JP3125572B2 - Plasma equipment - Google Patents

Plasma equipment

Info

Publication number
JP3125572B2
JP3125572B2 JP06080534A JP8053494A JP3125572B2 JP 3125572 B2 JP3125572 B2 JP 3125572B2 JP 06080534 A JP06080534 A JP 06080534A JP 8053494 A JP8053494 A JP 8053494A JP 3125572 B2 JP3125572 B2 JP 3125572B2
Authority
JP
Japan
Prior art keywords
discharge chamber
positive electrode
plasma
anode
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06080534A
Other languages
Japanese (ja)
Other versions
JPH07286276A (en
Inventor
武志 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP06080534A priority Critical patent/JP3125572B2/en
Publication of JPH07286276A publication Critical patent/JPH07286276A/en
Application granted granted Critical
Publication of JP3125572B2 publication Critical patent/JP3125572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空中において基体上
に薄膜を形成するプラズマ装置に関し、特に薄膜性能と
作業効率の優れたプラズマ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma apparatus for forming a thin film on a substrate in a vacuum, and more particularly to a plasma apparatus having excellent thin film performance and work efficiency.

【0002】[0002]

【従来の技術】近年、真空を利用したプラズマ装置は半
導体分野や記録メディアの分野でそれぞれ高集積化、高
密度化を目的として広く用いられている。これらの装置
では一般に、真空槽内に放電室と基体(基体ホルダに取
り付けられ固定されている場合や基体搬送系の働きで移
動する場合などがある)を有しており、これによりプラ
ズマ化した材料を基体表面に付着させ、膜形成や保護膜
形成に利用している。
2. Description of the Related Art In recent years, plasma devices using vacuum have been widely used in the fields of semiconductors and recording media for the purpose of high integration and high density, respectively. In general, these devices have a discharge chamber and a substrate (in some cases, fixed to a substrate holder or moved by the function of a substrate transport system) in a vacuum chamber. Materials are adhered to the substrate surface and used for film formation and protective film formation.

【0003】以下に従来のプラズマ装置について説明す
る。図2は従来のプラズマ装置の概略を示す断面図であ
る。図2において、1は真空槽、2は放電室、3は基体
ホルダとなるカソード(陰電極)、4は基体、5は真空
ポンプ、6は直流電源、7はメッシュ状アノード(陽電
極)、8は不活性ガス、9はモノマーガスである。
[0003] A conventional plasma apparatus will be described below. FIG. 2 is a sectional view schematically showing a conventional plasma apparatus. In FIG. 2, 1 is a vacuum chamber, 2 is a discharge chamber, 3 is a cathode (negative electrode) serving as a base holder, 4 is a base, 5 is a vacuum pump, 6 is a DC power supply, 7 is a mesh anode (positive electrode), 8 is an inert gas and 9 is a monomer gas.

【0004】以上のように構成されたプラズマ装置につ
いて、以下その動作について説明する。まず、基体ホル
ダとなるカソード(陰電極)3に基体4を取り付け、真
空槽1内と放電室2内を真空ポンプ5により1×10-5
torr程度まで排気する。不活性ガス8とモノマーガス9
を放電室2に供給し、直流電源6によりメッシュ状アノ
ード(陽電極)7と基体ホルダとなるカソード(陰電
極)3の間に電圧を印加すると不活性ガス8とモノマー
ガス9はプラズマ状態となり、モノマーガス9プラズマ
は基体4上に重合膜として堆積する。
[0004] The operation of the plasma apparatus configured as described above will be described below. First, the base 4 is attached to the cathode (negative electrode) 3 serving as the base holder, and the inside of the vacuum chamber 1 and the discharge chamber 2 are pumped by the vacuum pump 5 to 1 × 10 −5.
Exhaust to about torr. Inert gas 8 and monomer gas 9
Is supplied to the discharge chamber 2, and a voltage is applied between the mesh-shaped anode (positive electrode) 7 and the cathode (negative electrode) 3 serving as a substrate holder by the DC power supply 6, whereby the inert gas 8 and the monomer gas 9 are in a plasma state. The plasma of the monomer gas 9 is deposited on the substrate 4 as a polymer film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、プラズマ状態のモノマーガス9は基体4
に堆積するだけでなく、放電室2の内壁やメッシュ状ア
ノード(陽電極)7にも堆積するため長時間放電を続け
ていると、放電室2の内壁やメッシュ状アノード(陽電
極)7に堆積した膜の厚みが増大し、剥離したものが基
体4上へと付着して不均一な膜となるといった問題点を
有していた。
However, in the above-mentioned conventional configuration, the monomer gas 9 in the plasma state is not
In addition to being deposited on the inner wall of the discharge chamber 2 and the mesh-shaped anode (positive electrode) 7, if the discharge is continued for a long time, the inner wall of the discharge chamber 2 and the mesh-shaped anode (positive electrode) 7 There is a problem that the thickness of the deposited film increases, and the separated film adheres to the substrate 4 to form a non-uniform film.

【0006】本発明は上記従来の問題点を解決するもの
で、長時間安定で均一な膜を提供するとともに、放電室
2内壁やアノード(陽電極)の清掃等の回数を大幅に低
減、または簡略化できることにより作業効率の改善を提
供することを目的とする。
The present invention solves the above-mentioned conventional problems, provides a stable and uniform film for a long time, and greatly reduces the number of times of cleaning the inner wall of the discharge chamber 2 and the anode (positive electrode). An object is to provide an improvement in work efficiency by being able to simplify.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明のプラズマ装置は、機密性を持つ放電室2内壁
とアノード(陽電極)が多孔率40〜98%の発泡状の
表面を有している。
In order to achieve this object, a plasma apparatus according to the present invention is characterized in that the inner wall of the discharge chamber 2 and the anode (positive electrode) have a foamed surface having a porosity of 40 to 98%. Have.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【作用】この構成によって、長時間処理により放電室2
内のモノマーガス9プラズマが放電室2内壁やアノード
(陽電極)に多量に付着しても表面積が大きいことで単
位面積当たりの付着量は低減される。また、表面が発泡
状で粗いことから付着物が連続膜とはならないため付着
物の剥離も防止できる。
With this configuration, the discharge chamber 2 can be operated for a long time.
Even if a large amount of plasma of the monomer gas 9 adheres to the inner wall of the discharge chamber 2 and the anode (positive electrode), the amount of adhesion per unit area is reduced due to the large surface area. In addition, since the surface is foamed and rough, the adhered substance does not form a continuous film, so that the adhered substance can be prevented from peeling off.

【0010】[0010]

【実施例】以下本発明の実施例について、プラズマCV
D法の場合を例にとって図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, plasma CV
The case of the method D will be described with reference to the drawings.

【0011】図1は本発明の実施例の断面図であり、1
0は発泡状金属、11は発泡状アノード(陽電極)であ
り、共に多孔率93%・厚さ5mmの板とし、発泡状金属
10は放電室2内壁に接合されている。
FIG. 1 is a sectional view of an embodiment of the present invention.
Numeral 0 is a foamed metal, and 11 is a foamed anode (positive electrode). Both plates are 93% in porosity and 5 mm in thickness. The foamed metal 10 is joined to the inner wall of the discharge chamber 2.

【0012】まず、基体ホルダーとなるカソード(陰電
極)3に基体4としてシリコンウエハを取り付け、真空
槽1内と放電室2内を真空ポンプ5(ロータリーポン
プ、ターボ分子ポンプ)により1×10-5torr程度まで
排気する。次に不活性ガス8としてアルゴンガスを放電
室2内の真空度が0.05torrになるように供給量を調
整する。アルゴンガスの供給量が決定したら供給を停止
し、次にモノマーガス9としてメタンガスを放電室2内
の真空度が0.1torrになるように供給量を調整する。
メタンガスの供給量が決定したらアルゴンガスを前記決
定の供給量供給し、放電室2内の真空度が安定するまで
5分程度待つ。真空度安定後直流電源6により発泡状ア
ノード(陽電極)11と基体ホルダとなるカソード(陰
電極)3の間に800Vの電圧を印加するとアルゴンガ
スとメタンガスがプラズマ状態となり、メタンガスはダ
イアモンドライクカーボン(DLC)となってシリコン
ウエハ上に堆積される。従来の構成でプラズマCVD処
理した場合はプラズマCVD処理4時間経過後から放電
室2内壁やメッシュ状アノード(陽電極)7から付着物
の剥離が確認され、プラズマCVD処理6時間経過後に
はシリコンウエハ上に欠落・付着していたが、本発明の
実施例では発泡状の表面の効果から、放電室2内壁と発
泡状アノード(陽電極)11の付着物許容量の増加と付
着物が連続膜化できないことにより、プラズマCVD処
理20時間経過後も放電室2内壁からの付着物の剥離は
皆無であった。更に、多孔率40〜98%・厚さ1〜1
5mmにしても同様の効果が得られた。また、発泡状金属
10の代わりに発泡状樹脂を用いても同様の結果が得ら
れた。
First, a silicon wafer is attached as a substrate 4 to a cathode (negative electrode) 3 serving as a substrate holder, and the inside of the vacuum chamber 1 and the discharge chamber 2 is 1 × 10 by a vacuum pump 5 (rotary pump, turbo molecular pump). Exhaust to about 5 torr. Next, the supply amount of the argon gas as the inert gas 8 is adjusted so that the degree of vacuum in the discharge chamber 2 becomes 0.05 torr. When the supply amount of the argon gas is determined, the supply is stopped, and then the supply amount of methane gas as the monomer gas 9 is adjusted so that the degree of vacuum in the discharge chamber 2 becomes 0.1 torr.
When the supply amount of the methane gas is determined, the supply amount of the argon gas is supplied as described above, and the process waits for about 5 minutes until the degree of vacuum in the discharge chamber 2 is stabilized. When a voltage of 800 V is applied between the foamed anode (positive electrode) 11 and the cathode (negative electrode) 3 serving as a substrate holder by the DC power supply 6 after the degree of vacuum is stabilized, argon gas and methane gas are in a plasma state, and methane gas is diamond-like carbon. (DLC) and deposited on a silicon wafer. When the plasma CVD process is performed in the conventional configuration, it is confirmed that the adhered substance is separated from the inner wall of the discharge chamber 2 and the mesh anode (positive electrode) 7 after the plasma CVD process has been performed for 4 hours, and the silicon wafer has been processed after the plasma CVD process has been performed for 6 hours. However, in the embodiment of the present invention, due to the effect of the foamed surface, the allowable amount of deposits on the inner wall of the discharge chamber 2 and the foamed anode (positive electrode) 11 is increased, and the deposits become continuous films. As a result, no adhered substance was peeled off from the inner wall of the discharge chamber 2 even after 20 hours of the plasma CVD treatment. Further, the porosity is 40 to 98% and the thickness is 1 to 1.
The same effect was obtained when the distance was 5 mm. Similar results were obtained when a foamed resin was used instead of the foamed metal 10.

【0013】多孔率が40%を下回ると孔径が小さくな
ることから、付着物許容量が低下するとともに付着物が
連続膜化するため、従来の構成と同等のプラズマCVD
処理時間で付着物の剥離・欠落が確認された。
When the porosity is less than 40%, the pore diameter becomes small, so that the allowable amount of the attached matter is reduced and the attached matter is formed into a continuous film.
It was confirmed that the adhered material was peeled or dropped during the treatment time.

【0014】多孔率が98%を上回ると機械強度・熱強
度が低下することから、長時間プラズマCVD処理を行
うと変形等を起こすために適さない。
If the porosity exceeds 98%, the mechanical strength and the thermal strength decrease, so that long-term plasma CVD treatment is not suitable for causing deformation and the like.

【0015】[0015]

【発明の効果】以上のように本発明は、放電室内壁とア
ノード(陽電極)が多孔率40〜98%の発泡状の表面
を有することで、長時間処理により放電室内のモノマー
ガスプラズマが放電室内壁やアノード(陽電極)に多量
に付着しても表面積が大きいことで単位面積当たりの付
着量は低減される。また、表面が発泡状で粗いことから
付着物が連続膜とはならないため、放電室内壁やアノー
ド(陽電極)の付着物の剥離も防止できるため、長時間
安定で均一な膜を提供するとともに、放電室内壁やアノ
ード(陽電極)の清掃を削減し、放電室内壁やアノード
(陽電極)の交換サイクルを長期間化できることにより
作業効率を改善できる優れたプラズマ装置を実現できる
ものである。
As described above, according to the present invention, since the inner wall of the discharge chamber and the anode (positive electrode) have a foamy surface having a porosity of 40 to 98%, the monomer gas plasma in the discharge chamber can be formed by a long-time treatment. Even if a large amount adheres to the inner wall of the discharge chamber or the anode (positive electrode), the amount of adhesion per unit area is reduced due to the large surface area. In addition, since the adhered material does not form a continuous film because the surface is foamy and rough, the adhered material on the inner wall of the discharge chamber and the anode (positive electrode) can be prevented from peeling off. In addition, it is possible to realize an excellent plasma device capable of improving the working efficiency by reducing the cleaning of the inner wall of the discharge chamber and the anode (positive electrode) and extending the replacement cycle of the inner wall of the discharge chamber and the anode (positive electrode).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で使用したプラズマ装置の断面
FIG. 1 is a sectional view of a plasma apparatus used in an embodiment of the present invention.

【図2】従来例で使用したプラズマ装置の断面図FIG. 2 is a cross-sectional view of a plasma device used in a conventional example.

【符号の説明】[Explanation of symbols]

1 真空槽 2 放電室 3 基体ホルダとなるカソード(陰電極) 4 基体 5 真空ポンプ 6 直流電源 7 メッシュ状アノード(陽電極) 8 不活性ガス 9 モノマーガス 10 発泡状金属 11 発泡状アノード(陽電極) DESCRIPTION OF SYMBOLS 1 Vacuum tank 2 Discharge chamber 3 Cathode (negative electrode) used as a base holder 4 Base 5 Vacuum pump 6 DC power supply 7 Mesh anode (positive electrode) 8 Inert gas 9 Monomer gas 10 Foamed metal 11 Foamed anode (positive electrode) )

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 16/00 - 16/56 C23F 1/00 - 4/04 C30B 25/00 - 25/22 H01L 21/205 H01L 21/3065 H01L 21/31 - 21/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 16/00-16/56 C23F 1/00-4/04 C30B 25 / 00-25/22 H01L 21/205 H01L 21/3065 H01L 21/31-21/32

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空中で基体上に膜を堆積する機密性を
持つ放電室を有するプラズマ装置において、前記放電室
内にある、電圧を印加する陽電極が多孔率40〜98%
の発泡状の金属であることを特徴とするプラズマ装置。
1. A plasma apparatus having a discharge chamber with the confidentiality of depositing a film on a substrate in a vacuum, the discharge chamber
The positive electrode to which voltage is applied has a porosity of 40 to 98%.
A plasma device characterized by being a foamed metal .
【請求項2】 前記放電室内壁に多孔率40〜98%の
発泡状の金属を接合する請求項1記載のプラズマ装置。
2. A plasma apparatus according to claim 1, wherein joining the foamed metal porosity from 40 to 98% in the discharge chamber wall.
【請求項3】 前記放電室内壁に多孔率40〜98%の
発泡状の樹脂を接合する請求項1記載のプラズマ装置。
3. A plasma apparatus according to claim 1, wherein joining said discharge chamber wall porosity from 40 to 98% of the foamed resin.
JP06080534A 1994-04-19 1994-04-19 Plasma equipment Expired - Lifetime JP3125572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06080534A JP3125572B2 (en) 1994-04-19 1994-04-19 Plasma equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06080534A JP3125572B2 (en) 1994-04-19 1994-04-19 Plasma equipment

Publications (2)

Publication Number Publication Date
JPH07286276A JPH07286276A (en) 1995-10-31
JP3125572B2 true JP3125572B2 (en) 2001-01-22

Family

ID=13721019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06080534A Expired - Lifetime JP3125572B2 (en) 1994-04-19 1994-04-19 Plasma equipment

Country Status (1)

Country Link
JP (1) JP3125572B2 (en)

Also Published As

Publication number Publication date
JPH07286276A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
JPH10500391A (en) Large, low pressure plasma ion deposition of diamond-like carbon films
JPH0153350B2 (en)
CN108977781B (en) Method for depositing W-N hard film on surface of hard alloy by magnetron sputtering composite technology
US5366579A (en) Industrial diamond coating and method of manufacturing
JPH07224379A (en) Sputtering method and device therefor
JPS59126779A (en) Method of roughening copper surface
JP2011162857A (en) Coating pretreatment method, diamond film coating method, and coating film removing method
CN100516286C (en) Method for hard coating thin film of generic diamond
US20020150695A1 (en) Method of forming a thin film
JP3125572B2 (en) Plasma equipment
JP3083008B2 (en) Film forming apparatus and film forming method
JP3836991B2 (en) Film forming method and magnetic recording medium manufacturing method
JPH06232043A (en) Plasma device
JPS6285430A (en) Plasma treatment and apparatus for the same
JP4202489B2 (en) Pulse discharge type DLC deposition system
JPS63162861A (en) Thin film deposition device
JP3930181B2 (en) CVD apparatus, film forming method, and magnetic recording medium manufacturing method
JP2007186772A (en) Film-forming method by gas-flow sputtering
JPS60147113A (en) Manufacture of silicon film
JPS6134931A (en) Manufacture of silicon film
JP3930184B2 (en) CVD apparatus and method for manufacturing magnetic recording medium
JP3180332B2 (en) Method of cleaning apparatus for forming carbon or carbon-based coating
JP3546588B2 (en) Microwave plasma generator and thin film manufacturing method
JPH06140342A (en) Method of cleaning plasma cvd device
JP2891991B1 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141102

Year of fee payment: 14

EXPY Cancellation because of completion of term