JP3120809U - Water pump equipment - Google Patents

Water pump equipment Download PDF

Info

Publication number
JP3120809U
JP3120809U JP2006000533U JP2006000533U JP3120809U JP 3120809 U JP3120809 U JP 3120809U JP 2006000533 U JP2006000533 U JP 2006000533U JP 2006000533 U JP2006000533 U JP 2006000533U JP 3120809 U JP3120809 U JP 3120809U
Authority
JP
Japan
Prior art keywords
water
pipe
storage chamber
check valve
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006000533U
Other languages
Japanese (ja)
Inventor
▲呉▼清傳
Original Assignee
▲呉▼清傳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ▲呉▼清傳 filed Critical ▲呉▼清傳
Priority to JP2006000533U priority Critical patent/JP3120809U/en
Application granted granted Critical
Publication of JP3120809U publication Critical patent/JP3120809U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】低コストで実現できる水力発電に利用できる送水ポンプ装置を提供する。
【解決手段】空圧機4にそれぞれ空気管を通じて接続された2組の送水装置A,Bからなり、空圧機によって2組の送水装置が交互に連続して動作される。貯水室が満水になった後、空圧機4によりエアバッグ11内に注入して膨張させ、貯水室1内の水を圧迫することで、貯水室1内の水を出水管セット2の各水管に送り込む。各水管の水位が各出水分岐管の位置よりも高い水位に達すると、第3の逆止弁25が開いて各出水分岐管から出水させる。汲み上げ装置5が同時に動作して水を出水管52に汲み上げ、分岐管54から水受け器33を通じて作用管31に送り込む。作用管の水位が、前記出水管セットの各出水分岐管の水位より高い水位に達すると、第4の逆止弁32が開かれることで、貯水室を通じて、出水管セット2の各水管が絶え間なく作用管31から進入する水を受け入れる。
【選択図】図1
A water pump device that can be used for hydroelectric power generation that can be realized at low cost is provided.
SOLUTION: Two sets of water feeding devices A and B are connected to a pneumatic machine 4 through air pipes, and the two sets of water feeding devices are alternately and continuously operated by the pneumatic machine. After the water storage chamber is full, the water is injected into the airbag 11 by the air pressure machine 4 and inflated, and the water in the water storage chamber 1 is compressed so that the water in the water storage chamber 1 is supplied to each water pipe of the drain pipe set 2. To send. When the water level of each water pipe reaches a higher water level than the position of each water outlet branch pipe, the third check valve 25 is opened to discharge water from each water outlet branch pipe. The pumping device 5 operates at the same time to pump water into the water outlet pipe 52 and send it from the branch pipe 54 to the working pipe 31 through the water receiver 33. When the water level of the working pipe reaches a water level higher than the water level of each outlet branch pipe of the outlet pipe set, the fourth check valve 32 is opened, so that each water pipe of the outlet pipe set 2 is continuously passed through the water storage chamber. Accept water entering from the working tube 31 without.
[Selection] Figure 1

Description

本考案は、空圧機にそれぞれ空気管を通じて接続された2組の送水装置からなり、空圧機によって2組の送水装置が交互に連続して動作される送水ポンプ装置であって、主として水位差により水力発電及び遠距離の水輸送を行うための送水ポンプ装置に関する。   The present invention is a water supply pump device comprising two sets of water supply devices each connected to a pneumatic machine through an air pipe, wherein the two sets of water supply devices are operated alternately and continuously by the pneumatic device, mainly due to the difference in water level. The present invention relates to a water pump device for hydroelectric power generation and long-distance water transportation.

現在地球資源は人類によって過度に開発され、枯渇の可能性があるだけでなく、地球全体の環境汚染の恐怖を招いており、エネルギーの代替案を見つけることが要求されている。人々の生活に関わる電力について言えば、火力、原子力、風力及び水力発電の形式がある。   Currently, earth resources are overdeveloped by mankind and not only can be depleted, but they also cause fears of global environmental pollution, and there is a need to find alternative energy. Speaking of electric power related to people's lives, there are forms of thermal power, nuclear power, wind power and hydroelectric power generation.

火力発電は、人類が最も早くから最も便利な発電方法として利用されているが、石油燃料を燃焼させるため、大量の煙塵と排気を発生し、酸性雨や温室効果、空気汚染、海洋汚染、河川汚染、ごみ汚染、毒性の化学物質の危険及びオゾン層破壊の危険などを生んでいる。原子力発電は、原理的には火力発電と似ており、ウラン燃料の核分裂の連鎖反応時に発生する熱で水を加熱して高温高圧の蒸気を生み出し、タービンを動かして発電機に発電させる。しかしながら、ウランの核分裂時にヨウ素、セシウム、ストロンチウム等の放射性元素が生成され、これらの放射性元素が空気中または水中に混入されやすく、循環用水が三重水素となり排水から環境に入り込みやすい。このうち、ヨウ素は甲状腺細胞に対する破壊力が大きく、癌の発生の原因となりやすい。その他の放射性物質の危険性としては、その他の放射性物質は半減期が長いため、水質や空気が汚染されると、食物連鎖を通して人体に進入して長期間累積され、人の骨や肝臓、腎臓などに癌を発症させて死亡へと至らせることがある。   Thermal power generation has been used by human beings as the most convenient power generation method since the earliest, but it generates a large amount of smoke and exhaust to burn petroleum fuel, so that acid rain, greenhouse effect, air pollution, marine pollution, river pollution In addition, it creates dust contamination, toxic chemical hazards and ozone depletion hazards. In principle, nuclear power generation is similar to thermal power generation, in which water is heated by the heat generated during the fission chain reaction of uranium fuel to produce high-temperature and high-pressure steam, and the turbine is moved to generate electricity. However, radioactive elements such as iodine, cesium, and strontium are generated during uranium fission, and these radioactive elements are likely to be mixed in the air or water, and the circulating water becomes tritium and easily enters the environment from wastewater. Of these, iodine has a great destructive power on thyroid cells and is likely to cause cancer. As other radioactive substances, because other radioactive substances have a long half-life, when water and air are contaminated, they enter the human body through the food chain and accumulate for a long period of time, resulting in human bones, liver and kidneys. In some cases, cancer develops, leading to death.

このため、自然の風力を用いた風力発電も利用されている。風の発生は太陽の熱が地表の空気を温め、空気が熱膨張し軽くなって上昇し、熱空気が上昇した後、低温の重空気が四方から流入するため、空気の流動が形成され、これが風力を生む。風力発電は、このような自然の風を利用するため公害を起すことがなく、またいくらでも利用できるが、風力と風向きが変わりやすく不安定であり、エネルギーを集中させることができない。また、発電のコストが従来のエネルギーに比べ高いため、台湾地区ではこの方法を大量に採用することはできない。   For this reason, wind power generation using natural wind power is also used. The generation of wind warms the air on the surface of the sun, the air expands and lightens and rises, and after the hot air rises, low-temperature heavy air flows in from all directions. This creates wind power. Wind power generation does not cause pollution because it uses such natural wind, and it can be used any number of times. However, wind power and wind direction are easily changed and unstable, and energy cannot be concentrated. In addition, because the cost of power generation is higher than conventional energy, this method cannot be used in large quantities in Taiwan.

水力発電は現在最も一般的な方法であるが、開発コストが高く、林地の保持が容易ではなく、泥の除去の問題もあり、これらには定期的なメンテナンス工程が必要となり、そのコストも巨額である。従来、水力発電は、最も環境に与える影響が少ない発電方法の一つであると認識されてきたが、近年の研究では、水力発電は石炭火力発電よりも破壊力がある可能性が指摘されている。その原因はダムに腐敗した植物がたまり、これらの腐敗した植物が大量の温室効果をもたらす気体を発生するためと言われている。   Hydroelectric power generation is the most common method at present, but the development cost is high, it is not easy to maintain the forest land, and there is a problem of removing mud. These require a regular maintenance process, and the cost is huge. It is. Conventionally, hydroelectric power generation has been recognized as one of the power generation methods with the least impact on the environment, but recent research has pointed out that hydropower generation may be more destructive than coal-fired power generation. Yes. The cause is said to be that rotted plants accumulate in the dam, and these rotted plants generate a large amount of gas that produces a greenhouse effect.

現在行われている発電の形態は、どれをとってもすべて欠点と環境保全において不適切な面があるため、地球エネルギーの枯渇という困難な問題に直面している今、積極的により便利で汚染のない発電源の開発が求められている。   All forms of power generation currently undertake have all the drawbacks and inadequate aspects of environmental protection, so we are faced with the difficult problem of depleting global energy, now more convenient and pollution free There is a need for the development of power generation.

本考案はこれに鑑みてなされたもので、その目的は、低コストで実現でき、しかも汚染を発生しない水力発電に利用できる送水ポンプ装置を提供することにある。   The present invention has been made in view of this, and an object of the present invention is to provide a water pump device that can be realized at low cost and can be used for hydroelectric power generation without causing contamination.

請求項1に係るは、空圧機にそれぞれ空気管を通じて接続された2組の送水装置からなり、前記空圧機によって前記2組の送水装置が交互に連続して動作されるものであって、上記課題を解決するために、各組の送水装置は、水面下に設置される貯水室、出水管セット、作用管及び汲み上げ装置から構成され、前記貯水室の内部に、該貯水室が満水になった後に前記空気管を通じて前記空圧機による空気注入を受けて膨張するエアバッグが配設され、前記貯水室上に前記出水管セットの下端及び前記作用管の下端が接続されると共に外部からの水圧を受けて開となる第1の逆止弁が設けられ、前記出水管セットは、少なくとも2本以上の水管を備え、各水管の下端が前記貯水室に連結され、前記各水管の下部に前記貯水室内の水圧を受けて開となる第2逆止弁が設けられ、前記各水管の上部にそれぞれ出水分岐管が設けられ、各出水分岐管上に、前記出水管セットの各水管の水位が前記各出水分岐管の配置位置よりも高い第1の水位に達すると圧力を受けて開となる第3の逆止弁が設けられ、前記作用管の下端が前記貯水室に連結され、前記作用管の下部に、該作用管の水位が前記第1の水位よりも高い第2の水位に達すると圧力を受けて開となる第4の逆止弁が設けられ、前記作用管の上部であって、かつ前記各出水分岐管の配置位置よりも高い位置に水受け器が設けられ、前記汲み上げ装置は出水管を備え、前記出水管の下端部に、前記空圧機と同時に動作して水を前記出水管に汲み上げる高圧モータが接続され、前記出水管の上部に水を送り込む分岐管が前記作用管の水受け器の上方に臨んで延伸された、ことを特徴とする。   According to claim 1, the air conditioner includes two sets of water feeding devices connected to each other through an air pipe, and the two sets of water feeding devices are alternately and continuously operated by the pneumatic pressure machine. In order to solve the problem, each set of water feeding devices is composed of a water storage chamber, a water discharge pipe set, a working pipe and a pumping device installed under the surface of the water, and the water storage chamber is filled with water inside the water storage chamber. After that, an airbag that is inflated by injecting air from the pneumatic machine through the air pipe is disposed, and a lower end of the drain pipe set and a lower end of the working pipe are connected to the water storage chamber, and water pressure from the outside is connected. A first check valve that is opened upon receipt of the water pipe, and the drain pipe set includes at least two water pipes, and a lower end of each water pipe is connected to the water storage chamber, and the water pipe is disposed below the water pipe. Opened under water pressure in the reservoir A second check valve is provided, a water discharge branch pipe is provided above each water pipe, and the water level of each water pipe of the water discharge pipe set is set on each water discharge branch pipe from the position where each water discharge branch pipe is arranged. A third check valve that opens under pressure when the first water level is reached is provided, the lower end of the working tube is connected to the water storage chamber, and the lower portion of the working tube When a water level reaches a second water level higher than the first water level, there is provided a fourth check valve that opens under pressure, and is provided at the upper part of the working pipe and in each of the outlet branch pipes. A water receiver is provided at a position higher than the arrangement position, and the pumping device is provided with a water discharge pipe, and a high-pressure motor that operates simultaneously with the pneumatic machine and pumps water into the water discharge pipe is connected to a lower end portion of the water discharge pipe. A branch pipe that feeds water into the upper part of the drain pipe is a water receiver of the working pipe. The stretched facing the upwardly, characterized in that.

本考案の送水ポンプ装置は、以下のように動作を行う。前記第1の逆止弁が開となることで前記貯水室が満水になった後、前記空圧機が気体を1組の送水装置の貯水室の前記エアバッグ内に注入する。前記エアバッグが膨張して前記貯水室内の水を圧迫することで、前記第2の逆止弁が開かれて前記貯水室内の水が各水管に送り込まれる。前記各水管の水位が前記各出水分岐管よりも高い前記第1の水位に達すると、前記第3の逆止弁が開いて前記各出水分岐管から出水させる。さらに、前記汲み上げ装置の高圧モータが前記空圧機と同時に動作して水を前記出水管に汲み上げ、前記出水管の水を前記分岐管から前記水受け器へと送り込む。   The water pump device of the present invention operates as follows. After the first check valve is opened and the water storage chamber becomes full, the pneumatic machine injects gas into the air bag of the water storage chamber of a set of water feeding devices. When the airbag is inflated to press the water in the water storage chamber, the second check valve is opened, and the water in the water storage chamber is sent to each water pipe. When the water level of each water pipe reaches the first water level higher than that of each water outlet branch pipe, the third check valve is opened and water flows out from each water outlet branch pipe. Further, the high-pressure motor of the pumping device operates simultaneously with the pneumatic machine to pump water into the water discharge pipe, and feeds the water in the water discharge pipe from the branch pipe to the water receiver.

前記水受け器を通じて水を送られた前記作用管の水位が、前記出水管セットの各出水分岐管の水位より高い第2の水位に達すると、前記第4の逆止弁が開かれる。前記第4の逆止弁が開かれることで、前記作用管と前記出水管セットの各水管とが前記貯水室を通じて連通され、前記出水管セットの各水管が絶え間なく前記作用管から進入する水を受け入れる。前記出水管セットの各水管の水位が上がり、前記貯水室のエアバッグが極限まで膨張すると、前記空圧機が気体を他組の送水装置の貯水室のエアバッグへと送り込み始め、前記1組の送水装置と同じ動作を行うことより絶え間なく水が送り出される。 The fourth check valve is opened when the water level of the working pipe fed with water through the water receiver reaches a second water level higher than the water level of each outlet branch pipe of the outlet pipe set. By opening the fourth check valve, the working pipe and each water pipe of the drain pipe set are communicated with each other through the water storage chamber, and each water pipe of the drain pipe set continuously enters from the working pipe. Accept. When the water level of each water pipe of the drain pipe set rises and the air bag of the water storage chamber expands to the limit, the pneumatic machine starts to send gas into the air bag of the water storage chamber of another set of water supply devices, Water is continuously sent out by performing the same operation as the water supply device.

本考案の送水ポンプ装置によれば、構造が簡単で、コストが低く、水位差で発電するという目的を達することができるだけでなく、遠距離の水の輸送、荒漠の灌漑を行うこともできる。   According to the water pump device of the present invention, not only can the structure be simple, the cost is low, and the purpose of generating electricity with a difference in water level can be achieved, but also the transportation of long-distance water and the irrigation of the desert can be performed.

以下、本考案の実施の形態を図面に基いて詳細に説明する。図1は、本考案の実施形態に係る送水ポンプ装置を示す正面図である。図1に示すように、送水ポンプ装置は、空圧機4にそれぞれ空気管41,41を通じて接続された2組(右側と左側)の送水装置A,Bからなる。2組の送水装置A,Bは、空圧機4によって交互に連続して動作する。各組の送水装置A,Bは、同じ構成のものであり、以下の構成を備えるものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front view showing a water pump device according to an embodiment of the present invention. As shown in FIG. 1, the water supply pump device includes two sets (right side and left side) of water supply devices A and B connected to the pneumatic machine 4 through air pipes 41 and 41, respectively. The two sets of water feeding devices A and B operate alternately and continuously by the pneumatic machine 4. Each set of water feeding devices A and B has the same configuration, and has the following configuration.

すなわち、送水装置Aの基本構成は、貯水室1、出水管セット2、作用管31及び汲み上げ装置5から構成されている。貯水室1は、使用時には水面下に設置される。貯水室1の内部にはエアバッグ11が配設され、空気管41の端部がエアバッグ11に接続されており、気体をエアバッグ11内に送り込むことができるようになっている。エアバッグ11は、貯水室1が満水になった後に空圧機4による空気注入を受ける。貯水室1の上部には、中央に外部からの水圧を受けて開となる第1の逆止弁12が設けられ、右側寄りに出水管セット2の下端が接続され、左側寄りに作用管31の下端が接続されている。   In other words, the basic configuration of the water supply device A includes a water storage chamber 1, a water discharge pipe set 2, a working pipe 31 and a pumping device 5. The water storage chamber 1 is installed below the surface of the water when in use. An air bag 11 is disposed inside the water storage chamber 1, and an end of an air pipe 41 is connected to the air bag 11 so that gas can be fed into the air bag 11. The air bag 11 receives air injection from the pneumatic machine 4 after the water storage chamber 1 is full. In the upper part of the water storage chamber 1, a first check valve 12 that is opened by receiving water pressure from the outside is provided at the center, the lower end of the water discharge pipe set 2 is connected to the right side, and the working pipe 31 is on the left side. Is connected at the bottom.

出水管セット2は少なくとも2本以上の水管を備える。本実施形態では、図1に示すように第1乃至第3水管21、22、23の3本が設けられた構成となっている。各水管21〜23の下端は貯水室1に連結され、各水管21〜23の下部には、貯水室1内の水圧を受けて開となる第2の逆止弁24が設けられている。また、各水管21〜23の上部には出水分岐管、即ち第1分岐管211、第2分岐管221、第3分岐管231がそれぞれ設けられている。さらに各分岐管211、221、231上には、出水管セット2の各水管21〜23の水位が各出水分岐管211、221、231の配置位置よりも高い第1の水位W(図2参照)に達すると圧力を受けて開となる第3の逆止弁25が設けられている。   The drain pipe set 2 includes at least two water pipes. In the present embodiment, as shown in FIG. 1, the first to third water pipes 21, 22, and 23 are provided. The lower ends of the water pipes 21 to 23 are connected to the water storage chamber 1, and a second check valve 24 that is opened by receiving the water pressure in the water storage chamber 1 is provided below the water pipes 21 to 23. In addition, a water outlet branch pipe, that is, a first branch pipe 211, a second branch pipe 221, and a third branch pipe 231 are provided above the water pipes 21 to 23, respectively. Furthermore, on each branch pipe 211,221,231, the 1st water level W (refer FIG. 2) where the water level of each water pipe 21-23 of the water discharge pipe set 2 is higher than the arrangement position of each water discharge branch pipe 211,221,231. ), A third check valve 25 is provided that opens upon receiving pressure.

作用管31は、下端が貯水室1に連結されている。作用管31の下部には、該作用管31の水位が前記第1の水位Wよりも高い第2の水位に達すると圧力を受けて開となる第4の逆止弁32が設けられている。また、作用管31の上部には、各出水分岐管211、221、231の配置位置よりも高い位置に水受け器33が設けられている。なお、本実施形態においては水受け器33は図1に示すように漏斗で構成している。   The lower end of the working tube 31 is connected to the water storage chamber 1. A fourth check valve 32 is provided at the lower portion of the working tube 31. The fourth check valve 32 is opened by receiving pressure when the water level of the working tube 31 reaches a second water level higher than the first water level W. . Further, a water receiver 33 is provided above the working pipe 31 at a position higher than the arrangement position of the water outlet branch pipes 211, 221 and 231. In the present embodiment, the water receiver 33 is a funnel as shown in FIG.

汲み上げ装置5は出水管52を有し、出水管52の下端部には空圧機4と同時に動作して水を出水管52に汲み上げる高圧モータ51が接続されている。出水管52の上部からは、作用管31の水受け器33の上方に臨んで分岐管54が延伸されており、出水管52に汲み上げられた水を分岐管54から作用管31の水受け器33に送ることができるようになっている。出水管52と分岐管54との分岐箇所には第5の逆止弁53が設けられている。   The pumping device 5 has a water discharge pipe 52, and a high pressure motor 51 that operates simultaneously with the pneumatic machine 4 and pumps water into the water discharge pipe 52 is connected to the lower end of the water discharge pipe 52. A branch pipe 54 extends from the upper part of the water discharge pipe 52 so as to face above the water receiver 33 of the working pipe 31, and the water pumped up to the water discharge pipe 52 from the branch pipe 54 to the water receiver of the working pipe 31. 33 can be sent. A fifth check valve 53 is provided at a branch point between the water discharge pipe 52 and the branch pipe 54.

本考案の送水ポンプ装置は、以下のように動作を行う。使用時には、貯水室1、1Bを水面下に配置する。すると、第1の逆止弁12が水圧を受けて開き、水が貯水室1に引き入れられて貯水室1が満水になる。貯水室1が満水になった後、空圧機4を作動させる。図2に示すように、空圧機4が気体を空気管41を通じて1組の送水装置Aのエアバッグ11に注入し、エアバッグ11を膨張させて貯水室1内の水を圧迫する。このとき、第1の逆止弁12及び第4の逆止弁32はすべて閉じており、出水管セット2に設けられた第2の逆止弁24は貯水室1の強大な水圧を受けて開き、貯水室1内の水が各水管21〜23に送り込まれる。   The water pump device of the present invention operates as follows. In use, the water storage chambers 1 and 1B are disposed below the water surface. Then, the first check valve 12 is opened by receiving water pressure, and water is drawn into the water storage chamber 1 so that the water storage chamber 1 becomes full. After the water storage chamber 1 is full, the pneumatic machine 4 is operated. As shown in FIG. 2, the pneumatic machine 4 injects gas into the airbag 11 of the pair of water feeding devices A through the air pipe 41 and inflates the airbag 11 to compress the water in the water storage chamber 1. At this time, the first check valve 12 and the fourth check valve 32 are all closed, and the second check valve 24 provided in the drain pipe set 2 receives the strong water pressure in the water storage chamber 1. It opens, and the water in the water storage chamber 1 is sent to each water pipe 21-23.

このとき各分岐管211,221,231に設けられた第3の逆止弁25は閉じており、出水管セット2の各水管21〜23の水位が各分岐管211、221、231よりも高い一定高さの水位W(第1の水位)に達すると、第3の逆止弁25が圧力を受けて開き、水を分岐管211、221、231から送り出す。なお、各分岐管211、221、231は相当の高さを備えているため、水を高い位置に蓄え、落差で発電するという目的を達することができる。   At this time, the third check valves 25 provided in the branch pipes 211, 221, and 231 are closed, and the water levels of the water pipes 21 to 23 of the drain pipe set 2 are higher than those of the branch pipes 211, 221, and 231. When the water level W (first water level) at a certain height is reached, the third check valve 25 is opened under pressure, and water is sent out from the branch pipes 211, 221 and 231. In addition, since each branch pipe 211, 221, 231 has a considerable height, the purpose of storing water at a high position and generating power with a head can be achieved.

一方、汲み上げ装置5の高圧モータ51も同時に動作し、水を出水管52に汲み上げ、分岐管54の第5の逆止弁53の高さよりも出水管52の水位が高くなると、第5の逆止弁53が開いて水を分岐管54から水受け器33へと送り込む。水受け器33を通じて水を送られた作用管31の水位が、出水管セット2の第1の水位Wより高くなると、下端部の第4の逆止弁32が圧力を受けて開く。第4の逆止弁32が開かれることで、作用管31と出水管セット2の各水管21〜23とが貯水室1を通じて連通され、出水管セット2の各水管21〜23が絶え間なく作用管31から進入する水を受け入れる。出水管セット2の各水管21〜23の水位が上がり、各出水分岐管211、221、231から絶え間なく水が送り出される。   On the other hand, when the high-pressure motor 51 of the pumping device 5 operates simultaneously to pump water into the water discharge pipe 52 and the water level of the water discharge pipe 52 becomes higher than the height of the fifth check valve 53 of the branch pipe 54, the fifth reverse The stop valve 53 opens and feeds water from the branch pipe 54 to the water receiver 33. When the water level of the working pipe 31 fed with water through the water receiver 33 becomes higher than the first water level W of the outlet pipe set 2, the fourth check valve 32 at the lower end receives the pressure and opens. By opening the fourth check valve 32, the working pipe 31 and the water pipes 21 to 23 of the water discharge pipe set 2 are communicated with each other through the water storage chamber 1, and the water pipes 21 to 23 of the water discharge pipe set 2 are continuously operated. Accepts water entering from the tube 31. The water levels of the water pipes 21 to 23 of the water discharge pipe set 2 are raised, and water is continuously sent out from the water discharge branch pipes 211, 221, and 231.

貯水室1のエアバッグ11が極限まで膨張すると、空圧機4は気体を他組の送水装置Bの貯水室1Bのエアバッグへと送り込み始める(図3参照)。送水装置Bの動作は、前述の1組の送水装置と同じ動作を行う。このとき、右側の送水装置Aの貯水室1のエアバッグ11は膨張が徐々に解消されるものの、作用管31及び汲み上げ装置5は動作を継続しており、出水管セット2から絶え間なく水を送り出す。図3に示す左側の出水管セットから出水が始まると右側の出水管セットからの出水が停止するため、水源を絶え間なく送り出すことができる。よって、発電を継続するという目的を達することができる。   When the air bag 11 of the water storage chamber 1 is expanded to the limit, the pneumatic machine 4 starts to send gas into the air bag of the water storage chamber 1B of the other water supply device B (see FIG. 3). The operation of the water feeding device B performs the same operation as that of the above-described one set of water feeding devices. At this time, although the inflation of the air bag 11 in the water storage chamber 1 of the right water supply device A is gradually eliminated, the working tube 31 and the pumping device 5 continue to operate, and water is continuously supplied from the drain pipe set 2. Send it out. When water starts to be discharged from the left water discharge pipe set shown in FIG. 3, water discharge from the right water discharge pipe set stops, so that the water source can be sent out continuously. Therefore, the purpose of continuing power generation can be achieved.

本考案の作用管31は高さ400メートル、直径2センチの細管とすることができる。また、空圧機4及び高圧モータ51が必要とする電力は、風力発電によって給することができ、発電の方法はすべて自然界から得られる力でまかなわれる。   The working tube 31 of the present invention can be a thin tube having a height of 400 meters and a diameter of 2 centimeters. Moreover, the electric power which the pneumatic machine 4 and the high voltage | pressure motor 51 require can be supplied by wind power generation, and all the methods of electric power generation are covered with the force obtained from the natural world.

上述の送水ポンプ装置は、出水管セット2を内陸へと伸入させ、遠隔地の灌漑などに用いるという目的を達することもできる。上述のように、本考案の送水ポンプ装置は、簡単な作用管31による水位を水圧給水の過程に組み合わせ、水位差発電の目的を確実に達することができる。このため、現在の発電に起因する汚染及び高コストの欠点を改善し、環境保護及び低コストという効果が得られるものである。   The above-described water pump device can also achieve the purpose of extending the drain pipe set 2 inland and using it for irrigation in a remote area. As described above, the water pump device of the present invention can reliably achieve the purpose of water level difference power generation by combining the water level by the simple working tube 31 with the process of hydraulic water supply. For this reason, it is possible to improve the pollution and high cost disadvantages caused by the current power generation, and to obtain the effects of environmental protection and low cost.

本考案の実施形態に係る送水ポンプ装置を示す正面図である。It is a front view which shows the water pump apparatus which concerns on embodiment of this invention. 同上の実施形態の送水ポンプ装置における送水装置Aの動作状態を示す正面図である。It is a front view which shows the operation state of the water supply apparatus A in the water pump apparatus of embodiment same as the above. 同上の実施形態の送水ポンプ装置における送水装置Bの動作状態を示す正面図である。It is a front view which shows the operation state of the water supply apparatus B in the water pump apparatus of embodiment same as the above.

符号の説明Explanation of symbols

A 送水装置
B 送水装置
1 貯水室
2 出水管セット
4 空圧機
5 汲み上げ装置
11 エアバッグ
12 第1の逆止弁
21 第1水管
22 第2水管
23 第3水管
24 第2の逆止弁
25 第3の逆止弁
31 作用管
32 第4の逆止弁
33 水受け器
41 空気管
51 高圧モータ
52 出水管
53 第5の逆止弁
54 分岐管
211 第1分岐管
221 第2分岐管
231 第3分岐管
A Water supply device B Water supply device 1 Water storage chamber 2 Drain pipe set 4 Pneumatic machine 5 Pumping device 11 Air bag 12 First check valve 21 First water pipe 22 Second water pipe 23 Third water pipe 24 Second check valve 25 Second 3 check valve 31 working pipe 32 fourth check valve 33 water receiver 41 air pipe 51 high pressure motor 52 drain pipe 53 fifth check valve 54 branch pipe 211 first branch pipe 221 second branch pipe 231 first 3 branch pipe

Claims (1)

空圧機にそれぞれ空気管を通じて接続された2組の送水装置からなり、前記空圧機によって前記2組の送水装置が交互に連続して動作される送水ポンプ装置であって、
各組の送水装置は、水面下に設置される貯水室、出水管セット、作用管及び汲み上げ装置から構成され、
前記貯水室の内部に、該貯水室が満水になった後に前記空気管を通じて前記空圧機による空気注入を受けて膨張するエアバッグが配設され、前記貯水室上に前記出水管セットの下端及び前記作用管の下端が接続されると共に外部からの水圧を受けて開となる第1の逆止弁が設けられ、
前記出水管セットは、少なくとも2本以上の水管を備え、各水管の下端が前記貯水室に連結され、前記各水管の下部に前記貯水室内の水圧を受けて開となる第2逆止弁が設けられ、前記各水管の上部にそれぞれ出水分岐管が設けられ、各出水分岐管上に、前記出水管セットの各水管の水位が前記各出水分岐管の配置位置よりも高い第1の水位に達すると圧力を受けて開となる第3の逆止弁が設けられ、
前記作用管の下端が前記貯水室に連結され、前記作用管の下部に、該作用管の水位が前記第1の水位よりも高い第2の水位に達すると圧力を受けて開となる第4の逆止弁が設けられ、前記作用管の上部であって、かつ前記各出水分岐管の配置位置よりも高い位置に水受け器が設けられ、
前記汲み上げ装置は出水管を備え、前記出水管の下端部に、前記空圧機と同時に動作して水を前記出水管に汲み上げる高圧モータが接続され、前記出水管の上部に水を送り込む分岐管が前記作用管の水受け器の上方に臨んで延伸された、ことを特徴とする送水ポンプ装置。
A water supply pump device comprising two sets of water supply devices connected to the pneumatic machine through air pipes, wherein the two sets of water supply devices are operated alternately and continuously by the pneumatic device,
Each set of water supply devices consists of a water storage chamber, a drain pipe set, a working tube and a pumping device installed under the surface of the water.
An airbag that is inflated by receiving air injection by the pneumatic machine through the air pipe after the water storage room is full is disposed in the water storage room, and a lower end of the drain pipe set and The lower end of the working tube is connected and a first check valve that is opened by receiving water pressure from the outside is provided,
The drain pipe set includes at least two or more water pipes, a lower end of each water pipe is connected to the water storage chamber, and a second check valve that is opened by receiving water pressure in the water storage chamber is provided below the water pipe. A water outlet branch pipe is provided above each water pipe, and the water level of each water pipe of the water outlet set is higher than the arrangement position of each water outlet branch pipe on each water outlet branch pipe. A third check valve is provided that opens upon receiving pressure,
A lower end of the working pipe is connected to the water storage chamber, and a fourth is opened under pressure when the water level of the working pipe reaches a second water level higher than the first water level. A check valve is provided, and a water receiver is provided at a position above the working pipe and higher than the arrangement position of each of the outlet branch pipes,
The pumping device includes a water discharge pipe, and a lower end of the water discharge pipe is connected to a high-pressure motor that operates simultaneously with the air pressure machine to pump water into the water discharge pipe, and a branch pipe that feeds water to the upper portion of the water discharge pipe. A water supply pump device, characterized in that the water supply pump device extends toward the upper side of the water receiver of the working tube.
JP2006000533U 2006-01-30 2006-01-30 Water pump equipment Expired - Fee Related JP3120809U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006000533U JP3120809U (en) 2006-01-30 2006-01-30 Water pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006000533U JP3120809U (en) 2006-01-30 2006-01-30 Water pump equipment

Publications (1)

Publication Number Publication Date
JP3120809U true JP3120809U (en) 2006-04-20

Family

ID=43470960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006000533U Expired - Fee Related JP3120809U (en) 2006-01-30 2006-01-30 Water pump equipment

Country Status (1)

Country Link
JP (1) JP3120809U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102641935B1 (en) * 2023-09-27 2024-02-27 김명식 Wastewater tank package system with air pumping tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102641935B1 (en) * 2023-09-27 2024-02-27 김명식 Wastewater tank package system with air pumping tube

Similar Documents

Publication Publication Date Title
US20100253080A1 (en) Apparatus for Generating Electricity
CN103343678B (en) System and method for exploiting water-soluble gas by injecting carbon dioxide
CN201110242Y (en) Siphoning type pipe generator
CN105019397B (en) A kind of wind and SEA LEVEL VARIATION is utilized to carry out the Novel revetment structure generated electricity
CN201526405U (en) Vacuum siphon water-passing power generation device
WO2022166317A1 (en) Power generation device enabling high efficiency of low-water head micro-water volume water source
JP3120809U (en) Water pump equipment
CN201934246U (en) Communicated semi-closed differential-pressure-type quantitative water cycle power generation device
KR20120003791A (en) Pumping-up power generation system
JPH03294662A (en) Sea water pumping power generator
CN210087533U (en) Water hammer pump sea wave power generation system for pumping water by utilizing oscillating water column
CN208996886U (en) A kind of tidal type water storage device and generating equipment
CN103822388B (en) A kind of heat supply generating of wave comprehensive utilization and seawater desalination system
CN105927461A (en) Wave-focusing turbine type power generating device
US7287543B2 (en) Hydraulic device
CN204402446U (en) A kind of underground petroleum quarrying apparatus based on solar power source
CN204344094U (en) A kind of underground petroleum quarrying apparatus based on solar power source
CN2864144Y (en) Waterpower kinetic energy generator
KR20090025648A (en) Generating system using compressed air in abandoned mine or cave, and the method thereof
JP2003120599A (en) Water hammer type hydraulic power generation system
KR101531554B1 (en) Solar energy reinforce system having recycles of pumping up and down water and air for electric energy generation system
CN208669509U (en) A kind of watermill type tidal-energy electric generator set
CN101059117A (en) Energy-storage type device for making same water runoff doing work
AU2006100291A4 (en) Hydraulic device
JP2017053246A (en) Power generating system and power generating method

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees