JP3121070B2 - Molding method of fiber reinforced composite - Google Patents

Molding method of fiber reinforced composite

Info

Publication number
JP3121070B2
JP3121070B2 JP03286266A JP28626691A JP3121070B2 JP 3121070 B2 JP3121070 B2 JP 3121070B2 JP 03286266 A JP03286266 A JP 03286266A JP 28626691 A JP28626691 A JP 28626691A JP 3121070 B2 JP3121070 B2 JP 3121070B2
Authority
JP
Japan
Prior art keywords
preform
mold
sample chamber
resin
matrix resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03286266A
Other languages
Japanese (ja)
Other versions
JPH05124118A (en
Inventor
昌夫 日聖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP03286266A priority Critical patent/JP3121070B2/en
Publication of JPH05124118A publication Critical patent/JPH05124118A/en
Application granted granted Critical
Publication of JP3121070B2 publication Critical patent/JP3121070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は航空機・船舶・車両等の
構造部材用として使用される繊維強化複合体の成形方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a fiber reinforced composite used for structural members of aircraft, ships, vehicles and the like.

【0002】[0002]

【従来の技術】高強度高弾性率の長繊維と熱硬化性のマ
トリックスレジンからなる繊維強化複合体の成形方法の
ひとつとしてレジンインジェクション(RI)と呼ばれる手
法がある。これは中空の成形型中に芯体となるプリフォ
ームをセットし、レジンを注入して含浸し加熱硬化させ
る方法である。ここで「プリフォーム」とは通常高強度
高弾性率の長繊維からなる織物基布を積層したもの、ま
たはこれをステッチ糸により縫合一体化したもの、ある
いは立体織物・編組物などの繊維構造物を意味してい
る。
2. Description of the Related Art As one of methods for forming a fiber-reinforced composite comprising a high-strength high-modulus long fiber and a thermosetting matrix resin, there is a method called resin injection (RI). This is a method in which a preform serving as a core is set in a hollow mold, resin is injected, impregnated, and cured by heating. The term "preform" as used herein generally refers to a laminated base fabric made of long fibers having a high strength and a high elastic modulus, or a stitch-integrated stitch thread, or a fibrous structure such as a three-dimensional woven fabric or a braided fabric. Means

【0003】図3は一般的なRI成形法の実施態様をしめ
す概略図である。図のようにプリフォーム8を成形型1
の試料室9にセットしたのちベント口3を介して型内を
減圧とし、注入口2からマトリックスレジンを注入しプ
リフォーム8に均等に含浸せしめる。このあと注入口
2、ベント口3を密閉し、系全体を電熱ヒータなどの加
熱手段(図示されていない)により所定の温度・時間条
件により加熱処理してレジンを硬化させるのである。こ
の時、レジンの硬化時収縮特性により成形品表面にシワ
・凹凸を生じ、あるいは成形品内部にボイド・気泡を生
じて製品の表面品位が低下することがあり、これが従来
技術の課題のひとつとなっていた。
FIG. 3 is a schematic view showing an embodiment of a general RI molding method. As shown in FIG.
After setting in the sample chamber 9, the inside of the mold is evacuated through the vent 3 and the matrix resin is injected from the inlet 2 to impregnate the preform 8 evenly. Thereafter, the injection port 2 and the vent port 3 are sealed, and the entire system is heated by a heating means such as an electric heater (not shown) under predetermined temperature and time conditions to cure the resin. At this time, wrinkles and irregularities may be generated on the surface of the molded product due to the shrinkage characteristics of the resin upon curing, or voids and bubbles may be generated inside the molded product and the surface quality of the product may be degraded, which is one of the problems of the prior art. Had become.

【0004】RI法においてはできるだけ硬化時のこのよ
うな体積変化の小さいレジンを選択すべく配慮している
が、この分野で多く使用される例えばエポキシ系レジン
では硬化前後で5%前後の体積変化が一般的であり,被加
工体が成形型内で型離れすることにより表面の平滑性が
失われやすく,はなはだしいときは表面にシワ・凹凸を
生じる結果となる。
In the RI method, consideration is given to selecting such a resin having a small volume change during curing as much as possible. However, for example, in the case of an epoxy resin widely used in this field, for example, a volume change of about 5% before and after curing. In general, the smoothness of the surface is easily lost when the workpiece is released from the mold in the mold, and in extreme cases, wrinkles and irregularities are generated on the surface.

【0005】これを防止するため、RI法において被加工
体を加圧状態とし、この状態を維持しつつ系全体を加熱
処理してレジンを硬化させる手法として、試料室に注入
したマトリックスレジンに、注入口2を通じて油圧シリ
ンダ等を介して直接に加圧することが提案されている。
しかしこの方法では、レジンの硬化が進行して流動性が
失われてくると(とくにレジン注入口付近での硬化が進
むと)、被加圧体の全体に均等な加圧がなされにくくな
る難点がある。
In order to prevent this, in the RI method, the workpiece is pressurized, and while maintaining this state, the entire system is heated to cure the resin. It has been proposed to pressurize directly through the inlet 2 via a hydraulic cylinder or the like.
However, in this method, when the curing of the resin progresses and the fluidity is lost (especially when the curing proceeds near the resin injection port), it is difficult to uniformly pressurize the entire pressurized body. There is.

【0006】[0006]

【発明が解決しようとする課題】本発明はRI法のこのよ
うな問題点を改良するために、レジンの硬化過程の始終
にわたって被加工体の表面に適当な圧力を付加すること
によって、シワ・凹凸・ボイド・空泡などの生成を抑制
し、品位良好な複合体部材の成形を可能にする成形方法
を提供することを意図したものである。
SUMMARY OF THE INVENTION The present invention solves this problem of the RI method by applying an appropriate pressure to the surface of the workpiece throughout the curing process of the resin. An object of the present invention is to provide a molding method that suppresses generation of irregularities, voids, voids, and the like and enables molding of a high-quality composite member.

【0007】[0007]

【課題を解決するための手段】上記のような問題点を解
決するために、高強度高弾性率繊維からなるプリフォー
ムを、成形型内の実質的に密閉された試料室中に置き、
熱硬化性のマトリックスレジンを試料室に注入してプリ
フォームに含浸せしめたのち、あらかじめ該試料室内側
に剛性を有するスペーサを介してプリフォームに接する
ように挿着された気密性膜により試料室と隣接して形成
される気室に加圧気体を導入して、前記プリフォームお
よびマトリックスレジンからなる被加工体を加圧状態と
し、この状態を保持しつつ成形型を所定温度に加熱して
マトリックスレジンを硬化させる方法を提案する。
In order to solve the above-mentioned problems, a preform made of high-strength high-modulus fibers is placed in a substantially closed sample chamber in a mold.
After the thermosetting matrix resin is injected into the sample chamber and impregnated in the preform, the sample chamber is filled with an airtight film that is inserted into the sample chamber in advance so as to be in contact with the preform via a rigid spacer. A pressurized gas is introduced into an air chamber formed adjacent to the preform and the workpiece made of the matrix resin is put into a pressurized state, and the mold is heated to a predetermined temperature while maintaining this state. A method for curing the matrix resin is proposed.

【0008】[0008]

【作用】RI成形法において、マトリックスレジンの注入
口2を有する実質的に密閉された試料室9と、この試料
室中にセットされる通常高強度高弾性率の補強繊維から
なるプリフォーム8、および上記注入口2から注入され
るマトリックスレジンは基本的な要素である。
In the RI molding method, a substantially closed sample chamber 9 having a matrix resin inlet 2 and a preform 8 made of a reinforcing fiber having a high strength and a high modulus of elasticity set in the sample chamber. The matrix resin injected from the injection port 2 is a basic element.

【0009】図1は本発明の実施態様を示す概略図であ
る。成形型1の試料室9に、剛性を有するスペーサ10
を介してプリフォーム8に接するように挿着された気密
性膜6と、これにより形成される気室7およびこれに連
通した加圧導入口4が本発明の特徴を構成する。すなわ
ち図のようにプリフォーム8をセットし、ベント口3を
介して試料室内を減圧とし、注入口2からマトリックス
レジンを注入し、プリフォーム8に均等に含浸せしめた
後、注入口2、ベント口3を密閉し、加圧導入口4から
加圧気体を導入して気室7に圧力を付与し、気密性膜6
と剛性を有するスペーサ10によってプリフォーム8と
マトリックスレジンからなる被加工体を加圧状態とし、
この状態を維持しつつ系全体を加熱処理してレジンを硬
化させる。
FIG. 1 is a schematic diagram showing an embodiment of the present invention. A spacer 10 having rigidity is provided in a sample chamber 9 of the mold 1.
The airtight film 6 inserted so as to be in contact with the preform 8 through the airbag, the air chamber 7 formed by the airtight film 6, and the pressure introducing port 4 communicating with the air chamber 7 constitute the features of the present invention. That is, as shown in the figure, the preform 8 is set, the pressure in the sample chamber is reduced through the vent port 3, the matrix resin is injected from the inlet port 2, and the preform 8 is impregnated evenly. The port 3 is closed, and a pressurized gas is introduced from the pressurized inlet 4 to apply pressure to the air chamber 7, and
The workpiece formed of the preform 8 and the matrix resin is pressurized by the spacer 10 having rigidity and
While maintaining this state, the entire system is heated to cure the resin.

【0010】このようにマトリックスレジンの硬化過程
の間中、被加工体の広い表面にわたって加圧状態を保つ
ことにより硬化時収縮変形に起因する表面シワ・凹凸、
あるいは成形品内部のボイド・空泡の形成を抑制するこ
とができる。この際、特に剛性を有するスペーサ10の
介在によって、プリフォーム表面の組織に基づく微細な
凹凸模様を平滑化し、平滑な表面をもつ成形品を得るこ
とができる。
[0010] As described above, during the curing process of the matrix resin, by maintaining the pressurized state over a wide surface of the workpiece, surface wrinkles and irregularities caused by shrinkage deformation during curing can be reduced.
Alternatively, the formation of voids / voids inside the molded article can be suppressed. At this time, a fine uneven pattern based on the structure of the preform surface can be smoothed by the interposition of the particularly rigid spacer 10, and a molded product having a smooth surface can be obtained.

【0011】ここで,気密性膜6とスペーサ10の作用
は, プリフォーム8に含浸されたマトリックスレジンが
熱処理によりゲル化/硬化する過程で高粘稠化しつつ体
積収縮する際に,所定の気圧により被加工体表面と密接
したまま追随し、その状態を徐冷・型出しに至るまで継
続することであり,このことによって被加工体表面の平
滑性を保持することが出来る。
Here, the action of the airtight film 6 and the spacer 10 is such that when the volumetric shrinkage of the matrix resin impregnated in the preform 8 increases while the matrix resin becomes highly viscous during the gelation / hardening process by heat treatment, the predetermined pressure is applied. Accordingly, the surface of the workpiece is kept in close contact with the surface of the workpiece, and this state is continued until the cooling and the molding are performed, whereby the smoothness of the surface of the workpiece can be maintained.

【0012】[0012]

【実施例】炭素繊維織物(東レ株式会社トレカ(登録商
標)クロス#C06644B)を縦350mm横120mm に裁断したも
の13枚を重ね合わせ、KEVLAR(登録商標)アラミド紡績
糸で周囲をロックステッチして厚さ約5.5mm の積層体を
つくり、これをプリフォーム供試体8とした。
Example: 13 pieces of carbon fiber fabric (Toray Industries, Inc., Torayca (registered trademark) cloth # C06644B) cut to a length of 350 mm and a width of 120 mm are overlapped, and the periphery is rock-stitched with KEVLAR (registered trademark) aramid spun yarn. A laminate having a thickness of about 5.5 mm was prepared and used as a preform specimen 8.

【0013】SS41鋼材により図1の構造の成形型1をつ
くった。試料室9の内寸法は縦355mm 横125mm 幅5mm で
ある。内側面には3°の開きテーパをつけ、クロムメッ
キ平滑仕上げしてある。成形型1の密閉はOリング5
と、本体1aと本体1bに係合する計16本のM12ボルト
・ナット (図示されていない) によりおこなわれる。型
内をフロン系離型材で処理したのち上記のプリフォーム
8をセットした。
A mold 1 having the structure shown in FIG. 1 was made from SS41 steel. The internal dimensions of the sample chamber 9 are 355 mm long, 125 mm wide and 5 mm wide. The inner surface has a 3 ° open taper and chrome-plated smooth finish. The mold 1 is sealed with an O-ring 5
And a total of 16 M12 bolts and nuts (not shown) engaged with the main body 1a and the main body 1b. After the inside of the mold was treated with a CFC-based release material, the preform 8 was set.

【0014】プリフォーム8の最上層に同寸法で厚さ
0.4mmのステンレススチール板をスペーサ10として
載せたのちオートクレーブ用の加圧バッグフイルム(AI
RTECHINTERNATIONAL INC.,WRITRON(登録商標)#7400
)2mil厚を 400mm×170mm に裁断したものを上記のプ
リフォーム8を覆うかたちで試料室9上面に挿着し、こ
の状態で成形型1を密閉した。この成形型1を温度調節
できる恒温室中に置きベント口3を真空ポンプ減圧系
に,加圧気導入口4をコンプレッサ圧空系にそれぞれ連
結した。
A stainless steel plate having the same dimensions and a thickness of 0.4 mm is placed as a spacer 10 on the uppermost layer of the preform 8 and then a pressure bag film for autoclave (AI)
RTECHINTERNATIONAL INC., WRITRON (registered trademark) # 7400
) A 2 mil piece cut to 400 mm x 170 mm was inserted into the upper surface of the sample chamber 9 so as to cover the preform 8, and the mold 1 was sealed in this state. The mold 1 was placed in a temperature-controlled room where the temperature could be controlled.

【0015】エポキシレジンを表1の処方により配合
し、真空ポンプ減圧下に25分間攪拌して充分に脱気した
のちレジン注入口2から試料室へ注入した.注入はベン
ト口3による減圧(-50〜-100mmHg) とレジンタンク液面
高さによる静圧差を利用し, 内部の気泡残留を避けるた
め10cc/min以下の注入速度となるよう調節を行った。ベ
ント口3からのレジン溢出により試料室9内がレジンで
充満したことを確認したのち注入口2およびベント口3
を再び密閉し, 加圧気導入口4から圧空を導入してバッ
グフィルム6(気密性膜)と成形型1とにより形成され
る気室7にゲージ圧 5kg/cm2の加圧をかけ,この状態の
まま表2 のプログラムにしたがって恒温室の温度を変化
させることによってレジンを硬化させた。硬化処理終了
後 -30℃/hr で徐冷して成形型を開き成形品を取出し試
料1とした。
The epoxy resin was blended according to the formulation shown in Table 1, and the mixture was stirred for 25 minutes under reduced pressure of a vacuum pump, sufficiently degassed, and then injected from the resin inlet 2 into the sample chamber. The injection was performed using a reduced pressure (-50 to -100 mmHg) at the vent 3 and a static pressure difference due to the liquid level of the resin tank, and the injection rate was adjusted to 10 cc / min or less to avoid bubbles remaining inside. After confirming that the inside of the sample chamber 9 was filled with the resin due to the resin overflow from the vent port 3, the inlet port 2 and the vent port 3 were checked.
Is sealed again, and pressurized air is introduced from the pressurized air inlet 4 to apply a pressure of 5 kg / cm 2 to the air chamber 7 formed by the bag film 6 (airtight film) and the mold 1. The resin was cured by changing the temperature of the thermostatic chamber according to the program in Table 2 while keeping the condition. After the completion of the curing treatment, the mold was slowly cooled at -30 ° C / hr, the mold was opened, and the molded product was taken out as Sample 1.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 上記(1)において、スペーサ10の装着だけを省略
し、以外は全く同じ操作を行って得た成形品を試料2と
した。
[Table 2] In the above (1), a molded product obtained by performing exactly the same operation except that the mounting of the spacer 10 was omitted was designated as Sample 2.

【0018】また、上記(1)において、a)成形型1中
にオートクレーブ用バッグフィルムを挿着しない、b)レ
ジン注入後に圧空の導入を行わない、c)スペーサ10の
装着を省略する以外は全く同じ操作を行って得た成形品
を試料3とした。試料1、2および3についてそれぞれ
n=5回の成形試行を行い, 得られた成形品について光沢
・ひけ・ボイド・表面シボ(プリフォームの組織に対応
する凹凸)による表面品位の目視評価を行った結果、表
3の知見がえられた。
In the above (1), except that a) the autoclave bag film is not inserted into the molding die 1, b) the compressed air is not introduced after the resin is injected, and c) the mounting of the spacer 10 is omitted. A molded product obtained by performing exactly the same operation was designated as Sample 3. For samples 1, 2 and 3 respectively
After performing n = 5 molding trials, the obtained molded product was visually evaluated for surface quality by gloss, sink, void, and surface texture (irregularities corresponding to the structure of the preform). I got it.

【0019】すなわち本発明の装置および方法により成
形された試料1には上記評価項目についての欠点がまっ
たくなく、品位良好であった。試料2でも欠点の発生は
少なく、実用上は問題ない品位といえるが、プリフォー
ムの組織に対応する凹凸模様(気密性膜がプリフォーム
面に圧接されて生じる)が残る。試料3では、光沢、ひ
け、ボイドに欠点が生じた。
That is, Sample 1 molded by the apparatus and method of the present invention had no defect in the above evaluation items and was of good quality. Sample 2 also has few defects and has no problem in practical use. However, a concave / convex pattern corresponding to the structure of the preform (generated by pressing the airtight film against the preform surface) remains. Sample 3 had defects in gloss, sink marks, and voids.

【0020】[0020]

【表3】 * 光沢 ◎鏡面 ○濁り面あり △濁り面多い **ボイドではない不規則形状の凹部分をひけと定義した *** 表面シボプリフォームの組織に対応する凹凸をシボ
と定義した なお、本発明は前記の実施例に限定されるものでなく様
々な実施形態で実施できる。例えば、図2に示すよう
に、ほぼ半円形をなす成形型1aの内面と相似の形状に
あらかじめ成形されたスペーサ11を使用すれば、半円
形の成形品を生産できる。この場合、成形型1aとプリ
フォーム8の間隙についてはレジンの収縮率を考慮した
クリアランスdを設定することが好ましい。
[Table 3] * Gloss ◎ mirror ○ turbidity surface located △ Note the tissue corresponding to the unevenness of the turbidity surface often ** *** surface textured preform was defined as sink the concave portion of the irregularly shaped not void was defined as grain, the present invention The present invention is not limited to the above-described example, but can be implemented in various embodiments. For example, as shown in FIG. 2, a semi-circular molded product can be produced by using a spacer 11 that has been formed in advance in a shape similar to the inner surface of a substantially semi-circular molding die 1a. In this case, it is preferable to set a clearance d in consideration of the resin shrinkage rate for the gap between the mold 1a and the preform 8.

【0021】また、プリフォーム8の形状に合わせて、
半円形以外の形状の成形型とスペーサを使用したり、レ
ジンの配合、硬化プログラムを変更する等様々な実施形
態が可能である。
Further, according to the shape of the preform 8,
Various embodiments are possible, such as using a mold and a spacer having a shape other than a semicircle, changing the blending of the resin, and changing the curing program.

【0022】[0022]

【発明の効果】以上の様に、本発明の方法においては、
マトリックスレジンを加熱して硬化させる際に、気密性
膜が剛性を有するスペーサを介して被加工体と密接した
まま追随するため、マトリックスレジンが体積変化して
も、成形型と被加工体の型離れを防止でき、光沢が高く
ボイド、ひけ、表面シボのない繊維強化複合体を生産で
きる。
As described above, in the method of the present invention,
When the matrix resin is heated and cured, the airtight film follows the workpiece in close contact with the rigid spacer via a rigid spacer. The separation can be prevented, and a fiber-reinforced composite having high gloss and free from voids, sink marks, and surface irregularities can be produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の概略図である。FIG. 1 is a schematic diagram of the present invention.

【図2】別の実施形態の概略図である。FIG. 2 is a schematic diagram of another embodiment.

【図3】従来技術の概略図である。FIG. 3 is a schematic diagram of the prior art.

【符号の説明】[Explanation of symbols]

1 成形型、1a 本体、1b 本体、2 注入口、3
ベント口、4 加圧導入口、5 Oリング、6 気密
性膜、7 気室、8 プリフォーム、9 試料室、1
0,11 スペーサ。
1 Mold, 1a body, 1b body, 2 inlet, 3
Vent port, 4 pressure inlet, 5 O-ring, 6 airtight membrane, 7 air chamber, 8 preform, 9 sample chamber, 1
0,11 spacer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高強度高弾性率繊維からなるプリフォー
ムを、成形型内の実質的に密閉された試料室中に置き、
熱硬化性のマトリックスレジンを試料室に注入してプリ
フォームに含浸せしめたのち、あらかじめ該試料室内側
に剛性を有するスペーサを介してプリフォームに接する
ように挿着された気密性膜により試料室と隣接して形成
される気室に加圧気体を導入して、前記プリフォームお
よびマトリックスレジンからなる被加工体を加圧状態と
し、この状態を保持しつつ成形型を所定温度に加熱して
マトリックスレジンを硬化させることを特徴とする繊維
強化複合体の成形方法。
A preform comprising high strength, high modulus fibers is placed in a substantially sealed sample chamber within a mold.
After the thermosetting matrix resin is injected into the sample chamber and impregnated in the preform, the sample chamber is filled with an airtight film that is inserted into the sample chamber in advance so as to be in contact with the preform via a rigid spacer. A pressurized gas is introduced into an air chamber formed adjacent to the preform and the workpiece made of the matrix resin is put into a pressurized state, and the mold is heated to a predetermined temperature while maintaining this state. A method for molding a fiber-reinforced composite, comprising curing a matrix resin.
JP03286266A 1991-10-31 1991-10-31 Molding method of fiber reinforced composite Expired - Fee Related JP3121070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03286266A JP3121070B2 (en) 1991-10-31 1991-10-31 Molding method of fiber reinforced composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03286266A JP3121070B2 (en) 1991-10-31 1991-10-31 Molding method of fiber reinforced composite

Publications (2)

Publication Number Publication Date
JPH05124118A JPH05124118A (en) 1993-05-21
JP3121070B2 true JP3121070B2 (en) 2000-12-25

Family

ID=17702139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03286266A Expired - Fee Related JP3121070B2 (en) 1991-10-31 1991-10-31 Molding method of fiber reinforced composite

Country Status (1)

Country Link
JP (1) JP3121070B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176422A (en) * 2013-03-13 2014-09-25 Sakura Rubber Co Ltd Fire hose

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324141B4 (en) * 2003-05-26 2010-07-01 Eurocopter Deutschland Gmbh Process for producing a fiber composite component and intermediate product for such a process
ES2545539T3 (en) 2005-05-03 2015-09-11 Fokker Landing Gear B.V. Method and device for injecting a resin into at least one fiber layer of a fiber reinforced product to be manufactured
FR2974752B1 (en) * 2011-05-06 2013-04-19 Snecma INJECTION MOLDING PROCESS OF A PIECE OF COMPOSITE MATERIAL
CN109228276A (en) * 2018-11-20 2019-01-18 西部(银川)通用航空飞机制造有限公司 A kind of aircraft cabin cover thermal forming device and preparation method thereof
CN114734568A (en) * 2022-03-04 2022-07-12 东莞泰合复合材料有限公司 Forming method of carbon fiber composite material product
CN116811088B (en) * 2023-08-31 2023-11-17 成都永益泵业股份有限公司 Carbon fiber composite material, forming process and pump overcurrent component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014176422A (en) * 2013-03-13 2014-09-25 Sakura Rubber Co Ltd Fire hose

Also Published As

Publication number Publication date
JPH05124118A (en) 1993-05-21

Similar Documents

Publication Publication Date Title
CA2484174C (en) Controlled atmospheric pressure resin infusion process
WO2015107903A1 (en) Coated fiber-reinforced resin molding and process for producing same
US8034278B2 (en) Pressurized molding of composite parts
JPH04270610A (en) Crossover formation device for consolidating composite material
US11052573B2 (en) Method of fabricating both a woven fiber preform and a composite material part
JP3121070B2 (en) Molding method of fiber reinforced composite
JPH0825386A (en) Molding of fiber reinforced plastic structural member
JP2013545634A (en) Composite material molding equipment
CA2747382A1 (en) Process and apparatus for producing composite structures
US20150014898A1 (en) Device and method for producing a moulded part from a composite material
AU2011239964B2 (en) Method and apparatus for moulding parts made from composite materials
JP2003071856A (en) Rtm method
JPH04208416A (en) Molding method of fiber reinforced composite body and device therefor
JPH08118381A (en) Manufacture of cfrp molded product
JPH08290479A (en) Molding method for composite material
JP2008302498A (en) Resin transfer molding method and composite material
JP4824462B2 (en) Manufacturing method of fiber reinforced composite material
JP2017148973A (en) Method for manufacturing fiber-reinforced composite material molded product
JPH08108444A (en) Structural reaction injection molding apparatus and method
JP5240754B2 (en) Method for producing fiber reinforced composite
JP2009045927A (en) Method of manufacturing fiber reinforced plastic
JPS62135349A (en) Manufacture of fiber reinforced plastic
JPH04284225A (en) Molding method for fiber reinforced resin composite material
JPH0550438A (en) Prepreg for resin mold for forming surface layer of resin mold
Yalçinkaya Development of a composites manufacturing process to manufacture high quality composite laminates: Pressurized VARTM

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees