JP3121863B2 - Method for producing Bi-based oxide superconducting conductor by melting method - Google Patents

Method for producing Bi-based oxide superconducting conductor by melting method

Info

Publication number
JP3121863B2
JP3121863B2 JP03177232A JP17723291A JP3121863B2 JP 3121863 B2 JP3121863 B2 JP 3121863B2 JP 03177232 A JP03177232 A JP 03177232A JP 17723291 A JP17723291 A JP 17723291A JP 3121863 B2 JP3121863 B2 JP 3121863B2
Authority
JP
Japan
Prior art keywords
layer
solidified
oxide superconducting
raw material
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03177232A
Other languages
Japanese (ja)
Other versions
JPH052934A (en
Inventor
篤 久米
和彦 友松
伸行 定方
英雄 石井
築志 原
隆彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP03177232A priority Critical patent/JP3121863B2/en
Publication of JPH052934A publication Critical patent/JPH052934A/en
Application granted granted Critical
Publication of JP3121863B2 publication Critical patent/JP3121863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は溶融法を用いたBi系酸
化物超電導導体の製造方法に関するもので、溶融凝固後
の超電導相の配向性向上と生成割合の向上、並びに、超
電導層の厚さの均一性を向上させ得る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a Bi-based oxide superconducting conductor using a melting method, and relates to an improvement in the orientation and formation ratio of a superconducting phase after fusion and solidification, and an improvement in the thickness of a superconducting layer. The present invention relates to a method capable of improving the uniformity of the height.

【0002】[0002]

【従来の技術】従来、テープ状の基材の上面にBi系の
酸化物超電導層を備えてなる超電導導体の製造方法の一
例として、図6を基に以下に説明する方法が知られてい
る。この方法では、まず、Niなどの金属テープ1を用
意し、この金属テープ1の上面にBi系の酸化物超電導
体を構成する元素の原料粉末層2を形成する。次に前記
金属テープ1の上方からレーザビームを照射して混合粉
末層2の一部微小領域のみを加熱溶融させて溶融帯3を
形成する。そしてこの状態で基材1を一定速度で長手方
向に移動させ、微小な溶融帯3を徐々に移動させること
で基材1の長手方向の全体の混合粉末層2を熱処理する
ことができ、これにより酸化物超電導層4を備えた酸化
物超電導導体5を製造していた。
2. Description of the Related Art Conventionally, a method described below with reference to FIG. 6 has been known as an example of a method for manufacturing a superconducting conductor having a Bi-based oxide superconducting layer provided on an upper surface of a tape-shaped substrate. . In this method, first, a metal tape 1 of Ni or the like is prepared, and a raw material powder layer 2 of an element constituting a Bi-based oxide superconductor is formed on the upper surface of the metal tape 1. Next, a laser beam is irradiated from above the metal tape 1 to heat and melt only a part of a small area of the mixed powder layer 2 to form a fusion zone 3. In this state, the base material 1 is moved in the longitudinal direction at a constant speed, and the entire molten powder layer 2 in the longitudinal direction of the base material 1 can be heat-treated by gradually moving the minute molten zone 3. Has produced the oxide superconducting conductor 5 having the oxide superconducting layer 4.

【0003】[0003]

【発明が解決しようとする課題】前記の方法で酸化物超
電導導体5を製造する場合、基材1が移動しているの
で、微小な溶融帯3においては、混合粉末層2の供給と
この層の溶融と溶融した部分の凝固の3つの現象が同時
に進行していることになる。このような微小領域におい
て3つの現象が進行している状態では、レーザービーム
のパワーに若干のゆらぎが発生しても3つの現象のバラ
ンスが崩れるおそれが高い。そうすると、一定の基材移
動速度を維持していても、溶融部分の量が変化し、その
ために凝固する部分の厚さが不均一になり、結晶配向性
も悪くなる問題がある。また、前記の場合、目的とする
組成の酸化物超電導体以外に、例えば、Bi2Sr2Cu
Oy等で代表される非超電導相の析出が起こり、超電導
特性の劣化を引き起こす問題があった。
When the oxide superconducting conductor 5 is manufactured by the above-described method, the supply of the mixed powder layer 2 and the supply of the mixed powder That is, the three phenomena of the melting of the melt and the solidification of the melted portion are proceeding simultaneously. In a state where three phenomena are progressing in such a minute area, there is a high possibility that the balance of the three phenomena is lost even if a slight fluctuation occurs in the power of the laser beam. Then, even if a constant substrate moving speed is maintained, there is a problem that the amount of the melted portion changes, so that the thickness of the solidified portion becomes uneven and the crystal orientation deteriorates. In the above case, for example, Bi 2 Sr 2 Cu other than the oxide superconductor having the desired composition
There is a problem in that a non-superconducting phase typified by Oy or the like occurs and the superconducting characteristics deteriorate.

【0004】本発明は前記背景に鑑みてなされたもの
で、目的の組成であって、緻密で厚さが均一な臨界温度
が高いBi系酸化物超電導体を溶融法を応用して基材上
に形成することができる方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above background, and has a target composition, a dense, uniform thickness Bi-based oxide superconductor having a high critical temperature, and is formed on a substrate by applying a melting method. It is an object of the present invention to provide a method that can be formed on a substrate.

【0005】[0005]

【課題を解決するための手段】請求項1に記載した発明
は前記課題を解決するために、Bi系の酸化物超電導体
を構成する元素を含有する原料粉末層を金属基材の上面
に形成し、次にこの原料粉末層を加熱炉で870〜10
00℃に加熱して原料粉末層を一旦溶融した後に冷却し
溶融凝固層にするとともに、この後に溶融凝固層の一
部にレーザビームを照射して照射部分に部分溶融帯を形
成し、次にこの部分溶融帯を基材の長手方向に移動させ
て溶融凝固層の全体を順次一方向凝固させて酸化物超電
導層を形成するものである。
According to the first aspect of the present invention, a raw material powder layer containing an element constituting a Bi-based oxide superconductor is formed on an upper surface of a metal base material. Then, this raw material powder layer is heated in a heating furnace for 870-10.
After heating to 00 ° C to once melt the raw material powder layer,
While the melt-solidified layer to form a partially melted band part irradiated portion by irradiating a laser beam of melt-solidified layer after this, and then move the partial melting zone in the longitudinal direction of the base material melted Te The entire solidified layer is sequentially unidirectionally solidified to form an oxide superconducting layer.

【0006】[0006]

【作用】金属基材上面の原料粉末層を加熱炉で一旦溶融
した後に冷却して溶融凝固させるので、この段階で原料
量粉末層は空孔が閉塞された緻密な均一な厚さの溶融凝
固層になる。この溶融凝固層をレーザビームで一方向凝
固させるならば、一方向凝固する微小領域においては、
溶融凝固層の再溶融と凝固の2つの反応が進行すること
になり、従来のように原料粉末層の供給とその層の溶融
と凝固の3つの現象が進行する場合に比較して起こる現
象数が少なくなる。よって、仮にレーザビームのパワー
に若干のゆらぎが生じても厚さの均一な緻密な酸化物超
電導層が生成する。厚さの均一な緻密な酸化物超電導層
が生成するので、一方向溶融凝固時の結晶粒の方向が揃
い易くなり、得られる酸化物超電導層の結晶配向性の向
上につながり、臨界温度と臨界電流密度の高いものが生
成する。
[Action] The raw material powder layer on the upper surface of the metal substrate is once melted in a heating furnace.
After that, the mixture is cooled and melted and solidified. At this stage, the raw material quantity powder layer becomes a dense and uniform thickness solidified layer with pores closed . If this molten solidified layer is unidirectionally solidified by a laser beam,
The two reactions of re-melting and solidification of the molten and solidified layer proceed, and the number of phenomena that occurs as compared with the conventional case where the three phenomena of supply of the raw material powder layer and melting and solidification of the layer progress. Is reduced. Therefore, even if a slight fluctuation occurs in the power of the laser beam, a dense oxide superconducting layer having a uniform thickness is generated. Since a dense oxide superconducting layer with a uniform thickness is generated, the orientation of the crystal grains during one-way melt solidification can be easily aligned, leading to an improvement in the crystal orientation of the resulting oxide superconducting layer, and a critical temperature and a critical temperature. Those with a high current density are generated.

【0007】以下に本発明を更に詳細に説明する。本発
明を実施してBi-Sr-Ca-Cu-O系の酸化物超電導体を
製造するには、まず、出発材料を用意する。この出発材
料としては、Bi化合物とSr化合物とCa化合物とCu化
合物を用いる。前記化合物として、各元素の酸化物、塩
化物、炭酸塩、硫化物、フッ化物などのいずれを用いて
も良い。この例で具体的に用いるのは、Bi23粉末と
SrCO3粉末とCaCO3粉末とCuO粉末である。な
お、用いる化合物は粒状、粉末状を問わないが、できる
限り粒径の小さなものが好ましい。なおまた、Pbを含
むBi系超電導体を製造する場合は前記の化合物に加え
てPb化合物を混合すれば良い。
Hereinafter, the present invention will be described in more detail. In order to manufacture the Bi-Sr-Ca-Cu-O-based oxide superconductor by carrying out the present invention, first, a starting material is prepared. As this starting material, a Bi compound, an Sr compound, a Ca compound, and a Cu compound are used. As the compound, any of oxides, chlorides, carbonates, sulfides, fluorides and the like of each element may be used. Specifically used in this example are Bi 2 O 3 powder, SrCO 3 powder, CaCO 3 powder and CuO powder. The compound used may be in the form of particles or powder, but preferably has the smallest possible particle size. In the case of manufacturing a Bi-based superconductor containing Pb, a Pb compound may be mixed in addition to the above compounds.

【0008】前記各粉末を用意したならばBi:Sr:Ca:
Cu=2:2:1:2の割合になるように秤量して自動乳鉢
などで所要時間かけて均一に混合し、混合粉末を作製す
る。ここで前記各元素の割合が2:2:2:3のものは
その割合で混合し、前記各元素に加えてPbを添加する
ものにあっては、前記Biの一部(例えばBiの数割)
をPbで置換すれば良い。次にこの混合粉末を大気中に
おいて800〜850℃で24〜100時間程度加熱し
て仮焼することにより不要成分を除去する。仮焼後、こ
の仮焼物を粉砕して仮焼物を粉末化する。
If the above powders are prepared, Bi: Sr: Ca:
The mixed powder is prepared by weighing Cu to a ratio of 2: 2: 1: 1: 2 and uniformly mixing with an automatic mortar over a required time. Here, when the ratio of the respective elements is 2: 2: 2: 3, the mixture is mixed at the ratio, and in the case where Pb is added in addition to the respective elements, a part of the Bi (for example, the number of Bis) Percent)
May be replaced with Pb. Next, the mixed powder is heated in the air at 800 to 850 ° C. for about 24 to 100 hours and calcined to remove unnecessary components. After calcining, the calcined product is pulverized to powder the calcined product.

【0009】次に、前記の粉末を図1に示すような有機
溶媒10を満たした容器11の内部に投入して分散媒を
形成する。次にこの分散媒にテープ状の金属基材12を
浸積して引き上げ、金属基材12上に図2に示す厚さ1
0〜100μm程度の原料粉末層13を形成する。前記
金属基材12は、撓曲性に富むもので、後述する熱処理
に耐えるものであればいずれの金属からなるものでも差
し支えないが、酸化物超電導体との間に熱膨張係数の差
異が大きいと問題を生じるおそれがあることと、生成す
る酸化物超電導体の結晶構造に類似した構造を有するも
のが好ましいことなどを考慮すると、金属テープの上面
にバッファ層を形成したものが好ましい。具体的にはA
u、Ag、NiO、MgO、SrTiO3などのバッフ
ァ層を表面に形成したNiテープあるいはハステロイテ
ープなどが好ましい。
Next, the above-mentioned powder is charged into a container 11 filled with an organic solvent 10 as shown in FIG. 1 to form a dispersion medium. Next, a tape-shaped metal substrate 12 is immersed in the dispersion medium and pulled up, and the metal substrate 12 having the thickness 1 shown in FIG.
The raw material powder layer 13 of about 0 to 100 μm is formed. The metal base material 12 is rich in flexibility and may be made of any metal as long as it can withstand the heat treatment described below, but the difference in thermal expansion coefficient between the metal base material 12 and the oxide superconductor is large. Considering that there is a possibility of causing a problem and that the oxide superconductor to be formed preferably has a structure similar to the crystal structure, a metal tape having a buffer layer formed on the upper surface thereof is preferable. Specifically, A
Ni tape or Hastelloy tape having a buffer layer formed of u, Ag, NiO, MgO, SrTiO 3 or the like on the surface is preferable.

【0010】次に、原料粉末層13を固定した金属基材
12を赤外線イメージ炉などの加熱炉中において870
〜1000℃の温度で1分〜1時間程度加熱溶融する。
この温度で溶融すると、原料粉末層13の全体または一
部分が溶融するために、原料粉末層13は凝固後に図3
に示す均一な厚さの溶融凝固層14となり、この溶融凝
固層14は金属基材12に密着する。この溶融凝固層1
4は原料粉末層13が溶融凝固したものであるために、
原料粉末層13の内部に存在していた空孔などが閉塞さ
れ、原料粉末層13に含まれている不要成分が排出され
た後のものであるために、密度と純度が高くなってお
り、原料粉末層13よりも若干薄く、その厚さも均一化
されている。
Next, the metal substrate 12 to which the raw material powder layer 13 is fixed is placed in a heating furnace such as an infrared image furnace for 870 minutes.
Heat and melt at a temperature of 1000 ° C. for about 1 minute to 1 hour.
When the raw material powder layer 13 is melted at this temperature, the whole or a part of the raw material powder layer 13 is melted.
The molten solidified layer 14 has a uniform thickness as shown in FIG. This molten solidified layer 1
No. 4 is obtained by melting and solidifying the raw material powder layer 13;
Voids and the like that existed inside the raw material powder layer 13 are closed, and unnecessary components contained in the raw material powder layer 13 are discharged, so that the density and purity are high, It is slightly thinner than the raw material powder layer 13 and has a uniform thickness.

【0011】次いで前記溶融凝固層14に図4に示すよ
うに上方からレーザビームを照射するとともに、レーザ
ビームの照射部分に対応する金属基材12の裏面側から
もレーザビームを照射することで溶融凝固層14の一部
分に図4に示す微小な部分溶融帯15を形成する。この
部分溶融帯15はレーザビームの焦点に対応する部分に
形成されるので、幅2mm程度の狭い領域である。金属
基材12の裏面側からもレーザビームを照射するのは、
溶融凝固層14の上方側からのみレーザビームを照射す
ると、溶融凝固層14の表面側の部分はレーザビームに
よる加熱温度に容易に加熱されるが、溶融凝固層14の
底部側の部分が加熱されにくくなるので金属基材12の
裏面側からもレーザビームで加熱し、金属基材12も加
熱するならば、部分溶融帯15の温度を表面部側と底部
側とで均一化することができる。
Next, the molten and solidified layer 14 is irradiated with a laser beam from above as shown in FIG. 4 and is also irradiated with a laser beam from the back side of the metal substrate 12 corresponding to the irradiated portion of the laser beam. A small partial melting zone 15 shown in FIG. 4 is formed in a part of the solidified layer 14. Since the partial melting zone 15 is formed at a portion corresponding to the focal point of the laser beam, it is a narrow region having a width of about 2 mm. Irradiating the laser beam also from the back side of the metal base 12 is as follows.
When a laser beam is irradiated only from the upper side of the molten solidified layer 14, the surface portion of the molten solidified layer 14 is easily heated to the heating temperature by the laser beam, but the bottom portion of the molten solidified layer 14 is heated. If the metal base 12 is also heated by the laser beam from the back side of the metal base 12 and the metal base 12 is also heated, the temperature of the partial melting zone 15 can be made uniform between the front side and the bottom side.

【0012】部分溶融帯15が形成されたならば、金属
基材12を図4の矢印B方向に一定速度で移動させる。
この処理によって部分溶融帯15は溶融凝固層14に沿
って徐々に移動し、部分溶融帯15が移動した後の部分
は凝固して酸化物超電導基層16が生成する。このよう
に生成された酸化物超電導基層16は加熱炉で一度溶融
凝固された溶融凝固層14を再度一方向凝固させて生成
されるので、原料粉末層13を直接溶融凝固させる場合
とは異なり、厚さの変動は生じない。前記一方向凝固処
理の後に800〜870℃で数時間〜数百時間熱処理す
ることにより酸化物超電導基層16の全体を酸化物超電
導層17にすることができ、図5に示す酸化物超電導導
体18を得ることができる。
When the partial melting zone 15 is formed, the metal base 12 is moved at a constant speed in the direction of arrow B in FIG.
By this process, the partial molten zone 15 gradually moves along the molten and solidified layer 14, and the portion after the partial molten zone 15 moves is solidified to form the oxide superconducting base layer 16. Since the oxide superconducting base layer 16 thus generated is generated by unidirectionally solidifying the melt-solidified layer 14 once melt-solidified in a heating furnace, unlike the case where the raw material powder layer 13 is directly melt-solidified, No thickness variation occurs. By performing heat treatment at 800 to 870 ° C. for several hours to several hundred hours after the directional solidification treatment, the entire oxide superconducting base layer 16 can be turned into an oxide superconducting layer 17, and the oxide superconducting conductor 18 shown in FIG. Can be obtained.

【0013】これは、前記一方向凝固する微小領域にお
いては、溶融凝固層14の再溶融と凝固が進行すること
になり、従来のように原料粉末層の供給とその層の溶融
と凝固の3つの現象が進行する場合に比較して起こる現
象数が少なくなり、仮にレーザビームのパワーに若干の
ゆらぎが生じても厚さの均一な超電導基層が生成するた
めである。このように厚さの均一な超電導基層16が生
成するので、溶融凝固時の結晶粒の方向が揃い易くな
り、酸化物超電導層17の結晶配向性の向上につなが
り、臨界温度と臨界電流密度の高いものが生成する。
This is because the re-melting and solidification of the molten solidified layer 14 proceeds in the unidirectionally solidified minute area, and the supply of the raw material powder layer and the melting and solidifying of the layer are performed as in the conventional case. This is because the number of phenomena that occur is smaller than when two phenomena proceed, and even if a slight fluctuation occurs in the power of the laser beam, a superconducting base layer having a uniform thickness is generated. Since the superconducting base layer 16 having a uniform thickness is generated as described above, the orientation of the crystal grains at the time of melt-solidification can be easily aligned, leading to an improvement in the crystal orientation of the oxide superconducting layer 17, and the critical temperature and the critical current density can be reduced. The higher ones produce.

【0014】以上説明したように得られた酸化物超電導
層17は厚さが均一で密度の高いものであり、内部には
原料粉末層13に存在していた空孔はほとんどなくなっ
ている。また、一方向凝固させる場合に元々密度の高い
溶融凝固層14が再溶融されるので、結晶の配向が円滑
になされる。よって結晶配向性に優れ、高密度であっ
て、臨界温度と臨界電流密度の高い酸化物超電導層17
を備えた酸化物超電導導体18を得ることができる。
The oxide superconducting layer 17 obtained as described above has a uniform thickness and a high density, and vacancies existing in the raw material powder layer 13 are almost eliminated. Further, in the case of unidirectional solidification, the melt-solidified layer 14 originally having a high density is re-melted, so that the crystal orientation is smoothly performed. Therefore, the oxide superconducting layer 17 having excellent crystal orientation, high density, and high critical temperature and critical current density is provided.
Can be obtained.

【0015】以上の方法で製造されたBi系の酸化物超
電導導体18は、臨界温度が液体窒素温度(77K)より
も高いので液体窒素で冷却して使用する際に、温度マー
ジンがとれるとともに、単に粉末を焼結して製造した酸
化物超電導体に比較してより緻密な結晶組織であるの
で、高い臨界電流密度を発揮する。
The Bi-based oxide superconductor 18 manufactured by the above-described method has a critical temperature higher than the liquid nitrogen temperature (77 K). Since it has a denser crystal structure than an oxide superconductor simply produced by sintering a powder, it exhibits a high critical current density.

【0016】[0016]

【実施例】Bi23粉末とSrCO3粉末とCaCO3
末とCuO粉末をBi:Sr:Ca:Cu=2:2:
1:2のモル比になるように配合し、自動乳鉢で1時間
混合する。この混合粉末を大気中において800〜85
0℃で24〜100時間仮焼し、仮焼物を粉砕する。次
に幅2mm、厚さ0.5mmのNiテープを用意すると
ともに、エタノールを満たした容器を用意する。
EXAMPLE Bi 2 O 3 powder, SrCO 3 powder, CaCO 3 powder, and CuO powder were mixed with Bi: Sr: Ca: Cu = 2: 2:
Mix in a molar ratio of 1: 2 and mix in an automatic mortar for 1 hour. This mixed powder is 800-85 in air.
The mixture is calcined at 0 ° C. for 24 to 100 hours to pulverize the calcined product. Next, a Ni tape having a width of 2 mm and a thickness of 0.5 mm is prepared, and a container filled with ethanol is prepared.

【0017】次いで前記粉砕物を容器内のエタノール
に、エタノール1リットルに対して粉砕物400gの割
合で混合して分散媒を作成し、この分散媒にNiテープ
を浸積して引き上げ、Niテープ上に厚さ100μmの
混合粉末層を形成した。次に前記混合粉末層を形成した
Niテープを電気炉中で900℃に加熱して混合粉末層
を溶融させた後に凝固させて厚さ50μmの溶融凝固層
を形成した。この状態では加熱炉において全体を均一に
加熱溶融させているので、原料粉末層は均一な厚さで凹
凸のない溶融凝固層となった。
Next, the pulverized material was mixed with ethanol in a container at a ratio of 400 g of the pulverized material to 1 liter of ethanol to prepare a dispersion medium, and a Ni tape was immersed in the dispersion medium and pulled up. A mixed powder layer having a thickness of 100 μm was formed thereon. Next, the Ni tape on which the mixed powder layer was formed was heated to 900 ° C. in an electric furnace to melt the mixed powder layer and then solidified to form a 50 μm thick melt-solidified layer. In this state, since the whole was heated and melted uniformly in the heating furnace, the raw material powder layer was a melt-solidified layer having a uniform thickness and no irregularities.

【0018】次に溶融凝固層の表面側と金属基材の裏面
側からそれぞれCO2ガスレーザを照射して溶融凝固層
の一部に幅2mmの溶融帯を形成した。これと同時にN
iテープを5mm/時の速度で移動させ、溶融帯も移動
させて溶融凝固層の全体を一方向凝固させた。凝固後、
800〜870℃で100時間熱処理することで酸化物
超電導導体を得ることができた。
Next, a CO 2 gas laser was irradiated from the front side of the molten solidified layer and the back side of the metal substrate, respectively, to form a 2 mm wide molten zone in a part of the molten solidified layer. At the same time N
The i-tape was moved at a speed of 5 mm / hour, the molten zone was also moved, and the entire melt-solidified layer was unidirectionally solidified. After solidification,
Heat treatment at 800 to 870 ° C. for 100 hours allowed an oxide superconductor to be obtained.

【0019】得られた酸化物超電導導体を液体窒素で冷
却して臨界温度(Tc)と臨界電流密度(Jc)を測定
したところ、Tc=82K、Jc=1000A/cm2
を示した。
The obtained oxide superconductor was cooled with liquid nitrogen and its critical temperature (Tc) and critical current density (Jc) were measured. Tc = 82 K, Jc = 1000 A / cm 2
showed that.

【0020】[0020]

【比較例】前記の実施例に用いた金属基材と同等の基材
上に前記と同等の原料粉末層を形成し、これを加熱炉で
一度溶融凝固させる処理を省略し、その後の処理は前記
実施例と同等の処理を行なって酸化物超電導導体を得
た。得られた酸化物超電導導体の臨界温度と臨界電流密
度を測定したところ、Tc=78K、Jc=50A/c
2を示した。なお、このように得られた酸化物超電導
層にあっては、部分的に微細な凹凸が形成されているこ
とが確認できた。
[Comparative Example] A raw material powder layer equivalent to the above was formed on a base material equivalent to the metal base material used in the above embodiment, and the process of once melting and solidifying this in a heating furnace was omitted. The same treatment as in the above example was performed to obtain an oxide superconducting conductor. When the critical temperature and critical current density of the obtained oxide superconducting conductor were measured, Tc = 78 K, Jc = 50 A / c
m 2 . Note that in the oxide superconducting layer thus obtained, it was confirmed that fine irregularities were partially formed.

【0021】以上説明した結果から、本発明方法を実施
することで、厚さが均一であって臨界温度と臨界電流密
度の高い優れた特性を有するBi系酸化物超電導導体を
製造できることが判明した。
From the results described above, it has been found that by performing the method of the present invention, a Bi-based oxide superconducting conductor having a uniform thickness and excellent characteristics having a high critical temperature and a high critical current density can be produced. .

【0022】ところで、前記レーザビームによる一方向
凝固を行なう場合、基材12の移動速度を20mm/時
以上にすると、移動速度が早過ぎて満足な超電導特性の
ものが得られない。ちなみに、移動速度を20mm/分
に設定して製造した酸化物超電導導体においては、Tc
=72Kを示した。
When the unidirectional solidification by the laser beam is performed, if the moving speed of the substrate 12 is set to 20 mm / hour or more, the moving speed is too fast to obtain satisfactory superconducting characteristics. Incidentally, in the oxide superconducting conductor manufactured by setting the moving speed to 20 mm / min, Tc
= 72K.

【0023】[0023]

【発明の効果】以上説明したように本発明は、金属基材
上に形成した原料粉末層を一度溶融し凝固させて溶融凝
固層とした後にレーザビームを照射して一方向凝固させ
て酸化物超電導層を形成するので、原料粉末を直接一方
向凝固させる場合に比較し、厚さのばらつきが少なく、
空孔が無く緻密であって、結晶配向性の優れたBi系の
酸化物超電導層を有する酸化物超電導導体を得ることが
できる。従って本発明方法で得られた酸化物超電導導体
は、臨界温度が高く、臨界電流密度も高い優れた超電導
特性を発揮するものである。
As described above, according to the present invention, the raw material powder layer formed on the metal substrate is once melted and solidified to form a molten coagulated material.
After forming a solid layer, it is irradiated with a laser beam and solidified in one direction.
Since the oxide superconducting layer is formed , the thickness variation is small compared to the case where the raw material powder is directly unidirectionally solidified,
It is possible to obtain an oxide superconducting conductor having a Bi-based oxide superconducting layer which is dense and free of voids and has excellent crystal orientation. Therefore, the oxide superconducting conductor obtained by the method of the present invention exhibits excellent superconducting characteristics having a high critical temperature and a high critical current density.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は金属基材上に原料粉末層を形成している
状態を示す説明図である。
FIG. 1 is an explanatory view showing a state in which a raw material powder layer is formed on a metal substrate.

【図2】図2は金属基材上に原料粉末層を形成した状態
を示す断面図である。
FIG. 2 is a sectional view showing a state in which a raw material powder layer is formed on a metal substrate.

【図3】図3は原料粉末層を溶融凝固させた状態を示す
断面図である。
FIG. 3 is a cross-sectional view showing a state in which a raw material powder layer is melted and solidified.

【図4】図4は溶融凝固層を一方向凝固させている状態
を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a molten solidified layer is unidirectionally solidified.

【図5】図5は酸化物超電導導体の断面図である。FIG. 5 is a sectional view of an oxide superconducting conductor.

【図6】図6は従来法における一方向凝固法を説明する
ための断面図である。
FIG. 6 is a cross-sectional view for explaining a unidirectional solidification method in a conventional method.

【符号の説明】[Explanation of symbols]

12・・・金属基材、13・・・原料粉末層、14・・
・溶融凝固層、 15・・・溶融帯、16・・・酸化物超電導基層、17
・・・酸化物超電導層 18・・・酸化物超電導導体。
12 ... metal base material, 13 ... raw material powder layer, 14 ...
・ Molten solidified layer, 15 ・ ・ ・ Molten zone, 16 ・ ・ ・ Oxide superconducting base layer, 17
... oxide superconducting layer 18 ... oxide superconducting conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 英雄 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (72)発明者 原 築志 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (72)発明者 山本 隆彦 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社 技術研究所内 (56)参考文献 特開 平2−187003(JP,A) 特開 平2−51806(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 12/00 - 13/00 C30B 29/22 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hideo Ishii 2-4-1 Nishi-Atsujigaoka, Chofu-shi, Tokyo Tokyo Electric Power Company R & D Center (72) Inventor Takushi Hara 2-4-1, Nishi-Atsujigaoka, Nishi-Chufu-shi, Tokyo No. Tokyo Electric Power Company Technical Research Institute (72) Inventor Takahiko Yamamoto 2-4-1 Nishi Azujigaoka, Chofu City, Tokyo Tokyo Electric Power Company Technical Research Institute (56) References JP-A-2-187003 (JP, A) Kaihei 2-51806 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 12/00-13/00 C30B 29/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Bi系の酸化物超電導体を構成する元素
を含有する原料粉末層を金属基材の上面に形成し、次に
この原料粉末層を加熱炉で870〜1000℃に加熱し
て原料粉末層を一旦溶融した後に冷却することにより
融凝固層にするとともに、この後に溶融凝固層の一部に
レーザビームを照射して照射部分に部分溶融帯を形成
し、次にこの部分溶融帯を基材の長手方向に移動させて
溶融凝固層の全体を順次一方向凝固させて酸化物超電導
層を形成することを特徴とする溶融法によるBi系酸化
物超電導導体の製造方法。
1. A raw material powder layer containing an element constituting a Bi-based oxide superconductor is formed on an upper surface of a metal substrate, and then the raw material powder layer is heated to 870 to 1000 ° C. in a heating furnace. The raw material powder layer is once melted and then cooled to form a melt-solidified layer, and thereafter, a part of the melt-solidified layer is irradiated with a laser beam to form a partially melted zone at the irradiated portion. Manufacturing the Bi-based oxide superconducting conductor by a melting method, wherein the partial molten zone is moved in the longitudinal direction of the base material, and the entire molten solidified layer is sequentially unidirectionally solidified to form an oxide superconducting layer. Method.
JP03177232A 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method Expired - Fee Related JP3121863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03177232A JP3121863B2 (en) 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03177232A JP3121863B2 (en) 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method

Publications (2)

Publication Number Publication Date
JPH052934A JPH052934A (en) 1993-01-08
JP3121863B2 true JP3121863B2 (en) 2001-01-09

Family

ID=16027466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03177232A Expired - Fee Related JP3121863B2 (en) 1991-06-21 1991-06-21 Method for producing Bi-based oxide superconducting conductor by melting method

Country Status (1)

Country Link
JP (1) JP3121863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642755A (en) * 1993-01-12 1994-02-18 Hitachi Home Tec Ltd High frequency heater
EP1932924A1 (en) 2006-11-22 2008-06-18 FUJIFILM Corporation Nucleic acid amplification method using microchip and microchip, and nucleic acid amplification system using the same
JP2008136436A (en) 2006-12-04 2008-06-19 Fujifilm Corp Method for detecting variation of nucleic acid by using protein binding single-stranded dna

Also Published As

Publication number Publication date
JPH052934A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
JP3121863B2 (en) Method for producing Bi-based oxide superconducting conductor by melting method
JP3121864B2 (en) Method for producing Bi-based oxide superconducting conductor by melting method
JPH06122588A (en) Preparation of oxide crystal
US5151407A (en) Method of producing Bi-Sr-Ca-Cu-O superconducting materials in cast form
US5545610A (en) Oxide-based superconductor, a process for preparing the same and a wire material of comprising the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
JPH0255298A (en) Method for growing oxide superconductor single crystal
JPH0421521A (en) Production of bi-based superconductor having ni base material
JPH02291611A (en) Manufacture of oxide superconducting film
JP2590103B2 (en) Method for manufacturing compound superconducting wire
JPH06211588A (en) Production of y-containing oxide superconductor crystal
JP2545443B2 (en) Method for manufacturing oxide superconductor
JPH027309A (en) Manufacture of oxide type superconductive wire
JPH02302324A (en) Method for formation of conductive film and product produced by it
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP2685951B2 (en) Method for manufacturing bismuth-based superconductor
JP3538620B2 (en) Method for producing thallium-based superconducting silver-based sheath wire having high crystal orientation and thallium-based superconducting silver-based sheath wire obtained by the method
JPH04119922A (en) Production of bi-containing oxide superconductor
JP2583288B2 (en) Method for producing flake-like oxide superconductor
JPH0745357B2 (en) Superconducting fibrous single crystal and method for producing the same
JPH02133320A (en) Production of superconducting thin film
JPS63315572A (en) Production of superconductor
JPH0551216A (en) Production of bi-containing oxide superconductor plate
JPH03223116A (en) Production of bi-based oxide superconductor
JPH05234437A (en) Manufacture of oxide superconductive wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

LAPS Cancellation because of no payment of annual fees