JP3114222B2 - Manufacturing method of rotary transformer - Google Patents

Manufacturing method of rotary transformer

Info

Publication number
JP3114222B2
JP3114222B2 JP03071575A JP7157591A JP3114222B2 JP 3114222 B2 JP3114222 B2 JP 3114222B2 JP 03071575 A JP03071575 A JP 03071575A JP 7157591 A JP7157591 A JP 7157591A JP 3114222 B2 JP3114222 B2 JP 3114222B2
Authority
JP
Japan
Prior art keywords
mold
die
rotary transformer
groove forming
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03071575A
Other languages
Japanese (ja)
Other versions
JPH04307719A (en
Inventor
真二 原田
保 梶谷
正博 中嶋
美智央 大庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03071575A priority Critical patent/JP3114222B2/en
Publication of JPH04307719A publication Critical patent/JPH04307719A/en
Application granted granted Critical
Publication of JP3114222B2 publication Critical patent/JP3114222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はビデオテープレコーダや
デジタルオーディオテープレコーダなどの回転する磁気
ヘッドに対する信号の授受に用いるロータリートランス
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a rotary transformer for transmitting and receiving signals to and from a rotating magnetic head such as a video tape recorder and a digital audio tape recorder.

【0002】[0002]

【従来の技術】ビデオテープレコーダやデジタルオーデ
ィオテープレコーダなどの磁気記録再生機器に使用され
るロータリートランスには円板型と円筒型の2種類があ
るが、近年、機器の高性能化,多機能化に伴い必要とさ
れるチャンネル数の増加と高密度化によって、円筒型ロ
ータリートランスの使用が増えてきた。
2. Description of the Related Art There are two types of rotary transformers used in magnetic recording / reproducing devices such as video tape recorders and digital audio tape recorders, disc type and cylindrical type. The use of cylindrical rotary transformers has been increasing due to the increase in the number of channels required and the increase in density with the development.

【0003】この構造の断面概略図を図13に示した。
同図にみられるように、ロータリートランスの構造は円
筒型のフェライトからなる内側コア1とフェライトから
なる外側コア2の両者が同軸に相対向して一定の極小間
隙に保たれて配置されており、対向するそれぞれの表面
には必要とするチャンネル数のコイル用凹溝3が設けら
れ、そのコイル用凹溝3内にコイル4が装着されてい
る。また内側コア1の各チャンネル間にはショートリン
グ6をはめこむ凹溝5が設けてある。
FIG. 13 shows a schematic sectional view of this structure.
As shown in the figure, the structure of the rotary transformer is such that both an inner core 1 made of a cylindrical ferrite and an outer core 2 made of a ferrite are coaxially opposed to each other and kept at a certain minimum gap. A coil groove 3 of a required number of channels is provided on each opposing surface, and a coil 4 is mounted in the coil groove 3. In addition, a concave groove 5 into which a short ring 6 is inserted is provided between each channel of the inner core 1.

【0004】上記構成のロータリートランスにおいて
は、記録再生信号電流の損失を極力少なくする上で回転
に支障をきたさない限り、内側コア1と外側コア2の相
対向間隙は狭ければ狭い程好ましい。実際には70μm
以下という極めて高精度の間隙量が要求されている。こ
の要求を満たすためには、各々の内側コア1,外側コア
2の特に対向面となる表面粗度,真円度,同軸度さらに
は組立て精度を正確に制御しなければならない。
In the rotary transformer having the above-described structure, it is preferable that the opposing gap between the inner core 1 and the outer core 2 is as small as possible, so long as the rotation is not hindered in minimizing the loss of the recording / reproducing signal current. Actually 70 μm
An extremely high precision gap amount as follows is required. In order to satisfy this requirement, it is necessary to precisely control the surface roughness, the roundness, the coaxiality, and the assembling accuracy of the inner core 1 and the outer core 2 which are particularly opposed surfaces.

【0005】ロータリートランス用フェライトコアは通
常次のようにして作製される。まず、図17に示すよう
に、円筒型フェライト焼結体を作成し、次に所望の寸法
精度を得るために特殊な機械加工で仕上げるが、上記フ
ェライト焼結体を作成する方法としては、同図において
所望の組成で原料を配合・混合した後、1000℃以下
の温度で仮焼成する。次にこの仮焼成物を粉砕し、この
粉砕粉末に適量のポリビニルアルコール(PVA)水溶
液などバインダーを加え造粒した後、この造粒粉を金型
で圧縮成形する。こうして得られた円筒型成形体を10
00℃以上の高温で本焼成して円筒型フェライト焼結体
を得るか、あるいは上記フェライト仮焼粉砕粉末を樹脂
と混練し、円筒状にトランスファー成形した後、脱脂の
ための熱処理工程を経て同じく1000℃以上の高温本
焼成を行って同様のフェライト焼結体を得るという2つ
の方法がある(特開昭61−84006号公報参照)。
A ferrite core for a rotary transformer is usually manufactured as follows. First, as shown in FIG. 17, a cylindrical ferrite sintered body is prepared, and then finished by special machining in order to obtain a desired dimensional accuracy. In the figure, after the raw materials are blended and mixed in a desired composition, they are calcined at a temperature of 1000 ° C. or less. Next, the calcined product is pulverized, an appropriate amount of a binder such as an aqueous solution of polyvinyl alcohol (PVA) is added to the pulverized powder and granulated, and then the granulated powder is compression-molded in a mold. The cylindrical molded body obtained in this way was
After firing at a high temperature of 00 ° C. or higher to obtain a cylindrical ferrite sintered body, or kneading the ferrite calcined and crushed powder with a resin, transfer molding into a cylindrical shape, and then performing a heat treatment process for degreasing, There are two methods for obtaining a similar ferrite sintered body by performing high-temperature main firing at 1000 ° C. or higher (see Japanese Patent Application Laid-Open No. 61-84006).

【0006】しかし、上記のどちらの方法であっても得
られたフェライト焼結体は、焼成前の成形体寸法に比べ
10%以上の大きい収縮や反りが発生するので、そのま
までは寸法および精度的にもロータリートランスコアと
しての厳しい要求仕様内に納めることは非常に困難であ
る。
However, the ferrite sintered body obtained by either of the above methods causes a large shrinkage or warpage of 10% or more as compared with the size of the molded body before firing, so that the size and precision of the ferrite sintered body can be improved as it is. However, it is very difficult to meet the strict requirements for a rotary transformer core.

【0007】従って、たとえば円筒型コアを作る場合は
通常次のようになされている。まずその内外径が所望の
寸法よりも約1mm以上の余裕をもった円筒型フェライト
焼結体を用意し、この円筒型コアの外周面をセンタレス
グラインダで1次研削し、次にこの外周面を基準にして
内周面を内面研削機で粗研削し、その後内外周面両方と
もに特殊研削機で表面仕上げした後、必要チャンネル数
のコイル用凹溝を内周もしくは外周に沿って溝研削砥石
または回転連続刃で同時溝加工されて円筒型ロータリー
トランスコアの最終製品としての寸法精度を得ている。
Therefore, for example, when a cylindrical core is manufactured, the following is usually performed. First, a cylindrical ferrite sintered body whose inner and outer diameters have a margin of about 1 mm or more from the desired dimension is prepared, and the outer peripheral surface of the cylindrical core is first ground by a centerless grinder, and then the outer peripheral surface is After roughing the inner peripheral surface with an internal grinding machine as a reference, and then finishing both the inner and outer peripheral surfaces with a special grinder, groove grooves for coil of the required number of channels along the inner or outer circumference Simultaneous groove processing is performed by the rotary continuous blade to obtain dimensional accuracy as the final product of the cylindrical rotary transformer core.

【0008】この際、特に精度が必要な部分は2つの円
筒型コアの相対間隙寸法であり、また加工工数としては
溝加工の占める割合が最も高い。
[0008] At this time, the part requiring particularly high precision is the relative gap size between the two cylindrical cores, and the proportion of the groove processing is the highest as the number of processing steps.

【0009】[0009]

【発明が解決しようとする課題】このような従来法によ
るフェライト焼結技術では、焼結品が大幅に収縮するこ
とや反りの現象は不可避で、収縮量をあらかじめ見込ん
で余裕ある寸法で円筒型もしくは円板型フェライト焼結
品を作製し、粗研削から最終的に精密加工で所望の寸
法,精度を出し、さらにコイル装着用の溝加工を行うこ
とによってロータリートランス用フェライトコアに仕上
げている。しかし、この方法では特に溝加工をはじめと
して加工工数が多いことや、また材料が堅いため加工時
に割れや欠けなどが生じるなど工程歩留が悪いため、低
コストで作るのが難しいという大きな課題があった。
In such a conventional ferrite sintering technique, a large shrinkage or warping phenomenon of the sintered product is inevitable. Alternatively, a disc-shaped ferrite sintered product is manufactured, and the desired dimensions and accuracy are finally obtained by rough machining from precision grinding, and further, a groove for coil mounting is performed to finish the ferrite core for a rotary transformer. However, this method has a major problem that it is difficult to make it at low cost because of the large number of processing steps, especially grooving, and the poor process yield such as cracking and chipping due to the rigid material. there were.

【0010】さらにまた従来の方法では外側コアの内周
面の溝形成を金型成形によって作製する方法はなく、溝
加工は全て機械加工で行う方法しかなかった。
Furthermore, in the conventional method, there is no method of forming the groove on the inner peripheral surface of the outer core by molding, and there is only a method of performing all the groove processing by machining.

【0011】本発明の目的は上述した従来技術の欠点を
解消し、金型成形によって外側コアの内周面に溝形成を
することで円筒型ロータリートランスを安価に製造でき
る方法を提供するものである。
An object of the present invention is to solve the above-mentioned disadvantages of the prior art and to provide a method for manufacturing a cylindrical rotary transformer at low cost by forming a groove on the inner peripheral surface of an outer core by molding. is there.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に本発明は、中心軸の少なくとも一部に放射方向に突出
する縦溝形成片をもった縦溝形成用金型の中心軸の周辺
に2つ以上に分割され上記縦溝形成用金型の周辺に横溝
を形成する突条を複数個周面に設けた横溝形成用金型を
組合わせて内形金型とし、この内形金型の外周に円筒状
の外形金型を被せ、この外形金型と内形金型の間に磁性
粉を充填し上記内形金型と外形金型との間に押し金型を
入りこませて上記磁性粉を圧縮成形した後、押し金型を
抜きとった後、内形金型の縦溝形成用金型を抜き出し、
横溝形成用金型を中心軸方向に移動させて成形体より抜
き出し、外形金型から抜き出した成形体を高温処理して
円筒状コアとし、この円筒状コアの内周面の横溝にコイ
ルを組込んで外側コイルを構成し、また外周面の横溝に
コイルを形成した内側コイルを上記外側コイル内に組込
むロータリートランスの製造方法に関するものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a mold for forming a vertical groove having a vertical groove forming piece protruding in a radial direction on at least a part of the central axis. The inner die is formed by combining a horizontal groove forming die having a plurality of ridges formed on the peripheral surface around the vertical groove forming die and being divided into two or more. The outer periphery of the mold is covered with a cylindrical outer mold, magnetic powder is filled between the outer mold and the inner mold, and the pressing mold is inserted between the inner mold and the outer mold. After compression-molding the magnetic powder, after removing the pressing mold, pull out the vertical groove forming mold of the inner mold,
The lateral groove forming die is moved in the direction of the central axis to be extracted from the molded body, and the molded body extracted from the external mold is subjected to a high temperature treatment to form a cylindrical core, and a coil is assembled in a lateral groove on the inner peripheral surface of the cylindrical core. The present invention relates to a method for manufacturing a rotary transformer in which an outer coil is formed by incorporating an inner coil having a coil formed in a lateral groove on an outer peripheral surface.

【0013】上記コアの製造方法としては、まず所望の
組成で原料を配合・混合した後、1000℃以下の温度
で仮焼成する。次にこの仮焼成物を粉砕し、この粉砕粉
末に適量のポリビニルアルコール(PVA)水溶液など
バインダーを加え造粒した後、この造粒粉を上記金型内
に適当な量を充填し圧縮成形して成形体を作製する。次
にこうして得られた成形溝を有する成形体を仮焼成温度
以上で本焼成して円筒型コアを得るか、または必要に応
じて成形溝以外の部分を最少限の機械加工を施してロー
タリートランス用コアを得る方法である。
As a method of manufacturing the above-mentioned core, first, raw materials are mixed and mixed with a desired composition, and then calcined at a temperature of 1000 ° C. or less. Next, the calcined product is pulverized, an appropriate amount of a binder such as an aqueous solution of polyvinyl alcohol (PVA) is added to the pulverized powder and granulated, and then the granulated powder is filled in an appropriate amount into the mold and compression-molded. To produce a molded body. Next, the molded body having the molding groove obtained in this manner is subjected to main firing at a temperature higher than the pre-baking temperature to obtain a cylindrical core, or if necessary, a portion other than the molding groove is subjected to a minimum amount of machining to form a rotary transformer. This is a method of obtaining a core.

【0014】あるいは所望の組成で原料を配合・混合し
た後、この混合物をPVA水溶液で造粒したものを本焼
成と同様の高温焼成を行い、これを粉砕して十分にフェ
ライト化が進んだ高結晶性ソフトフェライト磁性粉末
(本焼粉という)を得、次にこの本焼粉にこの焼成温度
より低い軟化点をもつガラス粉末を混合・造粒し、上記
金型に適当な量を充填し圧縮成形した成形体を作製す
る。次にこうして得られた成形溝を有する成形体を上記
ガラス粉末の軟化温度以上で、かつ上記フェライト粉末
の焼成温度以下の範囲で加熱処理してロータリートラン
ス用コアを得る方法とするものである。
Alternatively, after blending and mixing the raw materials with a desired composition, the mixture is granulated with an aqueous PVA solution, and then subjected to high-temperature firing similar to the main firing, which is then pulverized and sufficiently ferritized. Obtain a crystalline soft ferrite magnetic powder (referred to as main firing powder), then mix and granulate a glass powder having a softening point lower than the firing temperature with the main firing powder, and fill the mold with an appropriate amount. A compression molded article is produced. Next, a method for obtaining a core for a rotary transformer by subjecting the thus obtained molded body having molding grooves to a heat treatment at a temperature not lower than the softening temperature of the glass powder and not higher than the firing temperature of the ferrite powder.

【0015】もう一つの方法としては、上記フェライト
磁性粉末とガラス粉末との混合物あるいはその磁性粉末
とそれら混合物に樹脂を含んだものを成形する際に加熱
しながら磁性粉末間に介在するガラス粉末あるいは樹脂
を軟化溶融させて圧縮成形し成形体を作製した後、同様
に加熱処理してロータリートランス用コアを得ることも
できる。
As another method, a glass powder or a glass powder interposed between magnetic powders is heated while molding a mixture of the ferrite magnetic powder and the glass powder or a mixture of the magnetic powder and the resin containing the resin. After the resin is softened and melted and compression-molded to produce a molded body, a heat treatment is similarly performed to obtain a rotary transformer core.

【0016】[0016]

【作用】本発明によるロータリートランスの製造方法
は、従来の円筒型コアの内周面の溝形成を機械加工で行
う方法とは異なり、金型成形によって作製するため、こ
れまでに行われていた溝加工工程が不要になるという効
果があるため、従来のものよりはるかに安価なものが得
られるという特徴がある。
The method of manufacturing a rotary transformer according to the present invention is different from the conventional method of forming a groove on the inner peripheral surface of a cylindrical core by machining, so that the groove is formed by molding. Since there is an effect that the groove processing step becomes unnecessary, there is a feature that a far cheaper one can be obtained than the conventional one.

【0017】[0017]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0018】上記ロータリートランス用コアの製造方法
としては、一例として図2に示すように、まず中心軸7
に放射方向に突出した4枚の板状の縦溝形成片8をもっ
た縦溝形成金型9の周辺に、4つに分割されしかも両端
にテーパ部をもち横溝を形成する突条を所望のチャンネ
ル数だけ周辺に設けた横溝形成用金型10を内側円筒部
にテーパを有するキャップ11,12で縦溝形成用金型
9の周辺に組合せて固定し図3に示すような内形金型1
3を得る。次に図4のように内形金型13を下押し金型
14に挿入した後、図5に示すようにこの内形金型13
の外周に円筒状の外形金型15を被せ、この外形金型1
5と内形金型13の間に所望量の磁性粉16を粉体供給
ノズル18などで均一に充填し、上記内形金型13と外
形金型15との間に下押し金型14と上押し金型17を
入り込ませて上記磁性粉16を図6のように圧縮成形す
る。
As an example of a method of manufacturing the core for the rotary transformer, as shown in FIG.
In the vicinity of a vertical groove forming die 9 having four plate-like vertical groove forming pieces 8 protruding in the radial direction, it is desirable to have a ridge which is divided into four and has tapered portions at both ends to form a horizontal groove. 3. The lateral groove forming die 10 provided around the number of channels described above is fixed to the periphery of the vertical groove forming die 9 by caps 11 and 12 having a tapered inner cylindrical portion, and fixed. Type 1
Get 3. Next, as shown in FIG. 4, the inner mold 13 is inserted into the downward pressing mold 14, and then, as shown in FIG.
Is covered with a cylindrical outer mold 15 and the outer mold 1
A desired amount of magnetic powder 16 is uniformly filled between the inner mold 5 and the inner mold 13 by a powder supply nozzle 18 or the like, and the lower press mold 14 and the upper mold 14 are interposed between the inner mold 13 and the outer mold 15. The magnetic powder 16 is compression molded as shown in FIG.

【0019】次に図7に示すように4個の横溝形成用金
型10の固定用キャップ11,12を抜きとった後、図
8に示すように縦溝形成用金型9を抜き出す。
Next, as shown in FIG. 7, the fixing caps 11, 12 of the four lateral groove forming dies 10 are removed, and then the vertical groove forming dies 9 are removed as shown in FIG.

【0020】次に図8に示すように上下端部に相反する
ネジ部をそれぞれ有する中心棒30を縦溝形成用金型9
を抜き取った空間に挿入し、上下端部のネジ部の内側円
筒部にテーパをもつ抜き型31,32を上下方向から4
個の横溝形成用金型10のテーパ部直前までねじ込む。
そして図10に示すように中心棒30を抜き型31,3
2がお互いが接近する方向に回転させることにより、抜
き型31,32を同速度で可動させ、抜き型と横溝形成
用金型のお互いのテーパを利用することで、4個の横溝
形成用金型10を中心軸方向に移動させて図11のよう
に成形体19より抜き出し、そして最後に図12に示す
ように外形金型15から成形体19を抜き型20によっ
て抜き出すのである。
Next, as shown in FIG. 8, a center rod 30 having oppositely threaded portions at upper and lower ends is inserted into a vertical groove forming mold 9.
Into the space from which the upper and lower ends of the threaded portions are tapered.
The horizontal groove forming die 10 is screwed down to just before the tapered portion.
Then, as shown in FIG.
2 are rotated in the direction in which they approach each other, so that the blanking dies 31 and 32 are moved at the same speed. The mold 10 is moved in the direction of the central axis to extract the molded body 19 from the molded body 19 as shown in FIG. 11, and finally, the molded body 19 is extracted from the external mold 15 by the extraction mold 20 as shown in FIG.

【0021】この際、成形体の取り出し順序はこの例に
限ることはなく、まず外形金型15から成形体19を抜
いた後に内形金外13の縦溝形成用金型9を抜き出し、
横溝形成用金型10を上記と同様に中心軸方向に移動さ
せて成形体19より抜き出してもよいものである。
At this time, the order of taking out the molded body is not limited to this example. First, the molded body 19 is pulled out from the outer die 15 and then the vertical groove forming die 9 of the inner die 13 is pulled out.
The lateral groove forming die 10 may be moved in the central axis direction in the same manner as described above, and may be extracted from the molded body 19.

【0022】次にこうして得られた成形体19を高温処
理して円筒状コアとし、図13に示すように、この円筒
状コアを外側コア2としてその内周面の横溝にコイル4
を組込み外側コイルを構成し、また内側コアではその外
周面の横溝にコイル4を形成して内側コイルとし、これ
を上記外側コイル内に組込んでロータリートランスを作
製するのである。
Next, the molded body 19 thus obtained is subjected to a high-temperature treatment to form a cylindrical core. As shown in FIG.
To form an outer coil. In the inner core, a coil 4 is formed in a lateral groove on the outer peripheral surface of the outer coil to form an inner coil, and this is incorporated in the outer coil to produce a rotary transformer.

【0023】ここでは縦溝数が4本の場合の一例につい
て説明したが、これに限られるものではなく、基本的に
は2本以上の縦溝数をもった縦溝形成金型とそれに相当
した数に分割された横溝形成金型とが組合わされた構成
をしていればよいものである。
Here, an example in which the number of vertical grooves is four has been described. However, the present invention is not limited to this. Basically, a vertical groove forming mold having two or more vertical grooves, It suffices that the horizontal groove forming die divided into the predetermined number is combined with the die.

【0024】また磁性粉としてはフェライトの仮焼成
粉、または高温焼成で十分フェライト化が進んだ高結晶
性フェライト磁性粉とガラス粉末との混合物、あるいは
それらと樹脂の混合物からなるものでもよい。
The magnetic powder may be a preliminarily baked powder of ferrite, a mixture of a highly crystalline ferrite magnetic powder which has been sufficiently ferritized by firing at a high temperature and a glass powder, or a mixture of these and a resin.

【0025】さらに圧縮成形の際、上記ガラス粉末ある
いは樹脂の混合物の場合はそのガラス粉末あるいは樹脂
が溶融する温度の加熱状態で行うこともできる。また樹
脂は熱硬化性,熱可塑性のいずれも使用できるものであ
る。
In the case of a mixture of the above-mentioned glass powder or resin, the compression molding may be carried out in a heated state at a temperature at which the glass powder or resin is melted. The resin can be either thermosetting or thermoplastic.

【0026】以下、具体的な実施例について説明する。 (実施例1)図1に示すようにFe23 48mol%,
NiO 14mol%,ZnO 34mol%,CuO 4mo
l%よりなる出発原料を配合・混合し、この混合物にポ
リビニルアルコール(PVA)の5wt%水溶液を5wt%
加え、これを造粒したものを1250℃で6時間焼成し
たものを粉砕して、平均粒径50μmのNi−Zn−C
u系ソフトフェライト本焼成粉を準備した。この粉末を
X線解析した結果、ソフトフェライト特有の鋭いスピネ
ル構造回折線が得られ結晶性の非常に高い磁性粉末であ
ることを確認した。次に上記高結晶性フェライト磁性粉
末に対して軟化点(Td)370℃,平均粒径1μmの
無アルカリホウケイ酸鉛系ガラス粉末を3wt%加えて混
合した後、造粒する。
Hereinafter, specific embodiments will be described. (Example 1) Fe 2 O 3 as shown in FIG. 1 48 mol%,
NiO 14mol%, ZnO 34mol%, CuO 4mo
1% of a starting material is blended and mixed, and a 5 wt% aqueous solution of polyvinyl alcohol (PVA) is added to the mixture at 5 wt%.
In addition, what was granulated and fired at 1250 ° C. for 6 hours was crushed to obtain a Ni—Zn—C having an average particle diameter of 50 μm.
A u-based soft ferrite main firing powder was prepared. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line peculiar to soft ferrite was obtained, and it was confirmed that the powder was a magnetic powder having extremely high crystallinity. Next, 3 wt% of a non-alkali lead borosilicate glass powder having a softening point (Td) of 370 ° C. and an average particle size of 1 μm is added to the highly crystalline ferrite magnetic powder, and the mixture is granulated.

【0027】次に、2つの円筒型コアがそれぞれ対向す
る面に各々コイルが巻装されるための凹溝と縦溝を成形
によって作製するため、外側コア成形の場合は図2〜図
12に示す製造方法で金型内に所望量の造粒粉を充填
し、3ton/cm2の圧力で成形し、横溝,縦溝を有した外
側コア用の円筒成形体を得る。
Next, in order to form a concave groove and a vertical groove for winding the coil on the surfaces of the two cylindrical cores facing each other, molding is performed. A mold is filled with a desired amount of granulated powder by the manufacturing method shown and molded at a pressure of 3 ton / cm 2 to obtain a cylindrical molded body for the outer core having horizontal grooves and vertical grooves.

【0028】また内側コアの場合、外周面に凹溝を形成
するため、図15,図16に示すように凸部を有した4
個の割り金型22に上記造粒粉を所望量充填し、上記と
同様3ton/cm2の圧力で上下の押し金型23,24で加
圧成形しコイル用凹溝およびショートリング用凹溝、さ
らには縦溝を有した内側コア用の円筒成形体25を作製
した。
Further, in the case of the inner core, in order to form a concave groove on the outer peripheral surface, as shown in FIGS.
Each of the split molds 22 is filled with a desired amount of the above-mentioned granulated powder, and pressed and formed with upper and lower pressing dies 23 and 24 at a pressure of 3 ton / cm 2 in the same manner as described above to form a coil groove and a short ring groove. Further, a cylindrical molded body 25 for the inner core having a vertical groove was produced.

【0029】そしてこれら成形体を電気炉内に個々に設
置し、1200℃,60分間空気中で加熱処理しガラス
結着型の円筒型ロータリートランス用フェライトコアを
得た。
These compacts were individually placed in an electric furnace and heated at 1200 ° C. for 60 minutes in air to obtain a glass-bound ferrite core for a cylindrical rotary transformer.

【0030】次に図13に示すようにこれら凹溝3,5
にコイル4あるいはショートリング6を巻装し、2個の
コア1,2を組合わせてロータリートランスを作製し
た。
Next, as shown in FIG.
, A coil 4 or a short ring 6 was wound thereon, and two cores 1 and 2 were combined to produce a rotary transformer.

【0031】上記実施例1の材料特性を(表1)に示し
た。実施例1では、コアの収縮率が0.1%以下と、ほ
とんど熱処理によるコア収縮がないため金型寸法どおり
のものが得られ、外側コアと内側コア間の間隙は、70
μm以下の極めて高精度の円筒型ロータリートランスが
実現でき、また磁気特性,トランス特性にも優れたもの
が得られた。
The material properties of Example 1 are shown in (Table 1). In Example 1, the core shrinkage was 0.1% or less, and almost no core shrinkage due to heat treatment resulted in a mold having the same dimensions as the mold. The gap between the outer core and the inner core was 70%.
An extremely high precision cylindrical rotary transformer of less than μm could be realized, and a magnetic and transformer with excellent characteristics were obtained.

【0032】[0032]

【表1】 [Table 1]

【0033】(実施例2)実施例1で用いた同一のフェ
ライト本焼粉に対して同一のガラス粉末を3wt%、樹脂
としてエポキシ粉末を5wt%加えて混合した後、樹脂の
軟化温度以上の90℃で2分間熱混練し、これを粉砕・
造粒した後、この造粒粉を所望量だけ実施例1と同様の
金型に充填し、金型温度180℃で30秒間、1ton/c
m2で圧縮成形し、円筒型成形体をそれぞれ2個作製し
た。
EXAMPLE 2 The same ferrite main powder used in Example 1 was mixed with 3 wt% of the same glass powder and 5 wt% of epoxy powder as a resin, and then mixed. Heat kneading at 90 ° C for 2 minutes
After granulation, a desired amount of the granulated powder was filled in the same mold as in Example 1, and the mold temperature was 180 ° C. for 30 seconds, and 1 ton / c.
By compression molding with m 2 , two cylindrical molded bodies were produced.

【0034】次にこれら成形体を電気炉内に個々に設置
し、脱脂工程を経た後、1200℃,60分間空気中で
加熱処理しガラス結着型の円筒型ロータリートランス用
フェライトコアを得、そして実施例1と同様にしてロー
タリートランスを作製した。
Next, these compacts were individually placed in an electric furnace, subjected to a degreasing step, and heat-treated in air at 1200 ° C. for 60 minutes to obtain a glass-bound ferrite core for a cylindrical rotary transformer. Then, a rotary transformer was manufactured in the same manner as in Example 1.

【0035】上記実施例2の材料特性を(表1)に示し
た実施例2では、コアの収縮率が0.1%以下と、ほと
んど熱処理によるコア収縮がないため金型寸法どおりの
ものが得られ、外側と内側コア間の間隙は、70μm以
下の極めて高精度の円筒型ロータリートランスが実現で
き、また磁気特性,トランス特性にも優れたものが得ら
れた。
In Example 2 in which the material properties of Example 2 are shown in (Table 1), the contraction rate of the core is 0.1% or less, and there is almost no core shrinkage due to heat treatment. As a result, an extremely high precision cylindrical rotary transformer having a gap between the outer and inner cores of 70 μm or less was realized, and a magnetic rotary transformer having excellent transformer characteristics was obtained.

【0036】(実施例3)実施例1と同一の配合組成を
もった出発原料の混合物に5wt%PVA水溶液を5wt%
加え、この造粒粉を1000℃,2時間で仮焼成を行
い、これを2〜5μmに微粉砕し、この造粒粉を実施例
1,2と同様にして円筒型成形体をそれぞれ2個作製し
た。
Example 3 A 5 wt% aqueous solution of PVA was added to a mixture of starting materials having the same composition as in Example 1 to obtain a mixture of 5 wt%.
In addition, the granulated powder is calcined at 1000 ° C. for 2 hours, finely pulverized to 2 to 5 μm, and the granulated powder is divided into two cylindrical compacts in the same manner as in Examples 1 and 2. Produced.

【0037】この成形品を電気炉内に設置し、1200
℃,3時間空気中で焼成した後、除冷しながら降温させ
Ni−Zn−Cu系フェライト焼結型の円筒型コアを得
た。
This molded product was placed in an electric furnace, and 1200
After sintering in air at 3 ° C. for 3 hours, the temperature was lowered while cooling down to obtain a Ni—Zn—Cu ferrite sintered type cylindrical core.

【0038】上記実施例3の材料特性を(表1)に示し
た。実施例3ではコア収縮率が10%になったが、内側
コア,外側コアともに成形溝以外の内外周面を所望の寸
法に最小限の機械加工を施すことだけで簡単に高精度の
円筒型ロータリートランスを得ることができ、また磁気
特性,トランス特性にも優れたものが得られた。
The material properties of Example 3 are shown in (Table 1). In Example 3, the core shrinkage was 10%, but the inner core and the outer core were easily machined to a high precision cylindrical mold simply by subjecting the inner and outer peripheral surfaces other than the molding grooves to minimum dimensions. A rotary transformer was obtained, and a magnetic transformer and a transformer having excellent characteristics were obtained.

【0039】(実施例4)実施例1で用いた同一のフェ
ライト本焼粉に対して同一のガラス粉末を10wt%加え
て混合した後、PVA水溶液で造粒した。次にこの造粒
粉を実施例2と同様の方法でステライト製の同金型に所
望量均一に充填する。この際外形金型には図14に示す
ように金型の周囲にヒータが取りつけられ、温度450
℃で1分間、1ton/cm2の圧力で上下押し金型を圧縮
し、磁性粉間に介在するガラス粉末を軟化溶融させなが
ら成形を行った。そして成形が終了した後、金型を冷却
しコアを実施例2と同様にして取り出し、円筒型成形体
をそれぞれ2個作製した。
Example 4 The same ferrite main powder used in Example 1 was mixed with 10 wt% of the same glass powder, mixed, and then granulated with an aqueous PVA solution. Next, the granulated powder is uniformly filled in a desired amount in the same mold made of stellite in the same manner as in Example 2. At this time, a heater is attached to the outer mold around the mold as shown in FIG.
The mold was pressed up and down at a temperature of 1 ° C. for 1 minute at a pressure of 1 ton / cm 2 , and molding was performed while softening and melting the glass powder interposed between the magnetic powders. After the completion of the molding, the mold was cooled, and the core was taken out in the same manner as in Example 2 to produce two cylindrical molded bodies.

【0040】次にこれら成形体を電気炉内に個々に設置
し、1200℃,60分間空気中で加熱処理しガラス結
着型の円筒型ロータリートランス用フェライトコアを
得、そして実施例2と同様にしてロータリートランスを
作製した。
Next, these compacts were individually placed in an electric furnace, and heat-treated in air at 1200 ° C. for 60 minutes to obtain a glass-bound type ferrite core for a cylindrical rotary transformer. To produce a rotary transformer.

【0041】上記実施例4の材料特性を(表1)に示し
た。実施例4では、コアの収縮率が1%で熱処理による
コア収縮が小さいため金型寸法に近いものが得られ、外
側と内側コア間の隙は、70μm以下の極めて高精度の
円筒型ロータリートランスが実現でき、また磁気特性,
トランス特性にも優れたものが得られた。
The material properties of Example 4 are shown in (Table 1). In Example 4, the core shrinkage was 1% and the core shrinkage due to the heat treatment was small, so that a size close to the mold size was obtained. The gap between the outer and inner cores was a very high precision cylindrical rotary transformer of 70 μm or less. Can be realized, and the magnetic characteristics,
Excellent transformer characteristics were obtained.

【0042】ここで本実施例1,2,3,4では造粒粉
の充填法を粉末で金型内に充填したが、予めこの粉末を
円筒型に予備成形した円筒型成形物を金型に投入して以
下同様な方法で円筒型コアを作製してもよいものであ
る。
In the first, second, third and fourth embodiments, the powder was charged into the mold by the method of filling the granulated powder. And a cylindrical core may be produced in the same manner as described below.

【0043】[0043]

【発明の効果】以上のように本発明によるロータリート
ランスの製造方法は、従来方法が全てコアを機械加工に
よって得るのに対し、金型成形によって作製するため製
造プロセスが非常に簡単になり、加工コストも大幅に低
減できることで、従来よりもはるかに安価なロータリー
トランスが得られるものである。
As described above, in the method of manufacturing a rotary transformer according to the present invention, the core is obtained by machining in the conventional method, but the manufacturing process is very simple because the core is manufactured by molding. Since the cost can be significantly reduced, a rotary transformer that is far less expensive than the conventional one can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のロータリートランスの製造方法の一実
施例を示す製造工程の工程図
FIG. 1 is a process diagram of a manufacturing process showing one embodiment of a method for manufacturing a rotary transformer according to the present invention.

【図2】同方法に用いる内形金型の分解斜視図FIG. 2 is an exploded perspective view of an inner mold used in the method.

【図3】同内形金型の斜視図FIG. 3 is a perspective view of the inner mold.

【図4】同内形金型を下押し金型に組込んだ状態の斜視
FIG. 4 is a perspective view showing a state where the inner mold is assembled into a downward pressing mold.

【図5】同内形金型に外形金型を組込んで磁性粉を供給
する状態の斜視図
FIG. 5 is a perspective view showing a state in which an outer mold is incorporated into the inner mold and magnetic powder is supplied.

【図6】同成形金型の成形時の斜視図FIG. 6 is a perspective view of the molding die during molding.

【図7】同成形後キャップを取除く状態を示す一部切欠
斜視図
FIG. 7 is a partially cutaway perspective view showing a state in which a cap is removed after the molding.

【図8】同縦溝形成用金型を抜きとった状態の一部切欠
斜視図
FIG. 8 is a partially cutaway perspective view showing a state where the vertical groove forming mold is removed.

【図9】同抜き型を組込んだ状態を示す一部切欠斜視図FIG. 9 is a partially cutaway perspective view showing a state where the punching die is incorporated.

【図10】同抜き型を組込んだ状態の一部切欠斜視図FIG. 10 is a partially cutaway perspective view showing a state where the punching die is incorporated.

【図11】同横溝形成用金型を抜いた状態の斜視図FIG. 11 is a perspective view of a state where the lateral groove forming mold is removed.

【図12】同成形体を取出す状態を示す一部切欠斜視図FIG. 12 is a partially cutaway perspective view showing a state in which the molded body is taken out.

【図13】同方法によって形成したロータリートランス
の断面図
FIG. 13 is a sectional view of a rotary transformer formed by the same method.

【図14】他の実施例の成形金型の斜視図FIG. 14 is a perspective view of a molding die according to another embodiment.

【図15】本発明における内側コアの成形を示す断面図FIG. 15 is a sectional view showing the molding of the inner core according to the present invention.

【図16】同説明図FIG. 16 is an explanatory view of the same.

【図17】従来のロータリートランスの製造方法の工程
を示す工程図
FIG. 17 is a process chart showing steps of a conventional method for manufacturing a rotary transformer.

【符号の説明】[Explanation of symbols]

1 内側コア 2 外側コア 3 コイル用凹溝 4 コイル 5 ショートリング用凹溝 6 ショートリング 7 中心軸 8 縦溝形成片 9 縦溝形成用金型 10 横溝形成用金型 11,12 キャップ 13 内形金型 14 下押し金型 15 外形金型 16 磁性粉 17 上押し金型 18 粉体供給ノズル 19 成形体 20 抜き型 21 ヒーター 22 割り金型 23 上押し金型 24 下押し金型 25 成形体 30 中心棒 31,32 抜き型 Reference Signs List 1 inner core 2 outer core 3 concave groove for coil 4 coil 5 concave groove for short ring 6 short ring 7 center axis 8 vertical groove forming piece 9 vertical groove forming die 10 horizontal groove forming die 11, 12 cap 13 inner shape Mold 14 Lower die 15 External die 16 Magnetic powder 17 Upper die 18 Powder supply nozzle 19 Mold 20 Molding die 21 Heater 22 Split mold 23 Upper die 24 Lower die 25 Mold 30 Center rod 31, 32 punching die

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大庭 美智央 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭61−84006(JP,A) 特開 昭63−51610(JP,A) 特開 平3−289106(JP,A) 特開 平3−289112(JP,A) 特開 平3−289113(JP,A) 特開 平5−47575(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 23/00 H01F 41/02 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Michio Ohba, Inventor 1006 Odaka, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-61-84006 (JP, A) JP-A-63 JP-A-3-289106 (JP, A) JP-A-3-289112 (JP, A) JP-A-3-289113 (JP, A) JP-A-5-47575 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) H01F 23/00 H01F 41/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中心軸の少なくとも一部に放射方向に突
出する縦溝形成用片をもった縦溝形成用金型の周辺に2
つ以上分割される横溝形成用金型を固定用キャップで上
記縦溝形成用金型の周辺に組合せて内形金型とし、 この内形金型の下面に下押し金型を挿入し、 上記内形金型の外周に円筒状の外形金型を被せ、 この外形金型と内形金型との間に磁性粉を充填し、 上記外形金型の開放面に上押し金型を入り込ませて上記
磁性粉を圧縮成型した後、 上記固定用キャップを抜き取るとともに上記縦溝形成用
金型を抜き取り、 上記縦溝形成用金型を抜き取った空間に上下端部に相反
するネジ部を有する中心棒を挿入するとともに抜き型を
上記横溝形成用金型の近傍までねじ込み、 上記中心棒を回転させることにより上記横溝形成用金
型、上押し金型、下押し金型および抜き型を中心軸方向
に移動させて成形体より抜き出し、 外形金型から抜き出した成形体を高温処理して円筒状の
コアとし、 このコアの内周面の横溝にコイルを組込んで外側コイル
を構成し、また外周面の横溝にコイルを形成した内側コ
イルを上記外側コイル内に組込むロータリートランスの
製造方法。
1. At least a part of a longitudinal axis forming die having a longitudinal groove forming piece protruding in a radial direction on at least a part of a central axis.
One or more divided horizontal groove forming dies are combined with the periphery of the vertical groove forming die with a fixing cap to form an inner die, and a down-pressing die is inserted into the lower surface of the inner die, and A cylindrical outer mold is placed over the outer periphery of the mold, magnetic powder is filled between the outer mold and the inner mold, and an upward pressing mold is inserted into the open surface of the outer mold. After the magnetic powder is compression-molded, the fixing cap is withdrawn, and the vertical groove forming mold is withdrawn. The center rod having opposing screw portions at upper and lower ends in the space from which the vertical groove forming mold is removed. , And the punching die is screwed to the vicinity of the horizontal groove forming die, and the horizontal groove forming die, the upper pressing die, the lower pressing die and the punching die are moved in the central axis direction by rotating the center rod. And then withdrawn from the compact and molded out of the outer mold Into a cylindrical core by high-temperature treatment, a coil is incorporated in a lateral groove on the inner peripheral surface of the core to form an outer coil, and an inner coil having a coil formed in a lateral groove on the outer peripheral surface is incorporated into the outer coil. Manufacturing method of rotary transformer.
【請求項2】 中心棒を回転させることにより横溝形成
用金型、上押し金型、下押し金型および抜き型を中心軸
方向に移動させて成形体より抜き出し、外形金型から抜
き出した成形体を高温処理して円筒状のコアとする工程
にかえて、 外形金型から成形体を抜き出し、 中心棒を回転させることにより横溝形成用金型、上押し
金型、下押し金型および抜き型を中心軸方向に移動させ
て成形体より抜き出し、この抜き出した成形体を高温処
理して円筒状のコアとする工程とする 請求項1記載のロ
ータリートランスの製造方法。
2. A lateral groove is formed by rotating a center rod.
Center axis for dies, up-press dies, down-press dies and punching dies
Direction, remove from the molded body, and remove from the external mold.
Process of processing the extruded compact at high temperature to form a cylindrical core
Instead, pull out the molded body from the outer mold and rotate the center rod to press the upper mold
Move the die, down-press die and punch die in the direction of the center axis.
And remove the molded body from the
2. The method for producing a rotary transformer according to claim 1 , wherein said step is a step of forming a cylindrical core .
【請求項3】 磁性粉が高温焼成で十分にフェライト化
が進んだ高晶性フェライト磁性粉末とガラス粉末との混
合物からなるものか、あるいはその磁性粉末またはそれ
ら混合物に樹脂を含むものからなる請求項1記載のロー
タリートランスの製造方法。
3. A magnetic powder comprising a mixture of a highly crystalline ferrite magnetic powder and a glass powder whose ferrite has been sufficiently formed by firing at a high temperature, or a resin containing the magnetic powder or a mixture thereof. Item 7. A method for producing a rotary transformer according to Item 1.
【請求項4】 圧縮成型が、ガラス粉末、あるいは樹脂
を溶融する加熱状態で行われる請求項3記載のロータリ
ートランスの製造方法。
4. The method for producing a rotary transformer according to claim 3, wherein the compression molding is performed in a heated state in which the glass powder or the resin is melted.
JP03071575A 1991-04-04 1991-04-04 Manufacturing method of rotary transformer Expired - Fee Related JP3114222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03071575A JP3114222B2 (en) 1991-04-04 1991-04-04 Manufacturing method of rotary transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03071575A JP3114222B2 (en) 1991-04-04 1991-04-04 Manufacturing method of rotary transformer

Publications (2)

Publication Number Publication Date
JPH04307719A JPH04307719A (en) 1992-10-29
JP3114222B2 true JP3114222B2 (en) 2000-12-04

Family

ID=13464638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03071575A Expired - Fee Related JP3114222B2 (en) 1991-04-04 1991-04-04 Manufacturing method of rotary transformer

Country Status (1)

Country Link
JP (1) JP3114222B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001085U (en) * 1994-02-15 1994-08-16 ラサ工業株式会社 Sanitary goods filth bag
KR102226958B1 (en) 2019-07-08 2021-03-12 주식회사 제이패션 Overshoes and manufacturing methods for posture correction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3001085U (en) * 1994-02-15 1994-08-16 ラサ工業株式会社 Sanitary goods filth bag
KR102226958B1 (en) 2019-07-08 2021-03-12 주식회사 제이패션 Overshoes and manufacturing methods for posture correction

Also Published As

Publication number Publication date
JPH04307719A (en) 1992-10-29

Similar Documents

Publication Publication Date Title
KR101077155B1 (en) Soft magnetic composite powder and production method therefor and production method for soft magnetic compact
US5120366A (en) Composite ferrite material
EP0334478A2 (en) Die-upset manufacture to produce high volume fractions of RE-Fe-B type magnetically-aligned material
JP3114222B2 (en) Manufacturing method of rotary transformer
CN112802678A (en) Preparation method of annular sintered neodymium-iron-boron magnetic steel
JP3039021B2 (en) Manufacturing method of rotary transformer
JPH01150303A (en) Magnetic anisotropy type sintered magnet and manufacture thereof
JPH05308026A (en) Manufacture of rotary transformer
JPH05144644A (en) Manufacture of rotary transformer
JPH07115026A (en) Manufacture of rotating transformer
US5098619A (en) Process for forming high quality ferrite magnets
US4321222A (en) Method of manufacturing plastic-bonded anisotropic permanent magnets
JPH03289112A (en) Manufacture of rotary transformer
JPH03289113A (en) Manufacture of rotary transformer
KR970011865B1 (en) Rotary transformer
JPH03289106A (en) Rotary transformer and manufacture thereof
JP3165523B2 (en) Compacting mold for rotary transformer core and rotary transformer core
JPH1197229A (en) Dust core and method for manufacturing it
JPH01228106A (en) R-fe-b magnet and manufacture thereof
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
US5342574A (en) Method for producing anisotropic rare earth magnet
JPH02241006A (en) Manufacture of ferrite magnetic material
JPH073303A (en) Production of metallic or ceramic sintered compact
JPH05304031A (en) Rotary transformer
JPS6393105A (en) Manufacture of isotropic bonded magnet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees