using the same method and apparatus as in Example 1. Table 3 shows the evaluation results of flame retardancy.
Shown in Comparative Example 5 Exolit-422 (trade name, manufactured by Hoechst) as an APP was 21.0% by weight, and the compound synthesized in Comparative Synthesis Example 3 (Component D9) was pulverized with a commonly known pulverizer to 8.0% by weight. %, The flame retardancy was evaluated using the same method and apparatus as in Example 1. Table 3 shows the evaluation results of flame retardancy.
Shown in Comparative Example 6 Example 1 was the same as Example 1 except that Exolit-422 (trade name, manufactured by Hoechst) was 21.0% by weight and tris (2-hydroxyethyl) isocyanurate (component D8) was 8.0% by weight as APP. Flame retardancy was evaluated using the same method and apparatus. Table 3 shows the evaluation results of the flame retardancy.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】本発明の含窒素共重合体物質は低添加量
で優れた難燃性を示す。また、官能基にヒドロキシアル
キル基が含まれることによって低配合での難燃性が向上
することが明らかとなった。更に官能基にヒドロキシア
ルキル基が含まれているのにも拘らず、アルキルアミノ
基、モルホリノ基、ピペリジノ基も含まれているため
に、燃焼時のドリップ性が極めて低い。さらに難水溶性
であるために空気中の水分により配合ポリマーからしみ
出す事もない。
The nitrogen-containing copolymer material of the present invention exhibits excellent flame retardancy at a low addition amount. In addition, it has been clarified that the flame retardancy at a low content is improved by including the hydroxyalkyl group in the functional group. Further, although the functional group contains a hydroxyalkyl group, it also contains an alkylamino group, a morpholino group, and a piperidino group, so that the drip property during combustion is extremely low. Further, since it is poorly water-soluble, it does not exude from the compounded polymer due to moisture in the air.

【化2】 Embedded image

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08L 79/00 - 79/08 C08G 73/00 - 73/26 C08K 3/22 CA(STN) REGISTRY(STN)Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) C08L 79/00-79/08 C08G 73/00-73/26 C08K 3/22 CA (STN) REGISTRY (STN)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱可塑性樹脂に A.一般式(I)及び一般式(II)で表されるモノマー
を基本単位とするランダム共重合体物質、 【化1】 (式(I)中X1 は−NH(R1 )または−N(R2
(R3 )の基で表されるアルキルアミノ基、もしくはモ
ルホリノ基、ピペリジノ基であり、R1 、R2、R3
炭素数は1〜6である。X2 は、−NH(R4 )または
−N(R5 )(R6 )の基でありR4 は炭素数2〜6の
ヒドロキシアルキル基であり、R5 、R6 は一方または
両方が炭素数2〜6のヒドロキシアルキル基であり、同
一の基であっても異なっても良い。また、式(I)中Y
1 、Y2 はピペラジンの二価の基または−N(R7
(Cn2n)N(R8 )−で表される基であり、Y1
2は同一の基であっても異なった基であっても良い。
7 、R8 はそれぞれH及び炭素数1〜5のアルキル基
であり、nは2〜6の整数を表す。さらに一般式(I)
と一般式(II)の組成モル比が0.3≦(I)/(II)
≦3.0)と、 B.ポリリン酸アンモニウムまたはポリリン酸アミドで
構成される難燃剤であって前記A/Bの重量比が0.1
〜10であるものを C.組成物重量の1〜50重量%混合してなる難燃性熱
可塑性樹脂組成物。
1. A thermoplastic resin comprising: A random copolymer material having a monomer represented by the general formula (I) or (II) as a basic unit; (In the formula (I), X 1 is —NH (R 1 ) or —N (R 2 )
An alkylamino group, a morpholino group or a piperidino group represented by the group (R 3 ), wherein R 1 , R 2 and R 3 have 1 to 6 carbon atoms. X 2 is a group of —NH (R 4 ) or —N (R 5 ) (R 6 ), R 4 is a hydroxyalkyl group having 2 to 6 carbon atoms, and one or both of R 5 and R 6 are It is a hydroxyalkyl group having 2 to 6 carbon atoms, which may be the same or different. In addition, Y in the formula (I)
1 , Y 2 is a divalent group of piperazine or —N (R 7 )
(C n H 2n) N ( R 8) - with a group represented, Y 1,
Y 2 may be the same group or different groups.
R 7 and R 8 are each H and an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 2 to 6. Furthermore, the general formula (I)
And the composition molar ratio of the general formula (II) is 0.3 ≦ (I) / (II)
≦ 3.0); A flame retardant comprising ammonium polyphosphate or polyphosphoramide, wherein the weight ratio of A / B is 0.1
C. to 10. A flame-retardant thermoplastic resin composition obtained by mixing 1 to 50% by weight of the composition.
【請求項2】熱可塑性樹脂がポリオレフィンまたはその
エラストマーである請求項1に記載の難燃性樹脂組成
物。
2. The flame-retardant resin composition according to claim 1, wherein the thermoplastic resin is a polyolefin or an elastomer thereof.
JP04193453A 1992-06-26 1992-06-26 Flame retardant thermoplastic resin composition Expired - Fee Related JP3128966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04193453A JP3128966B2 (en) 1992-06-26 1992-06-26 Flame retardant thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04193453A JP3128966B2 (en) 1992-06-26 1992-06-26 Flame retardant thermoplastic resin composition

Publications (2)

Publication Number Publication Date
JPH069870A JPH069870A (en) 1994-01-18
JP3128966B2 true JP3128966B2 (en) 2001-01-29

Family

ID=16308253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04193453A Expired - Fee Related JP3128966B2 (en) 1992-06-26 1992-06-26 Flame retardant thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JP3128966B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2289680A (en) * 1994-05-25 1995-11-29 Minnesota Mining & Mfg Flame-retardant pressure sensitive adhesives and tapes
CN110054840B (en) * 2019-05-24 2021-10-29 华北理工大学 Hyperbranched triazine charring agent with high nitrogen content, preparation method thereof and flame-retardant composite material
CN112159669A (en) * 2020-09-30 2021-01-01 淮安丹文化工科技有限公司 Preparation method of phosphorus-containing macromolecular intumescent flame-retardant char-forming agent

Also Published As

Publication number Publication date
JPH069870A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
CN101765629B (en) The fire retardant of halogen
EP0115871B1 (en) Self-extinguishing polymeric compositions
US5409976A (en) Simple two-component zero-halogen flame retardant
JP2000154277A (en) Flame-retardant resin composition
JP2544315B2 (en) Novel phosphite and its application as flame retardant
JP3007512B2 (en) Flame retardant thermoplastic resin composition
JP2000154181A (en) New 2-substituted guanamine compound and flame retardant resin composition containing 2-substituted guanamine compound as active component
JP2567327B2 (en) Flame retardant and composition thereof
JP3128966B2 (en) Flame retardant thermoplastic resin composition
WO2012093781A2 (en) Flame-retardant polyolefin resin containing piperazine-based metal salt blend
CA1285680C (en) Self-extinguishing compositions of thermoplastic polymers
JPH07165982A (en) Flame retardant composition and flame retardant resin composition using the same
JPH01193347A (en) Flame-retardant polypropylene resin composition
JPH06256566A (en) Flame retardant thermoplastic resin composition
JP2802780B2 (en) Flame retardant composition
JPH0618944B2 (en) Flame-retardant polypropylene resin composition
JPH05271468A (en) Flame-retardant resin composition
JP2844301B2 (en) Flame retardant thermoplastic resin composition
JPH0376756A (en) Polyamide resin composition
JPH0662818B2 (en) Flame-retardant polypropylene resin composition
JPH0656988A (en) Composite flame retardant coated with nitrogenous compound
JPS608055B2 (en) Flame retardant polyamide resin composition
JPH0356547A (en) Fire retardant polypropylene resin composition
JPH08120125A (en) Flame-retardant polyolefin resin composition having improved thermochromism
JPH064735B2 (en) Flame-retardant polypropylene resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees