JP3118325B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP3118325B2
JP3118325B2 JP04202980A JP20298092A JP3118325B2 JP 3118325 B2 JP3118325 B2 JP 3118325B2 JP 04202980 A JP04202980 A JP 04202980A JP 20298092 A JP20298092 A JP 20298092A JP 3118325 B2 JP3118325 B2 JP 3118325B2
Authority
JP
Japan
Prior art keywords
transfer
ccd
surface potential
state
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04202980A
Other languages
Japanese (ja)
Other versions
JPH0621429A (en
Inventor
栄一郎 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04202980A priority Critical patent/JP3118325B2/en
Publication of JPH0621429A publication Critical patent/JPH0621429A/en
Application granted granted Critical
Publication of JP3118325B2 publication Critical patent/JP3118325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2種類以上の異なるゲ
ート構造を有するCCD型固体撮像素子等の固体撮像素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device such as a CCD solid-state imaging device having two or more different gate structures.

【0002】[0002]

【従来の技術】従来、家庭用ビデオカメラ等に使用され
るCCD型固体撮像素子は、フレームトランスファ型と
インターライン型とに大別される。そして、フレームト
ランスファ型の場合は、例えば文献「固体撮像デバイ
ス」(株式会社昭晃堂,昭和61年7月30日初版第1
刷発行)の90頁,図4.6に記載されているように撮
像部(イメージ部),蓄積部,水平シフトレジスタ(水
平読出しレジスタ),出力部(検出,増幅部)からな
る。
2. Description of the Related Art Conventionally, CCD solid-state imaging devices used in home video cameras and the like are roughly classified into frame transfer type and interline type. In the case of the frame transfer type, for example, the document “Solid-state imaging device” (Shokodo Co., Ltd., first edition first published on July 30, 1986)
As shown in page 4.6 of FIG. 4.6, the image pickup section (image section), storage section, horizontal shift register (horizontal read register), and output section (detection / amplification section).

【0003】そして、撮像光の受光に基づく撮像部の信
号電荷は、各部のCCDにより撮像部から出力部に順に
転送され、出力部から外部に映像信号(画像信号)とし
て読出される。
[0005] The signal charges of the imaging section based on the reception of the imaging light are sequentially transferred from the imaging section to the output section by the CCD of each section, and are read out from the output section to the outside as a video signal (image signal).

【0004】また、インターライン型の場合は、例えば
前記文献の93頁,図4.10に記載されているように
撮像部に蓄積部としての垂直シフトレジスタ(垂直CC
D)が設けられ、この垂直レジスタから水平レジスタ
(水平CCD)を介して出力部に信号電荷が順に転送さ
れる。そして、フレームトランスファ型,インターライ
ン型のいずれであっても、信号電荷を転送する撮像部,
蓄積部(垂直シフトレジスタ),水平シフトレジスタ,
出力部のCCDのゲート構造が異なる場合がある。
In the case of the interline type, for example, as described in FIG.
D) is provided, and signal charges are sequentially transferred from the vertical register to the output unit via a horizontal register (horizontal CCD). An imaging unit for transferring signal charges, regardless of whether it is a frame transfer type or an interline type,
Storage unit (vertical shift register), horizontal shift register,
The gate structure of the CCD of the output unit may be different.

【0005】例えばフレームトランスファ型のCCD型
固体撮像素子の場合、撮像部に狭チャンネル効果をもた
せるため、図4に示すように撮像部1のCCDのゲート
電極2と蓄積部3のCCDのゲート電極4との形状が異
なる。なお、図4の5はチャンネル分離領域(チャンネ
ルストップ拡散領域)を示し、領域5間が信号電荷転送
路としてのCCDチャンネルを形成する。
For example, in the case of a frame transfer type CCD solid-state image pickup device, as shown in FIG. 4, a CCD gate electrode 2 of the image pickup unit 1 and a gate electrode of the CCD of the storage unit 3 are provided as shown in FIG. 4 is different. In FIG. 4, reference numeral 5 denotes a channel separation region (channel stop diffusion region), and a region between the regions 5 forms a CCD channel as a signal charge transfer path.

【0006】また、7は各ゲート電極2の狭チャンネル
部2’の周囲に形成された入射光の窓であり、前記文献
の92頁に記載されているように青色感度の低下を改善
する。そして、各ゲート電極2,4に例えば2相又は3
相の駆動方式で転送ゲートパルスが順に印加され、信号
電荷が図の矢印線sの方向に転送される。
Reference numeral 7 denotes an incident light window formed around the narrow channel portion 2 'of each gate electrode 2, which improves the reduction in blue sensitivity as described on page 92 of the above-mentioned document. Then, for example, two-phase or three-phase
The transfer gate pulse is sequentially applied by the phase driving method, and the signal charges are transferred in the direction of the arrow line s in the figure.

【0007】このとき、撮像部1,蓄積部3の同一ゲー
ト構造の部分だけでなく、ゲート電極2からゲート電極
4に変わるゲート構造の境界部分においても信号電荷を
完全に転送しなければ、画質の著しい劣化が生じる。し
かし、前記境界部分においては、ゲート構造の違いに基
づき、ゲート電極2の受渡側CCDとゲート電極4の受
取側CCD4とに同じ電圧(大きさ)のゲートパルスを
印加しても、元の表面電位(ポテンシャル)の深さが異
なり、転送に必要な十分な表面電位差が形成されない事
態が生じる。
At this time, if the signal charge is not completely transferred not only at the same gate structure of the imaging unit 1 and the storage unit 3 but also at the boundary of the gate structure changing from the gate electrode 2 to the gate electrode 4, the image quality will be high. Significantly deteriorated. However, at the boundary portion, even if a gate pulse of the same voltage (magnitude) is applied to the transfer side CCD of the gate electrode 2 and the transfer side CCD 4 of the gate electrode 4 based on the difference in the gate structure, the original surface is not affected. The depth of the potential (potential) differs, and a situation occurs in which a sufficient surface potential difference required for transfer is not formed.

【0008】そこで、従来は図5に示すように受渡側C
CDのゲートパルスP1 より受取側CCDのゲートパル
スP2 を電圧Va高くする。この場合、ゲートパルスP
1 ,P2 の印加に基づき、図6に示すように撮像部1の
表面電位が蓄積部3のそれより全体的に十分浅くなり、
両部1,3の境界部分8に、転送方向に浅い状態から深
い状態に変化する十分に大きな表面電位差φaが生じ
る。
Therefore, conventionally, as shown in FIG.
High voltage Va of the gate pulse P 2 of the receiving CCD than the gate pulse P 1 of the CD. In this case, the gate pulse P
Based on the application of P 1 and P 2 , the surface potential of the imaging unit 1 becomes sufficiently shallower than that of the storage unit 3 as shown in FIG.
A sufficiently large surface potential difference φa that changes from a shallow state to a deep state in the transfer direction occurs at a boundary portion 8 between the two portions 1 and 3.

【0009】そして、この大きな表面電位差φaによ
り、図6の矢印線eに示すように、境界部分8でも信号
電荷が完全に転送される。そして、信号電荷の完全な転
送を行うには、撮像部1,蓄積部3間だけでなく、信号
電荷転送路のゲート構造が異なる各部間において、受渡
側の転送ゲートパルスと受取側の転送ゲートパルスとに
電圧差をもたせて境界部分に十分に大きな表面電位差を
形成する必要がある。
Due to the large surface potential difference φa, signal charges are completely transferred even at the boundary portion 8 as shown by the arrow line e in FIG. In order to perform the complete transfer of the signal charge, the transfer gate pulse on the transfer side and the transfer gate on the receive side are used not only between the imaging unit 1 and the storage unit 3 but also between the units having different signal charge transfer path gate structures. It is necessary to provide a sufficiently large surface potential difference at the boundary by giving a voltage difference to the pulse.

【0010】[0010]

【発明が解決しようとする課題】前記従来の固体撮像素
子の場合、ゲート構造が異なる各部間で転送ゲートパル
スの電圧を変えるため、複雑なゲートパルス発生回路を
要する問題点がある。しかも、ゲート構造が複数個所で
変わるときは、転送ゲートパルスの電圧を順次高くして
表面電位を後段になる程深くする必要があるが、転送ゲ
ートパルスの電位を無制限に高くすることはできず、不
完全転送が生じ易くなる等の問題点がある。
In the case of the above-mentioned conventional solid-state imaging device, there is a problem that a complicated gate pulse generating circuit is required because the voltage of the transfer gate pulse is changed between the parts having different gate structures. In addition, when the gate structure changes at a plurality of locations, it is necessary to sequentially increase the voltage of the transfer gate pulse to make the surface potential deeper in the later stage, but the potential of the transfer gate pulse cannot be increased without limit. And incomplete transfer is likely to occur.

【0011】本発明は、ゲート構造が異なるCCD間の
表面電位(ポテンシャル)をその境界部分に集中して変
えるようにし、境界部分の受渡側と受取側の転送ゲート
パルスに電圧差をつけることなく信号電荷の完全転送が
行えるようにする。
According to the present invention, the surface potential (potential) between CCDs having different gate structures is changed in a concentrated manner at a boundary portion thereof, and a transfer gate pulse between the transfer side and the reception side at the boundary portion is not subjected to a voltage difference. It enables complete transfer of signal charges.

【0012】[0012]

【課題を解決するための手段】前記の目的を達成するた
めに、本発明の固体撮像素子においては、信号電荷転送
路のゲート構造が変化するCCD境界部分の一方のゲー
ト構造の受渡側CCD又は他方のゲート構造の受取側C
CDを、表面電位が境界部分で転送方向に深い状態から
浅い状態に徐々に変化するCCDにより形成し、両側C
CDの表面電位差を前記境界部分に集中し、前記両側C
CDの境界で転送方向に浅い状態から深い状態に急峻変
化する表面電位差を形成する。
In order to achieve the above object, in a solid-state image pickup device according to the present invention, a transfer-side CCD or a transfer-side CCD of one of the gate structures at a CCD boundary where a gate structure of a signal charge transfer path changes. Receiving side C of the other gate structure
The CD is formed by a CCD whose surface potential gradually changes from a deep state to a shallow state in the transfer direction at the boundary,
The surface potential difference of the CD is concentrated on the boundary,
At the boundary of the CD, a surface potential difference is formed that changes sharply from a shallow state to a deep state in the transfer direction.

【0013】[0013]

【作用】前記のように構成された本発明の固体撮像素子
の場合、信号電荷転送路のゲート構造が異なる部分にお
いて、例えば、信号電荷の受渡側の元の表面電位が転送
劣化の発生しない範囲で徐々に変化して不完全転送の発
生し易い境界に急峻変化する大きな表面電位差がつけら
れる。
In the solid-state imaging device according to the present invention having the above-described structure, for example, in a portion where the gate structure of the signal charge transfer path is different, for example, the range in which the original surface potential on the signal charge transfer side does not cause transfer deterioration is generated. Thus, a large surface potential difference that changes gradually and sharply changes is applied to a boundary where incomplete transfer is likely to occur.

【0014】そのため、受渡側CCD,受取側CCDの
転送ゲートパルスをレベルシフトして異ならせることな
く、信号電荷の完全転送が行える。そして、ゲート構造
が信号転送路中の複数個所で異なっていても、従来のよ
うに転送ゲートパルスを次第に高くして表面電位を次第
に深くする必要がない。
Therefore, the signal charges can be completely transferred without level shifting the transfer gate pulses of the transfer side CCD and the transfer side CCD. Even if the gate structure is different at a plurality of points in the signal transfer path, it is not necessary to gradually increase the transfer gate pulse and gradually increase the surface potential as in the conventional case.

【0015】[0015]

【実施例】実施例について、図1ないし図3を参照して
説明する。ゲート構造を示した図2の(a)において、
図4と同一符号は同一もしくは相当するものを示し、9
は図4の撮像部1等の一方のゲート構造の受渡側CC
D、10は図4の蓄積部3等の他方のゲート構造の受取
側CCD、αは両側CCD9,10の境界部分11のゲ
ート構造が変わる境界、12は受渡側CCD9の表面電
位可変部である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described with reference to FIGS. In FIG. 2A showing the gate structure,
The same reference numerals as those in FIG.
Is the delivery side CC of one of the gate structures such as the imaging unit 1 in FIG.
D and 10 are receiving CCDs of the other gate structure of the storage unit 3 and the like in FIG. 4, α is a boundary where the gate structure of the boundary portion 11 between the two CCDs 9 and 10 changes, and 12 is a surface potential variable unit of the receiving CCD 9. .

【0016】そして、両側CCD9,10それぞれをシ
フトレジスタとみなし、1個のゲート電極2又は4によ
り1ビットの転送が行われるとすると、境界部分11は
ほぼ受渡側,受取側それぞれの3ビット分のシフトレジ
スタにより形成される。さらに、両3ビットのシフトレ
ジスタのうちの受渡側の3ビットのシフトレジスタが可
変部12を形成し、この可変部12のCCDは製造時の
イオン打込量(イオン注入量)を徐々に減少して作成さ
れる。
If each of the CCDs 9 and 10 is regarded as a shift register and one bit is transferred by one gate electrode 2 or 4, the boundary portion 11 is substantially equivalent to three bits of each of the transfer side and the receive side. Is formed by the shift register of FIG. Further, the transfer-side 3-bit shift register of the two 3-bit shift registers forms the variable section 12, and the CCD of the variable section 12 gradually reduces the ion implantation amount (ion implantation amount) at the time of manufacturing. Is created.

【0017】そのため、両側CCD9,10のうちの可
変部12のみ、元の表面電位(ポテンシャル)が図1の
(a)及び図2の(b)に示すように転送劣化の生じな
い範囲で徐々に浅くなる。なお、図1の(a),図2の
(b)は図2の(a)のa,a’線上の表面電位を示
す。
Therefore, only the variable portion 12 of the CCDs 9 and 10 on both sides gradually loses its original surface potential (potential) within a range where transfer deterioration does not occur as shown in FIGS. 1 (a) and 2 (b). It becomes shallow. 1 (a) and 2 (b) show the surface potential on the lines a and a 'in FIG. 2 (a).

【0018】そして、可変部12の表面電位が境界αで
浅くなるため、受取側CCD10の元の表面電位が受渡
側CCD9の境界部分以前の表面電位と同じであるにも
かかわらず、図1の(a)に示すように境界αに転送方
向に急峻変化する大きな表面電位差φbが形成される。
Since the surface potential of the variable portion 12 becomes shallow at the boundary α, the original surface potential of the receiving CCD 10 is the same as the surface potential of the receiving CCD 9 before the boundary portion, as shown in FIG. As shown in (a), a large surface potential difference φb that sharply changes in the transfer direction is formed at the boundary α.

【0019】したがって、図3に示すように受渡側CC
D9の転送ゲートパルスPaの電圧と受取側CCD10
の転送ゲートパルスPbの電圧とを等しくしても、CC
D9においては信号電荷が次第に表面電位の深い井戸か
ら浅い井戸に転送され、境界αでは大きな表面電位差に
基づき信号電荷が完全に受取側に転送される。そして、
転送ゲートパルスPa,Pbをレベルシフトして変える
必要がないため、両ゲートパルスPa,Pbを同じパル
スで形成でき、従来の複雑なパルス発生回路が不要にな
る。
Therefore, as shown in FIG.
The voltage of the transfer gate pulse Pa of D9 and the receiving CCD 10
Even if the voltage of the transfer gate pulse Pb of
In D9, the signal charges are gradually transferred from the wells having a large surface potential to the wells having a small surface potential. At the boundary α, the signal charges are completely transferred to the receiving side based on the large surface potential difference. And
Since it is not necessary to change the transfer gate pulses Pa and Pb by level shifting, both gate pulses Pa and Pb can be formed by the same pulse, and the conventional complicated pulse generation circuit becomes unnecessary.

【0020】また、受取側CCD10以降にゲート構造
の異なる部分が生じても、前記と同様に受渡側CCDの
元の表面電位を境界部分で徐々に変えることにより、転
送ゲートパルスPa,Pbと同じパルスを転送ゲートパ
ルスに用いて完全転送が行える。
Even if a different portion of the gate structure occurs after the receiving CCD 10, the original surface potential of the receiving CCD is gradually changed at the boundary in the same manner as described above, so that the same as the transfer gate pulses Pa and Pb. Complete transfer can be performed using a pulse as a transfer gate pulse.

【0021】そして、可変部分12を設ける境界部分1
1の範囲は実施例に限定されるものではない。また、前
記実施例ではイオン打込量を変えて可変部分12の表面
電位を変えたが、例えば可変部分12のゲート電極2の
形状を変え、いわゆる狭チャンネル効果により表面電位
の変化を実現することも可能である。
The boundary portion 1 where the variable portion 12 is provided
The range of 1 is not limited to the embodiment. In the above embodiment, the surface potential of the variable portion 12 was changed by changing the ion implantation amount. However, for example, the shape of the gate electrode 2 of the variable portion 12 was changed to realize the change of the surface potential by a so-called narrow channel effect. Is also possible.

【0022】さらに、前記実施例では両側CCD9,1
0の元の表面電位が深いため、受渡側CCD9に可変部
12を設け、その表面電位のみ深い状態から浅い状態に
変えたが、図1の(b)に示すように両側CCD9,1
0の元の表面電位が浅いときは、受取側CCD10に可
変部12に相当する表面電位可変部を設け、この可変部
の表面電位のみ深い状態から浅い状態に変えればよい。
そして、CCD型固体撮像素子だけでなく、CID型固
体撮像素子等の一部にCCDを用いた固体撮像素子にも
適用できるのは勿論である。
Further, in the above embodiment, both CCDs 9, 1
Since the original surface potential of 0 is deep, a variable portion 12 is provided in the delivery side CCD 9 to change the surface potential only from a deep state to a shallow state. However, as shown in FIG.
When the original surface potential of 0 is shallow, a variable surface potential portion corresponding to the variable portion 12 may be provided in the receiving CCD 10, and only the surface potential of this variable portion may be changed from a deep state to a shallow state.
Further, it is needless to say that the present invention can be applied to not only a CCD solid-state imaging device but also a solid-state imaging device using a CCD as a part of a CID solid-state imaging device or the like.

【0023】[0023]

【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。受渡側CC
D9又は受取側CCD10の表面電位(ポテンシャル)
が境界部分11のみで信号電荷の転送方向に深い状態か
ら浅い状態に変化し、両側CCD9,10の表面電位差
が境界部分11に集中し、境界αに転送方向に浅い状態
から深い状態に急峻に変化する大きな表面電位差が形成
されるため、信号電荷の転送ゲートパルスに電圧差をも
たせることなく、異なるゲート構造のCCD9,10間
の信号電荷の完全転送が行え、転送ゲートパルスを発生
するパルス発生回路を簡単に形成することができる。
Since the present invention is configured as described above, the following effects can be obtained. Delivery CC
D9 or the surface potential (potential) of the receiving CCD 10
Changes from a deep state to a shallow state in the transfer direction of signal charges only at the boundary portion 11, the surface potential difference between the CCDs 9, 10 on both sides concentrates on the boundary portion 11, and the boundary α steeply changes from a shallow state to a deep state in the transfer direction. Since a large changing surface potential difference is formed, the signal charges can be completely transferred between the CCDs 9 and 10 having different gate structures without causing a voltage difference between the transfer gate pulses of the signal charges, and a pulse generation for generating a transfer gate pulse is performed. A circuit can be easily formed.

【0024】また、ゲート構造が変わっても同じ電圧の
転送ゲートパルスを用いることができるため、信号電荷
の転送路中にゲート構造の変わる個所が複数あるとき
に、従来のように転送ゲートパルスをレベルシフトして
次第に高電圧にすることなく完全転送が行える。
Further, since the transfer gate pulse of the same voltage can be used even when the gate structure changes, when there are a plurality of places where the gate structure changes in the signal charge transfer path, the transfer gate pulse is changed as in the related art. Complete transfer can be performed without gradually shifting the level to a high voltage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a),(b)はそれぞれ本発明の固体撮像素
子の境界部分の表面電位変化の1例,他の例の説明図で
ある。
FIGS. 1A and 1B are explanatory diagrams of one example and another example of a surface potential change at a boundary portion of a solid-state imaging device according to the present invention.

【図2】(a),(b)は本発明の1実施例のゲート電
極の構造,その表面電位の説明図である。
FIGS. 2A and 2B are explanatory diagrams of the structure of a gate electrode and its surface potential according to one embodiment of the present invention.

【図3】本発明の1実施例の転送ゲートパルスの説明図
である。
FIG. 3 is an explanatory diagram of a transfer gate pulse according to one embodiment of the present invention.

【図4】従来例のゲート構造の説明図である。FIG. 4 is an explanatory diagram of a conventional gate structure.

【図5】従来例の転送ゲートパルスの説明図である。FIG. 5 is an explanatory diagram of a transfer gate pulse of a conventional example.

【図6】従来英の境界部分の表面電位変化の説明図であ
る。
FIG. 6 is an explanatory diagram of a surface potential change in a conventional English boundary part.

【符号の説明】[Explanation of symbols]

2,4 ゲート電極 9 受渡側CCD 10 受取側CCD 11 境界部分 α 境界 2, 4 Gate electrode 9 Delivery side CCD 10 Receiving side CCD 11 Boundary part α boundary

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 信号電荷転送路を形成するCCDのゲー
ト構造が転送路の途中で変わる構成の固体撮像素子にお
いて、 一方のゲート構造の受渡側CCD又は他方のゲート構造
の受取側CCDを、表面電位が前記両側CCDの境界部
分で転送方向に深い状態から浅い状態に徐々に変化する
CCDにより形成し、 前記両側CCDの表面電位差を前記境界部分に集中し、
前記両側CCDの境界で転送方向に浅い状態から深い状
態に急峻変化する表面電位差を形成したことを特徴とす
る固体撮像素子。
In a solid-state imaging device having a structure in which a gate structure of a CCD forming a signal charge transfer path changes in the middle of the transfer path, a transfer side CCD having one gate structure or a reception side CCD having another gate structure is provided on a surface thereof. A potential is formed by a CCD that gradually changes from a deep state to a shallow state in a transfer direction at a boundary portion between the two-side CCDs, and a surface potential difference between the two-side CCDs is concentrated at the boundary portion;
A solid-state image sensing device, wherein a surface potential difference which sharply changes from a shallow state to a deep state in a transfer direction is formed at a boundary between the two CCDs.
JP04202980A 1992-07-06 1992-07-06 Solid-state imaging device Expired - Fee Related JP3118325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04202980A JP3118325B2 (en) 1992-07-06 1992-07-06 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04202980A JP3118325B2 (en) 1992-07-06 1992-07-06 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0621429A JPH0621429A (en) 1994-01-28
JP3118325B2 true JP3118325B2 (en) 2000-12-18

Family

ID=16466341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04202980A Expired - Fee Related JP3118325B2 (en) 1992-07-06 1992-07-06 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3118325B2 (en)

Also Published As

Publication number Publication date
JPH0621429A (en) 1994-01-28

Similar Documents

Publication Publication Date Title
US20080143861A1 (en) Solid-state imaging device driving method
JPH11355663A (en) Method for driving solid-state image pickup element
JP3222586B2 (en) Image sensor drive
JPH0118629B2 (en)
JPH04298175A (en) Solid-state image pickup device
JP3070146B2 (en) Solid-state imaging device
JPH03117281A (en) Solid-state image pickup device
JPS60165183A (en) Image pickup element of image pickup device
US6185270B1 (en) Solid state imaging device and method for driving the same
JP3118325B2 (en) Solid-state imaging device
EP0495521B1 (en) Solid state imager
JPS639288A (en) Method for driving solid-state image pickup
JP3370249B2 (en) Solid-state imaging device, driving method and manufacturing method thereof
JP3301176B2 (en) Charge transfer device
JP2855291B2 (en) Solid-state imaging device
JP2986685B2 (en) Driving method and signal processing method for solid-state imaging device
JPS5933865A (en) Solid stage image pickup element
JPH06113207A (en) Solid-state image pickup device drive method and signal procesing method
JP4269701B2 (en) Driving method of solid-state imaging device
JPH04373274A (en) Ccd solid-state image pickup element
JP2000196964A (en) Solid-state image pickup element and driving method therefor
JPH06268923A (en) Drive method for solid-state image pickup device
JP3467918B2 (en) Method for manufacturing solid-state imaging device and solid-state imaging device
JP2866329B2 (en) Structure of solid-state image sensor
JPH05300435A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees