JP3124272B1 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3124272B1
JP3124272B1 JP34183399A JP34183399A JP3124272B1 JP 3124272 B1 JP3124272 B1 JP 3124272B1 JP 34183399 A JP34183399 A JP 34183399A JP 34183399 A JP34183399 A JP 34183399A JP 3124272 B1 JP3124272 B1 JP 3124272B1
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
silicon
negative electrode
material
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34183399A
Other languages
Japanese (ja)
Other versions
JP2001160392A (en )
Inventor
邦之 中西
忠 平林
鉄也 日下部
赤木  隆一
淳 鈴木
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

【要約】 【課題】 保存時の電池容量の低下のない保存安定性に優れた非水系二次電池を提供する。 The invention provides a nonaqueous secondary battery excellent in not storage stability decrease in battery capacity during storage. 【解決手段】集電体とその集電体上に形成されたケイ素と炭素との焼結体とから成り、ケイ素粒子を炭素質材料で被覆して、電解液とケイ素粒子との反応を抑制した負極を用いる。 Consist An collector and a sintered body with its silicon formed on the current collector and the carbon, the silicon particles are coated with carbonaceous material, suppress the reaction between the electrolyte and the silicon particles use a negative electrode was.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、ケイ素を活物質とする焼結体からなる負極を有する非水系二次電池に関する。 The present invention relates to relates to a nonaqueous secondary battery having a negative electrode made of a sintered body of silicon as an active material.

【0002】 [0002]

【従来の技術】携帯用電子機器の小型軽量化に伴い、より高エネルギー密度の二次電池が要望されている。 BACKGROUND ART Along with size and weight of portable electronic equipment, more secondary batteries having a high energy density has been demanded. 非水系二次電池の中でも、リチウム二次電池はかかる要望に応えるものとして期待されている。 Among the non-aqueous secondary battery, lithium secondary batteries are expected as to meet such demands. しかし、従来用いられている黒鉛等の炭素材料の負極活物質では要望されているエネルギー密度の達成が困難なことから、炭素材料に代えて、より高エネルギー密度を期待できるケイ素を負極活物質に用いることが検討されている。 However, the achievement of energy density has been desired in the negative electrode active material of carbon materials such as graphite have been used conventionally can be difficult, in place of the carbon material, the silicon can expect higher energy density negative electrode active material It has been considered to use.

【0003】例えば、特開平7−29602号公報には、ケイ素をリチウムイオン二次電池の負極活物質として用いることが開示されている。 [0003] For example, JP-A-7-29602, the use of silicon as a negative electrode active material of a lithium ion secondary battery is disclosed.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、ケイ素を負極活物質として電池を構成し、その電池を放電終了後放置すると、過放電状態になり、負極中のケイ素の溶出や、集電体、例えば、銅の溶出が始まり電池容量が低下するとともに、電池の寿命が短くなるという問題があのケイ素や集電体の溶出を抑制することにより、保存時の電池容量の低下のない保存安定性に優れた非水系二次電池を提供することを課題とした。 However [0007], silicon and a battery as a negative electrode active material, when the battery is left after the end of discharge, become over-discharged, elution and silicon in the negative electrode current collector, for example, , together with the elution of copper battery capacity starts decreases, a problem that the battery life is shortened by suppressing the elution of that silicon and the collector, excellent drop without storage stability of the battery capacity during storage it was an object to provide a nonaqueous secondary battery.

【0006】 [0006]

【課題を解決するための手段】本発明者らは、自己放電を抑制する研究の過程において、ケイ素を負極活物質とする負極を、アルキルカーボネートからなる溶媒とLi Means for Solving the Problems The present inventors have found that, in the course of suppressing study self-discharge, the negative electrode of silicon as a negative electrode active material, a solvent consisting of alkyl carbonates and Li
PF 6を電解質とする代表的な電解液に浸漬し、その電解液及び負極を分析したところ、ケイ素粒子と電解液の接触面積が増大すると、ケイ素とフッ素を含む化合物及びLiPF 6と溶媒との反応生成物が増加し、さらに、 Immersing the PF 6 Representative electrolyte to the electrolyte, was analyzed the electrolytic solution and the negative electrode, the contact area of the silicon particles and the electrolyte solution is increased, the compounds and LiPF 6 and a solvent containing silicon and fluorine the reaction product is increased, further,
ケイ素粒子と電解液との接触面積の大きい負極を用いた電池は保存安定性が良くないこと、及び負極活物質のケイ素又は集電体を炭素質材料で被覆した場合には、これらの反応が抑制され、保存安定性が良くなることを見出した。 The negative electrode using a battery having a large contact area between the silicon particles and the electrolyte solution is not good storage stability, and the anode active when silicon or current collector material is coated with the carbonaceous material, these reactions is suppressed, it was found that the storage stability is improved.

【0007】すなわち、本発明の非水系二次電池は、 Namely, the nonaqueous secondary battery of the present invention, Li
チウムイオンを吸蔵・放出可能な活物質を含む、正極と Including the absorbing and releasing active material capable of lithium ion, and the positive electrode
負極と、リチウムイオン導電性の電解液とを有する非水 A negative electrode, a nonaqueous having a lithium ion conductivity of the electrolyte
系二次電池であって、負極が、導電性金属から成り炭素 A system secondary battery, carbon and a negative electrode, a conductive metal
質材料で被覆された集電体と、集電体上に形成された、 A current collector coated with quality materials, are formed on the current collector,
負極活物質のケイ素と炭素質材料との焼結体と、から成 A sintered body of silicon and carbon material of the negative electrode active material, the adult
り、焼結体中のケイ素粒子が炭素質材料で被覆されて成 Ri, formed silicon particles in the sintered body is coated with a carbonaceous material
ことを特徴とする。 Characterized in that that.

【0008】上述のように、ケイ素粒子の露出した表面で、ケイ素と電解液が直接反応し、ケイ素とフッ素を含む化合物が生成し、さらに溶媒と電解質であるLiPF [0008] As described above, LiPF at the exposed surface of the silicon particles, reacts silicon with the electrolyte directly generates a compound containing silicon and fluorine, additionally with solvent electrolyte
6との反応が進行すると考えられる。 The reaction of the 6 is thought to proceed. そのため、電解液と直接接触するケイ素粒子の面積が大きいほど反応が進行する。 Therefore, the reaction the greater the area of ​​the silicon particles progresses in direct contact with the electrolyte. したがって、炭素質材料でケイ素粒子の表面を被覆することにより、ケイ素粒子表面における電解液との反応を抑制することができる。 Accordingly, by coating the surface of the silicon particles in the carbonaceous material, it is possible to suppress the reaction with the electrolyte solution in the silicon particle surface. そのため、不可逆な反応を抑制することができ、電池容量の低下を防止できる。 Therefore, it is possible to suppress the irreversible reaction, it is possible to prevent deterioration of the battery capacity. また、集電体の表面を、炭素質材料で被覆して、集 Further, the surface of the current collector, is coated with the carbonaceous material, collecting
電体と電解液との直接接触を抑制することにより、集電 By suppressing direct contact between collector and the electrolyte, current collectors
体の過放電時における溶出を抑制することができる。 It is possible to suppress the elution during overdischarge of the body.

【0009】また、本発明の非水系二次電池は、 上記負 [0009] The non-aqueous secondary battery of the present invention, the negative
極が、ケイ素粒子と、炭素質材料又は熱処理により炭素 Carbon electrode, and silicon particles, a carbonaceous material or a heat treatment
質材料になる有機材料とを含む塗膜を集電体上に形成 Forming a coating film containing an organic material made of quality material on a collector
し、塗膜と集電体とを、炭素質材料又は熱処理により炭 And, a coating film and the current collector, coal by carbonaceous material, or a heat treatment
素質材料になる有機材料とを含む塗液に浸漬又は集電体 Dipping or collector to a coating liquid containing an organic material to become quality material
に該塗液を塗布し、乾燥し、非酸化雰囲気で焼結して成る焼結体を負極として用いることができる。 In the coating solution and drying the coating, the sintered body formed by sintering in a non-oxidizing atmosphere can be used as a negative electrode.

【0010】 [0010]

【0011】 [0011]

【発明の実施の形態】本発明の非水系二次電池は、リチウム二次電池に好適に用いることができる。 Non-aqueous secondary battery of the embodiment of the present invention can be suitably used for a lithium secondary battery. 以下、リチウム二次電池について、本発明の実施の形態を詳細に説明する。 Hereinafter, the lithium secondary battery, an embodiment of the present invention in detail.

【0012】本発明に用いる負極には、原料粉末を成型して焼結した焼結体も用いることができるが、原料粉末を含む塗膜を焼結した焼結体を用いることが好ましい。 [0012] the negative electrode used in the present invention, a sintered body sintered by molding raw material powder may also be used but it is preferable to use a sintered body obtained by sintering a coating film containing the raw material powder.
例えば、負極には、以下の方法により作製したものを用いることができる。 For example, the negative electrode, there can be used those produced by the following method. すなわち、負極活物質であるケイ素粉末と炭素質材料又は熱処理により炭素質材料となる有機材料を溶剤に加えて塗液を調製し、その塗液を導電性金属からなる集電体上に塗布後、乾燥して溶剤を除去して塗膜を調製する。 That is, after applying an organic material for the carbonaceous material of silicon powder and a carbonaceous material or a heat treatment as the negative electrode active material coating solution was prepared by adding a solvent, on a current collector made of the coating liquid of a conductive metal and dried to remove the solvent to prepare a coating film. 次いで、この塗膜を非酸化雰囲気で焼結し、集電体と焼結体とが一体化した負極を得る。 Then, the coating was sintered in a non-oxidizing atmosphere to obtain a negative electrode current collector and the sintered body are integrated.

【0013】本発明に用いるケイ素粉末は、ケイ素単体の結晶質、非晶質のいずれも用いることができ、非酸化雰囲気での熱処理により分解又は還元されてケイ素に変化し得るケイ素化合物であっても良い。 The silicon powder used in the [0013] present invention, crystalline silicon simple substance, none of the amorphous can be used, a silicon compound decomposed or is reduced may change silicon by heat treatment in a non-oxidizing atmosphere it may be. ケイ素化合物としては、酸化ケイ素などの無機ケイ素化合物や、シリコーン樹脂、含ケイ素高分子化合物などの有機ケイ素化合物が挙げられる。 As the silicon compound, and an inorganic silicon compound such as silicon oxide, silicone resin, organosilicon compound, such as silicon-containing polymer compounds. これらの中でも、特にケイ素単体が好ましい。 Among these, especially silicon simple substance is preferable. ケイ素粉末の粒子径は特に限定されないが、電解液との接触面積を減らす観点から、さらには、操作性や原料価格、負極材料の均一性から、平均粒子径0.5 The particle size of the silicon powder is not particularly limited, from the viewpoint of reducing the contact area with the electrolyte, and further, operability and raw material prices, the uniformity of the anode material, the average particle size of 0.5
μm以上100μm以下のものを好ましく用いることができる。 Can be used preferably not less than 100μm or less [mu] m. 焼結体中のケイ素粒子は、炭素質材料で被覆されており、炭素質材料の連続相中にケイ素の分散相がある構造を有する。 Silicon particles in the sintered body is covered with the carbonaceous material has a structure in which there is a silicon dispersed phase in a continuous phase of a carbonaceous material. また、焼結体は、リチウムイオンを吸蔵・放出せず容量を持たないSiCやケイ素と集電体との反応物等のケイ素化合物を実質的に含まないことが好ましい。 Further, the sintered body preferably contains no silicon compound of the reaction product of SiC and silicon and the collector having no capacity without occluding and releasing lithium ions substantially.

【0014】本発明の負極に用いる炭素質材料としては、コ−クス、ガラス状炭素、黒鉛及びピッチの炭化物及びこれらの混合物等が挙げられる。 [0014] carbonaceous material used for the negative electrode of the present invention, co - box, glassy carbon, carbides and mixtures of these graphite and pitch, and the like. また、熱処理で炭素質材料になる有機材料としては、フェノ−ル樹脂、フェノールホルムアルデヒド樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フラン樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂等の熱硬化性樹脂、 The organic materials comprising carbonaceous material by heat treatment, phenol - Le resins, phenol formaldehyde resins, epoxy resins, unsaturated polyester resins, furan resins, urea resins, melamine resins, alkyd resins, thermosetting, such as xylene resin resin,
ナフタレン、アセナフチレン、フェナントレン、アントラセン、トリフェニレン、ピレン、クリセン、ナフタセン、ピセン、ペリレン、ペンタフェン、ペンタセン等の縮合系多環炭化水素化合物又はその誘導体、あるいはその混合物を主成分とするピッチ等が挙げられるが、フェノールホルムアルデヒド樹脂又はキシレン樹脂が好ましい。 Naphthalene, acenaphthylene, phenanthrene, anthracene, triphenylene, pyrene, chrysene, naphthacene, picene, perylene, pentaphene, but condensed polycyclic hydrocarbon compound or its derivative such as pentacene or pitch or the like as a main component a mixture thereof, and the like , phenol-formaldehyde resin or xylene resin.

【0015】また、原料粉末を含む塗膜を集電体上に形成し、非酸化性雰囲気で焼結させて負極を調製する場合、焼成温度は、SiCやケイ素と集電体との反応物等のケイ素化合物の生成を抑制するため1400℃以下で、かつ、ケイ素と集電体との反応を抑制するため用いる集電体の融点以下が望ましく、例えば、集電体に銅を用いる場合には、銅の融点1083℃以下、より好ましくは700〜850℃である。 Further, a coating film containing the raw material powder is formed on the current collector, if sintered at a non-oxidizing atmosphere to prepare a negative electrode, the firing temperature, the reaction product of SiC and silicon and the current collector generating at 1400 ° C. or less for suppressing the silicon compounds such as and, less preferably the melting point of the current collector used for suppressing the reaction between the silicon and the collector, for example, in the case of using a copper current collector It has a melting point 1083 ° C. of copper or less, more preferably 700-850 ° C..

【0016】さらに、負極を調製する際に、以下の方法を用いることができる。 Furthermore, in preparing the negative electrode, it is possible to use the following method. すなわち、塗膜を集電体上に形成した後、塗膜と集電体とを一緒に、炭素質材料又は熱処理により炭素質材料となる有機材料を含む塗液に浸漬し、あるいは集電体にその塗液を塗布し、乾燥して溶剤を除去して塗膜を調製する。 That is, after forming a coating film on the current collector, together with the coating film and the current collector was immersed in a coating solution containing an organic material as a carbonaceous material by carbonaceous material, or heat treatment, or the current collector the coating liquid was coated and dried to remove the solvent to prepare a coating film. 次いで、この塗膜と集電体とを非酸化雰囲気で焼結することにより、集電体を炭素質材料で被覆することができる。 Then, by sintering the coated film and the current collector in a non-oxidizing atmosphere, it is possible to coat the current collector with the carbonaceous material. これにより、集電体と電解液との接触が抑制されるため、集電体金属の溶出反応の進行を抑制することができる。 Thus, the contact of the current collector and the electrolyte solution is prevented, it is possible to suppress the progress of the elution reaction of the current collector metal.

【0017】また、本発明に用いる正極には正極活物質として、従来公知の何れの材料も使用でき、例えば、L Further, as the positive electrode active material for the positive electrode used in the present invention, it can be used any conventionally known material, eg, L
x CoO 2 ,Li x NiO 2 ,MnO 2 ,LiMnO 2 ,L i x CoO 2, Li x NiO 2, MnO 2, LiMnO 2, L
x Mn 24 ,Li x Mn 2-y4 ,α−V 25 ,TiS 2 i x Mn 2 O 4, Li x Mn 2-y O 4, α-V 2 O 5, TiS 2
等を用いることができる。 Or the like can be used.

【0018】また、本発明に用いる非水電解質としては、エチレンカーボネート、ジメチルカーボネート等の有機溶媒に電解質としてLiPF 6等のリチウム化合物を溶解させた非水電解液、又は高分子にリチウム化合物を固溶或いはリチウム化合物を溶解させた有機溶媒を保持させた高分子固体電解質を用いることができる。 [0018] As the non-aqueous electrolyte used in the present invention, ethylene carbonate, the nonaqueous electrolyte solution in an organic solvent by dissolving a lithium compound such as LiPF 6 as an electrolyte, such as dimethyl carbonate, or a solid lithium compound to the polymer soluble or organic solvent dissolving the lithium compound can be used a polymer solid electrolyte obtained by holding the.

【0019】 [0019]

【実施例】実施例1. EXAMPLE 1. (1)負極の調製 市販のケイ素粉〔高純度化学製99.9%品、平均粒子径約1μm〕70gを3%のピッチ含有トルエン溶液1 (1) anode Preparation commercial silicon powder [Wako Pure Chemical Industries, Ltd. 99.9% product, average particle diameter of about 1μm] 70g of 3% of the pitch-containing toluene solution 1
00gに含浸して乾燥後、窒素雰囲気で、1100℃で3時間焼成することにより、ケイ素粉の表面を炭素皮膜で覆った。 After impregnation and drying to 200 g, in a nitrogen atmosphere, followed by firing for 3 hours at 1100 ° C., covered the surface of the silicon powder with a carbon film. この炭素被覆ケイ素粉と天然黒鉛(関西熱化学製NG2、平均粒子径約2μm)20gをフェノールホルムアルデヒド樹脂のn-メチル-2-ピロリドン(N The carbon coating silicon powder and natural graphite (Kansai Coke and Chemical Co. NG2, average particle diameter of about 2 [mu] m) and 20g of phenol formaldehyde resin n- methyl-2-pyrrolidone (N
MP)溶液(20%溶液)200gと混合して、振動ミルで30分間均一分散して塗液を調製した。 Mixed with MP) solution (20% solution) 200 g, to prepare a coating solution and uniformly dispersed for 30 minutes by a vibration mill. この塗液を厚さ40μmの銅箔上にギャップ450μmのアプリケータを用いて塗布し、90℃で30分間乾燥してから、 The coating solution was applied using an applicator gap 450μm on a copper foil having a thickness of 40μm and after dried for 30 minutes at 90 ° C.,
19φに打ち抜いて1.5×10 8 Paでプレスした。 Was pressed at 1.5 × 10 8 Pa punched into a 19φ.
次いで、窒素雰囲気、850℃で3時間焼成を行った。 Next, a nitrogen atmosphere, for 3 hours at 850 ℃ were carried out.
このようにして厚さ150μm、密度1.3g/cm 3 In this way, the thickness of 150 [mu] m, density 1.3 g / cm 3
の負極を調製した。 The negative pole of was prepared.

【0020】(2)正極の調製 炭酸リチウムと炭酸コバルトをモル比1:1で秤量して、イソプロピルアルコールを溶媒としてボールミルで均一に湿式混合したものを乾燥し、800℃で5時間仮焼したものを振動ミルにて粉砕した。 [0020] (2) the molar ratio of the prepared lithium carbonate and cobalt carbonate of the positive electrode 1: weighed 1, isopropyl alcohol and dried those homogeneously wet-mixed in a ball mill as a solvent, and calcined for 5 hours at 800 ° C. things were pulverized by a vibration mill. 次いで、この粉末を1.3×10 8 Paでプレスし、900℃で10時間焼成することにより厚さ300μm、密度3.0g/c Then, the powder was pressed at 1.3 × 10 8 Pa, a thickness of 300μm by baking at 900 ° C. 10 hours, density 3.0 g / c
3 、19φのLiCoO 2ペレットを調製し、このペレットを正極とした。 m 3, to prepare a LiCoO 2 pellets 19Fai, and the pellet as a positive electrode.

【0021】(3)電池の作製 両極間にセパレータを挟んで、電解液はエチレンカーボネート/ジメチルカーボネート=1:1(体積比)、電解質は1M LiPF 6のものを用いて電池を作製した。 [0021] (3) across the separator between making both electrodes of the battery, the electrolyte of ethylene carbonate / dimethyl carbonate = 1: 1 (volume ratio), electrolyte battery was prepared using those 1M LiPF 6.

【0022】(4)サイクル試験 電池を作製し、1日放置して、3mAの定電流で充電終止電圧4.1Vと放電終止電圧2.0Vの間で充放電を1回繰り返した後、充電終止電圧4.1Vまで10mA [0022] (4) to produce a cycle test cell, and left for one day, after the charge and discharge was repeated once between the charge end voltage 4.1V and discharge cutoff voltage 2.0V at 3mA of constant current charge 10mA to the final voltage of 4.1V
の定電流定電圧充電を行い、放電終止電圧2.0Vまで8mAで定電流放電を行うサイクル試験を10回繰り返した後、放電状態で電池を30日間、室温で保存した。 Of a constant current constant voltage charging, after repeating 10 times the cycle test which performs constant current discharge at 8mA to a discharge end voltage 2.0 V, 30 days a battery in a discharged state, and stored at room temperature.
サイクル試験の1回目の電池容量値を初期容量値とし、 The first battery capacity value of the cycle test as an initial capacity value,
その初期容量値に対する30日間保存後の電池容量値の割合を容量保持率(%)とした。 And the percentage of battery capacity after storage for 30 days for the initial capacity value capacity retention rate (%). ここで、過放電状態での保存安定性を調べるため、充放電の電圧範囲を通常の4.1V〜2.5Vから、放電終止電位をより低くし、 Here, in order to examine the storage stability of the over-discharge state, the voltage range of the charge and discharge from the normal 4.1V~2.5V, the discharge cutoff potential was lower,
4.1V〜2.0Vとした。 Was 4.1V~2.0V.

【0023】(5)分析 負極のケイ素粒子が炭素質材料で被覆されているか否かは、X線光電子分光分析装置(ESCA)により、負極の表面元素を分析することにより判定した。 [0023] (5) Analysis anode of silicon particles whether or not coated with carbonaceous material, by X-ray photoelectron spectrometer (ESCA), was determined by analyzing the surface element of the anode. また、電解液の分解の有無については、負極を電解液に所定時間浸漬した後、電解液をガスクロマトグラフ質量分析計(G Also, the presence or absence of decomposition of the electrolytic solution, was dipped for a predetermined time negative electrode to the electrolyte, a gas chromatograph mass spectrometer electrolyte (G
C−MS)により分析して判定した。 It was determined and analyzed by C-MS).

【0024】また、電池内における短絡の有無は、充電時における電圧あるいは電流プロファイルの乱れにより調べた。 Further, the presence or absence of a short circuit in the battery was examined by disturbance of voltage or current profile during charging. 以上の測定結果及び判定結果を表1に示す。 Table 1 shows the above measurement results and determination results.

【0025】実施例2. [0025] Example 2. 以下に示す方法により負極を調製した。 A negative electrode has been prepared by the following method. 市販のケイ素粉(高純度化学製99.9%品、 Commercially available silicon powder (high purity Chemical Co., Ltd. 99.9% product,
平均粒子径約1μm)70gと天然黒鉛(関西熱化学製NG2、平均粒子径約2μm)20gをフェノールホルムアルデヒド樹脂のNMP溶液200gと混合し、振動ミルで30分間分散して塗液を調製した。 The average particle diameter of about 1 [mu] m) 70 g natural graphite (Kansai Coke and Chemical Co. NG2, average particle size of about 2 [mu] m) 20 g was mixed with NMP solution 200g of phenol formaldehyde resin, a coating solution was prepared by dispersing 30 minutes at a vibration mill. この塗液を厚さ40μmの銅箔に塗布し、90℃で30分乾燥してから、19φに打ち抜いて1.5×10 8 Paでプレスした。 The coating solution was coated on a copper foil having a thickness of 40 [mu] m, after drying for 30 minutes at 90 ° C., was pressed at 1.5 × 10 8 Pa punched into 19Fai. これを3%のピッチ含有トルエン溶液に含浸して乾燥後、窒素雰囲気下で850℃で3時間焼成を行った。 After drying the impregnated this to 3% of the pitch-containing toluene solution, it was carried out for 3 hours at 850 ° C. under a nitrogen atmosphere.
このようにして活物質を担持する銅箔を炭素質材料で覆った厚さ150μm、密度1.4g/cm 3の負極を調製した。 In this way, the thickness of 150μm covering the copper foil carrying the active material in the carbonaceous material to prepare a negative electrode of a density 1.4 g / cm 3. その他は実施例1と同様に行った。 Others were performed in the same manner as in Example 1. 結果を表1 The results in Table 1
に示す。 To show.

【0026】実施例3. [0026] Example 3. 平均粒子径が0.5μmのケイ素粉を用いて負極を調製した以外は、実施例1と同様に行なった。 Except that the average particle diameter of a negative electrode has been prepared by using silicon powder 0.5μm was carried out in the same manner as in Example 1. 結果を表1に示す。 The results are shown in Table 1.

【0027】比較例1. [0027] Comparative Example 1. 以下に示す方法により負極を調製した。 A negative electrode has been prepared by the following method. 市販のケイ素粉〔高純度化学製99.9%品、 Commercially available silicon powder [high purity Chemical Co., Ltd. 99.9% product,
平均粒子径約1μm〕70gと天然黒鉛(関西熱化学製NG2、平均粒子径約2μm)20gをフェノールホルムアルデヒド樹脂のNMP溶液(20%溶液)200g The average particle diameter of about 1μm] 70g natural graphite (Kansai Coke and Chemical Co. NG2, average particle diameter of about 2 [mu] m) NMP solution (20% solution) of 20g phenol-formaldehyde resin 200g
と混合して、振動ミルで30分間均一分散して塗液を調製した。 Mixed with, to prepare a coating solution for 30 minutes uniformly dispersed in a vibration mill. この塗液を厚さ40μmの銅箔上にギャップ4 Gap The coating solution on a copper foil having a thickness of 40 [mu] m 4
50μmのアプリケータを用いて塗布し、90℃で30 It was applied using an applicator 50 [mu] m, 30 at 90 ° C.
分間乾燥してから、19φに打ち抜いて1.5×10 8 Minutes dried after, 1.5 × 10 8 punched into 19φ
Paでプレスした。 It was pressed in Pa. これを、焼成せずに、そのまま負極とした。 This, without firing, and as it is negative. その他は、実施例1と同様に行った。 Others were performed in the same manner as in Example 1. 結果を表1に示す。 The results are shown in Table 1.

【0028】比較例2. [0028] Comparative Example 2. 平均粒子径が0.3μmのケイ素粉を用いた以外は、実施例1と同様に行った。 Except that the average particle diameter using silicon powder 0.3 [mu] m, was carried out as in Example 1. 結果を表1に示す。 The results are shown in Table 1.

【0029】比較例3. [0029] Comparative Example 3. 平均粒子径が0.3μmのケイ素粉を用いた以外は、比較例1と同様に行った。 Except that the average particle diameter using silicon powder 0.3 [mu] m, was carried out in the same manner as in Comparative Example 1. 結果を表1に示す。 The results are shown in Table 1.

【0030】比較例4. [0030] Comparative Example 4. 負極の塗膜の焼成温度を150 The firing temperature of the negative electrode coating 150
0℃とした以外は、実施例1と同様の方法で電池を組み立て、サイクル試験を行なった。 Except that the 0 ℃ is assembled into a battery in the same manner as in Example 1 were subjected to cycle test. 負極の色が焼成により灰色に変化したことから、ケイ素化合物の生成を確認した。 Colors of the negative electrode because it has changed to gray by calcination, confirmed the formation of the silicon compound. 一方、実施例1,2,3、そして比較例1〜3の場合、焼成後の負極は黒色であり、ケイ素化合物が生成していないことを確認した。 On the other hand, in the case of Examples 1, 2 and 3 and Comparative Examples 1 to 3, the negative electrode after firing is black, it was confirmed that the silicon compound is not generated. また、負極の裏面(銅箔面) Further, the rear surface of the negative electrode (copper foil surface)
の灰色に変色した部分をX線回折により分析したところ、CuとSiからなる化合物に帰属されるピークが認められたことから、ケイ素と集電体の銅箔も反応したと考えられる。 When a discolored portion gray were analyzed by X-ray diffraction, since the peak was observed which is attributed to compounds of Cu and Si, the copper foil of silicon and the current collector is also considered to have reacted. この負極を用いた電池の充放電容量は非常に小さい値であった。 Discharge capacity of the battery using the negative electrode was extremely small value. 結果を表1に示す。 The results are shown in Table 1.

【0031】ESCAによる分析より、実施例1,2, [0031] than the analysis by ESCA, Examples 1 and 2,
3、そして比較例2はケイ素粒子が負極の表面に露出しておらず、炭素質材料で被覆されていることが確認できた。 3, and Comparative Example 2 is not exposed on the surface of the silicon particles negative electrode, it was confirmed that it is coated with the carbonaceous material. そして、実施例1は比較例1に比べ、初期容量及び容量保存率が大きく向上した。 Then, Example 1 is compared with Comparative Example 1, the initial capacitance and the capacitance storage ratio is improved significantly. さらに、集電体を炭素質材料で被覆することにより(実施例2)、より容量保持率が向上した。 Furthermore, (Example 2) by coating the current collector with the carbonaceous material, more capacity retention was improved.

【0032】また、比較例1の電極を浸漬した電解液をGC−MSで分析したところ、溶媒のジメチルカーボネートと電解質のLiPF 6とがケイ素表面で反応して生成したジフルオロリン酸メチルが検出された。 Further, when the soaked electrolyte electrode of Comparative Example 1 was analyzed by GC-MS, difluorophosphate methyl and dimethyl carbonate solvent and LiPF 6 electrolyte was produced by the reaction with silicon surface is detected It was. さらに、 further,
浸漬した電極をESCAで分析したところ、構造は明らかではないが、ケイ素とフッ素を含む化合物が検出され、ケイ素粒子が電解液と直接反応することを確認できた。 When the immersed electrodes was analyzed by ESCA, but the structure is not clear, it is detected compound containing silicon and fluorine, silicon particles was confirmed to be capable of reacting directly with the electrolyte.

【0033】また、原料に粒子径が0.3μmのケイ素粉を用いた比較例2は、1μmのケイ素粉を用いた実施例1に比べ、正極及び負極が短絡する割合が増加した。 Further, Comparative Example 2 having a particle diameter in the raw material using silicon powder 0.3μm, compared to Example 1 using the silicon powder of 1 [mu] m, the proportion of positive and negative electrodes are short-circuited is increased.
さらに、ケイ素が炭素質材料で被覆されていない比較例3では、溶媒と電解質のLiPF 6との反応生成物が検出され、初期容量も容量保持率も低下した。 In Comparative Example 3 silicon not coated with carbonaceous material, the reaction products of LiPF 6 in a solvent and an electrolyte are detected, the initial capacity capacity retention ratio was also decreased. 原料のケイ素粉末の粒子径が小さいと電解液との接触面積が増加し、電解液との反応が進行し易くなるだけでなく、セパレータを貫通し易いためと考えられる。 And the contact area increases with particle size of silicon powder in the raw material is small and the electrolyte solution, not only the reaction with the electrolyte liquid is likely to proceed, probably because easily penetrate the separator.

【0034】 [0034]

【表1】 [Table 1]

【0035】 [0035]

【発明の効果】以上、述べたように、本発明の非水系二次電池は、負極が負極活物質のケイ素と炭素との焼結体であって、ケイ素粒子が炭素質材料で被覆されているので、ケイ素と電解液との反応を抑制でき、電池の保存安定性を向上させることができる。 Effect of the Invention] Thus, as noted, the nonaqueous secondary battery of the present invention is a sintered body of silicon and carbon in the negative electrode is the negative electrode active material, silicon particles are coated with carbonaceous material because there can suppress the reaction between silicon and the electrolyte, it is possible to improve the storage stability of the battery.

【0036】また、本発明の非水系二次電池は、ケイ素粒子と炭素質材料又は熱処理により炭素質材料になる有機材料を含む塗膜を集電体上に形成し、非酸化性雰囲気で焼結して調製された負極を用いるので、ケイ素粒子を炭素質材料で容易に被覆することができる。 Further, the nonaqueous secondary battery of the present invention, a coating film containing an organic material which becomes carbonaceous material formed on a current collector by silicon particles and carbonaceous material or heat treatment, baked in a non-oxidizing atmosphere since use of binding and negative electrode were prepared, the silicon particles can be easily coated with the carbonaceous material.

【0037】また、本発明の非水系二次電池は、集電体を炭素質材料で被覆したので、過放電時における集電体の溶出を抑制できるため、電池の保存安定性をさらに向上させることができる。 Further, the nonaqueous secondary battery of the present invention, since the coated current collector with the carbonaceous material, it is possible to suppress the elution of the current collector during overdischarge, further improve the storage stability of the battery be able to.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 淳 和歌山県和歌山市湊1334番地 花王株式 会社研究所内 (72)発明者 平林 忠 和歌山県和歌山市湊1334番地 花王株式 会社研究所内 (56)参考文献 特開 平2−215043(JP,A) 特開 平11−40158(JP,A) 特開 平10−321226(JP,A) 特開 平8−213012(JP,A) 特開 平6−279112(JP,A) 特開 平11−297311(JP,A) 特開 平11−135120(JP,A) 特開 平8−236104(JP,A) 特開 平5−270938(JP,A) 特開 平5−286763(JP,A) 特開 平8−231273(JP,A) 特開 平7−315822(JP,A) 特開 平8−40716(JP,A) 特開 平6−96759(JP,A) 特開2000−36323(JP,A) 国際公開98/24135(W ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Suzuki, Atsushi Wakayama Prefecture Wakayama Minato 1334 address Kao stock company within the Institute (72) inventor Wakayama Prefecture Wakayama Tadashi Hirabayashi Minato 1334 address Kao stock company within the Institute (56) references Patent Rights 2-215043 (JP, A) Patent Rights 11-40158 (JP, A) Patent Rights 10-321226 (JP, A) Patent Rights 8-213012 (JP, A) Patent Rights 6-279112 (JP, A) Patent Rights 11-297311 (JP, A) Patent Rights 11-135120 (JP, A) Patent Rights 8-236104 (JP, A) Patent Rights 5-270938 (JP, A) JP open flat 5-286763 (JP, A) Patent Rights 8-231273 (JP, A) Patent Rights 7-315822 (JP, A) Patent Rights 8-40716 (JP, A) Patent Rights 6-96759 ( JP, A) JP-2000-36323 (JP, A) WO 98/24135 (W O,A1) (58)調査した分野(Int.Cl. 7 ,DB名) H01M 4/02 - 4/04 H01M 4/38 - 4/62 H01M 10/40 O, A1) (58) investigated the field (Int.Cl. 7, DB name) H01M 4/02 - 4/04 H01M 4/38 - 4/62 H01M 10/40

Claims (2)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 リチウムイオンを吸蔵・放出可能な活物質を含む、正極と負極と、リチウムイオン導電性の電解液とを有する非水系二次電池であって、 負極が、 導電性金属から成り炭素質材料で被覆された集電体と、 集電体上に形成された、負極活物質のケイ素と炭素質材料との焼結体と、から成り、 焼結体中のケイ素粒子が炭素質材料で被覆されて成る非水系二次電池。 1. A containing lithium ions capable of absorbing and releasing active material, a positive electrode and the negative electrode, a nonaqueous secondary battery having a lithium ion conductivity of the electrolyte, the negative electrode is made of a conductive metal a carbonaceous material coated with current collector was formed on the current collector, a sintered body of silicon of the negative electrode active material and the carbonaceous material consists of, silicon particles carbonaceous in the sintered body nonaqueous secondary battery comprising coated with a material.
  2. 【請求項2】 上記負極が、ケイ素粒子と、炭素質材料又は熱処理により炭素質材料になる有機材料とを含む塗膜を集電体上に形成し、塗膜と集電体とを、炭素質材料又は熱処理により炭素質材料になる有機材料とを含む塗液に浸漬又は集電体に該塗液を塗布し、乾燥し、非酸化雰囲気で焼結して成る請求項1記載の非水系二次電池。 Wherein said negative electrode, and silicon particles, a coating film containing an organic material which becomes carbonaceous material formed on a current collector by carbonaceous material, or a heat treatment, a coating film and the current collector, the carbon quality material or a coating liquid to the immersion or the current collector coating solution containing an organic material which becomes carbonaceous material is applied by thermal treatment, drying, and non-aqueous made by sintering according to claim 1 in a non-oxidizing atmosphere secondary battery. 雰囲気で焼結して成る請求項の非水系二次電池。 Non-aqueous secondary battery of claim made by sintering in an atmosphere.
JP34183399A 1999-12-01 1999-12-01 Non-aqueous secondary battery Expired - Fee Related JP3124272B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34183399A JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34183399A JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP3124272B1 true JP3124272B1 (en) 2001-01-15
JP2001160392A true JP2001160392A (en) 2001-06-12

Family

ID=18349113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34183399A Expired - Fee Related JP3124272B1 (en) 1999-12-01 1999-12-01 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3124272B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
KR101107041B1 (en) 2002-05-08 2012-01-25 가부시키가이샤 지에스 유아사 Nonaqueous electrolyte secondary cell
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Non-aqueous electrolyte secondary battery
JP4025995B2 (en) 2002-11-26 2007-12-26 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material and a method for manufacturing the same, and a lithium ion secondary battery
JP2005149786A (en) * 2003-11-12 2005-06-09 Sanyo Electric Co Ltd Lithium secondary battery and its manufacturing method
JP4497904B2 (en) * 2003-12-04 2010-07-07 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4744076B2 (en) * 2003-12-09 2011-08-10 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
JP4747514B2 (en) * 2004-05-31 2011-08-17 パナソニック株式会社 Method for producing a negative electrode for a lithium ion secondary battery
JP5230904B2 (en) * 2005-06-17 2013-07-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery
JP5099831B2 (en) * 2005-06-30 2012-12-19 昭和電工株式会社 The method for producing a solid electrolytic capacitor
KR101483123B1 (en) * 2006-05-09 2015-01-16 삼성에스디아이 주식회사 Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
JP5348878B2 (en) * 2007-02-21 2013-11-20 Jfeケミカル株式会社 Anode material and a manufacturing method thereof for a lithium ion secondary battery, negative electrode and a lithium ion secondary battery for a lithium ion secondary battery
RU2011131045A (en) 2008-12-26 2013-02-10 Секисуй Кемикал Ко., Лтд. The process for producing the carbon particles to the electrode, carbon particles for an electrode and a negative electrode material for lithium-ion secondary battery
DE102009033739A1 (en) * 2009-07-17 2011-01-27 Evonik Degussa Gmbh Nanostructured silicon-carbon composites for battery electrodes
JP5369031B2 (en) * 2009-08-11 2013-12-18 積水化学工業株式会社 Carbon material, the electrode material and a lithium ion secondary battery negative electrode material
JP2016515993A (en) * 2013-03-13 2016-06-02 エネヴェート・コーポレーション Silicon particles for a battery electrode
JP5970752B2 (en) * 2011-07-04 2016-08-17 日本電気株式会社 Method of manufacturing a secondary battery
US9991510B2 (en) 2012-07-06 2018-06-05 Toray Industries, Inc. Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808919B2 (en) 2008-12-01 2014-08-19 Samsung Sdi Co., Ltd. Negative electrode active material, negative electrode having the same and lithium secondary battery

Also Published As

Publication number Publication date Type
JP2001160392A (en) 2001-06-12 application

Similar Documents

Publication Publication Date Title
US6413672B1 (en) Lithium secondary cell and method for manufacturing the same
US20040202934A1 (en) Li4Ti5O12, Li(4-alpha)Zalpha Ti5O12 or Li4ZbetaTi(5-beta)O12 particles, processes for obtaining same and use as electrochemical generators
US6756155B1 (en) Positive active material for rechargeable lithium batteries and method of preparing same
US20090155694A1 (en) Cathode and lithium battery using the same
US5284722A (en) Non-aqueous electrolyte secondary battery
US20020106561A1 (en) Positive electrode for a lithium-sulfur battery and a lithium-sulfur battery including the positive electrode
US20030073000A1 (en) Positive active material and positive active material composition for lithium-sulfur battery and method of preparing positive active material composition
Schneider et al. Influence of different electrode compositions and binder materials on the performance of lithium–sulfur batteries
WO2007044315A1 (en) Method of using an electrochemical cell
JPH11135115A (en) Negative electrode material for nonaqueous secondary battery and its manufacture
WO2007094240A1 (en) Electroconductive composite particles, process for producing the electroconductive composite particles, and electrode plate and lithium ion rechargeable battery using the electroconductive composite particles
Zu et al. Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes
JP2002216751A (en) Composite material for lithium secondary battery negative electrode and lithium secondary battery
JP2008210618A (en) Nonaqueous electrolyte secondary battery
EP1011160A1 (en) Method of manufacturing secondary battery negative electrode
JP2007165108A (en) Nonaqueous electrolyte secondary battery
JP2005135872A (en) Electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery using it
JP2007329001A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous secondary battery using it
Ding et al. Enhanced performance of graphite anode materials by AlF 3 coating for lithium-ion batteries
US20090311606A1 (en) Negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
JP2000215887A (en) Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2011113862A (en) Nonaqueous secondary battery and method of manufacturing the same
CN1428880A (en) Conductive silicon oxide powder, its mfg. method and negative electrode material of nonaqueous electrolyte secodary battery
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
US20100009261A1 (en) Negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees