JPH05308026A - Manufacture of rotary transformer - Google Patents

Manufacture of rotary transformer

Info

Publication number
JPH05308026A
JPH05308026A JP4111180A JP11118092A JPH05308026A JP H05308026 A JPH05308026 A JP H05308026A JP 4111180 A JP4111180 A JP 4111180A JP 11118092 A JP11118092 A JP 11118092A JP H05308026 A JPH05308026 A JP H05308026A
Authority
JP
Japan
Prior art keywords
mold
core
die
rotary transformer
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4111180A
Other languages
Japanese (ja)
Inventor
Shinji Harada
真二 原田
Atsushi Inuzuka
敦 犬塚
Michihisa Ooba
美智央 大庭
Hiroshi Fujii
浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4111180A priority Critical patent/JPH05308026A/en
Publication of JPH05308026A publication Critical patent/JPH05308026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a cylindrical rotary transformer for communicating signals with a rotating magnetic head by which the coil winding yield can be improved and the manufacturing cost can be reduced. CONSTITUTION:After an outer shape mold is put on an inner shape mold composed of a metallic mold 3 for forming vertical grooves and metallic mold 4 for forming horizontal grooves provided with a plurality of slit-like recessed grooves on the peripheral surfaces of projected lines 4b and compression forming magnetic powder put between the metallic molds, an outer core is obtained by heat-treating the formed body at a high temperature and a rotary transformer is formed by incorporating an inside core in the outside core. Since the grooves for winding coils are not formed by machining, but formed at the time of forming the outside core, the manufacturing cost of the title transformer can be reduced and, since slit-like projecting sections are provided at the bottom of horizontal grooves as guides for winding coils, the coils can be wound accurately and the coil winding yield can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオテープレコーダ
やデジタルオーディオテープレコーダなどの回転する磁
気ヘッドに対する信号の授受に用いるロータリートラン
スの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a rotary transformer used for transmitting / receiving a signal to / from a rotating magnetic head such as a video tape recorder or a digital audio tape recorder.

【0002】[0002]

【従来の技術】ビデオテープレコーダやデジタルオーデ
ィオテープレコーダなどの磁気記録再生機器に使用され
るロータリートランスには円板型と円筒型の2種類があ
るが、近年、磁気記録再生機器の高性能化,多機能化に
伴い必要とされるチャンネル数の増加と高密度化によっ
て、円筒型ロータリートランスの使用が増えてきた。こ
のロータリートランスの構造は円筒型のフェライトから
なる内側コアとフェライトからなる外側コアの両者が同
軸に相対向して一定の極小間隙を保たれて配置されてお
り、対向するそれぞれの表面には必要とするチャンネル
数のコイル用横溝が設けられ、そのコイル用横溝内にコ
イルが装着されている。また内側コアの各チャンネル間
にはショートリングをはめこむ横溝が設けてある。
2. Description of the Related Art There are two types of rotary transformers used in magnetic recording / reproducing devices such as video tape recorders and digital audio tape recorders, disk type and cylindrical type. , The use of cylindrical rotary transformers has increased due to the increase in the number of channels and the increase in density required as the number of functions has increased. The structure of this rotary transformer is such that both the inner core made of a cylindrical ferrite and the outer core made of ferrite are coaxially opposed to each other with a certain minimum gap maintained, and they are required on each of the facing surfaces. A horizontal groove for a coil having the number of channels is provided, and the coil is mounted in the horizontal groove for the coil. In addition, a lateral groove for fitting a short ring is provided between each channel of the inner core.

【0003】従来の円筒型ロータリートランス用のフェ
ライトコアは通常次のようにして作製される。
A conventional ferrite core for a cylindrical rotary transformer is usually manufactured as follows.

【0004】まず、図15の製造工程図に示すように、
円筒型のフェライト焼結体を作製し、次に所望の寸法精
度を得るために特殊な機械加工で仕上げるが、上記フェ
ライト焼結体を作製する方法としては、同図において所
望の組成で原料を配合・混合した後、1000℃以下の
温度で仮焼成する。次にこの仮焼成物を粉砕し、この粉
砕粉末に適量のポリビニルアルコール(PVA)水溶液
などのバインダーを加え造粒した後、この造粒粉を円筒
型金型で一軸圧縮成形する。こうして得られた円筒型成
形体を1000℃以上の高温で本焼成して円筒型のフェ
ライト焼結体を得るか、あるいは上記フェライト仮焼粉
砕粉末を樹脂と混練し、円筒状にトランスファー成形し
た後、脱脂のための熱処理工程を経て同じく1000℃
以上の高温本焼成を行って同様のフェライト焼結体を得
るという2つの方法がある(たとえば特開昭61−84
006号公報参照)。
First, as shown in the manufacturing process diagram of FIG.
A cylindrical ferrite sintered body is produced and then finished by special machining to obtain the desired dimensional accuracy.As a method for producing the ferrite sintered body, the raw material with the desired composition in the figure is used. After mixing and mixing, it is calcined at a temperature of 1000 ° C or lower. Next, this calcinated product is pulverized, and an appropriate amount of a binder such as an aqueous solution of polyvinyl alcohol (PVA) is added to the pulverized powder for granulation, and then the granulated powder is uniaxially compression molded by a cylindrical mold. The cylindrical molded body thus obtained is subjected to main firing at a high temperature of 1000 ° C. or higher to obtain a cylindrical ferrite sintered body, or the above ferrite calcined pulverized powder is kneaded with a resin and transfer molded into a cylindrical shape. 1000 ℃ after the heat treatment process for degreasing
There are two methods of obtaining the same ferrite sintered body by performing the above high temperature main firing (for example, JP-A-61-84).
(See Japanese Patent Publication No. 006).

【0005】しかし、上記のどちらの方法であっても得
られたフェライト焼結体は、焼成前の成形体作製時に一
軸成形の場合は成形体中央部の圧力伝達が不十分になる
のは避けられず、成形密度の不均一が原因で図16の形
成体の焼成による反りおよび収縮を示す斜視図に示すよ
うに、フェライト焼結体32の中央部に反りが発生した
り、成形体33の寸法に比べ10%以上の大きい収縮を
伴うので、そのままでは寸法および精度的にもロータリ
ートランスコアとしての厳しい要求仕様内に納めること
は非常に困難である。
However, the ferrite sintered body obtained by either of the above methods should avoid insufficient pressure transmission in the central portion of the molded body in the case of uniaxial molding when manufacturing the molded body before firing. As shown in the perspective view of FIG. 16 showing the warp and shrinkage due to the firing of the formed body due to the non-uniformity of the forming density, the ferrite sintered body 32 is warped in the central portion, and the formed body 33 is warped. Since it is accompanied by a large shrinkage of 10% or more in comparison with the size, it is very difficult to keep the size and accuracy within the strict required specifications as a rotary transformer core.

【0006】したがって、たとえば円筒型コアを作る場
合は通常次のようになされている。まずその内外径が所
望の寸法よりも約1mm以上の余裕をもった円筒型のフェ
ライト焼結体を用意し、このフェライト焼結体の外周面
をセンタレスグラインダで1次研削し、次にこの外周面
を基準にして内周面を内面研削機で粗研削し、その後内
外周面両方ともに特殊研削機で表面仕上げした後、必要
チャンネル数のコイル用横溝を内周もしくは外周に沿っ
て溝研削砥石または回転連続刃で同時溝加工されて円筒
型ロータリートランスコアの最終製品としての寸法精度
を得ている。
Therefore, for example, when a cylindrical core is manufactured, it is usually performed as follows. First, prepare a cylindrical ferrite sintered body with an inner and outer diameter of about 1 mm or more larger than the desired size, and perform the primary grinding of the outer peripheral surface of this ferrite sintered body with a centerless grinder. Roughly grind the inner peripheral surface with an inner surface grinding machine based on the surface, then both the inner and outer peripheral surfaces are surface-finished with a special grinding machine, and then lateral grooves for coils of the required number of channels are grooved along the inner or outer circumference. Alternatively, simultaneous groove processing is performed with a rotary continuous blade to obtain dimensional accuracy as a final product of a cylindrical rotary transformer core.

【0007】この際、特に精度が必要な部分は2つの円
筒型コアの相対間隙寸法とコイル用横溝の形状および寸
法精度であり、横溝形状も図17のコイル巻線状態の模
式図に示すように、溝側面のテーパー部34と溝底コー
ナー部35の曲率半径が大きく、しかも同一の溝研削砥
石で数100個以上のコア36の加工を行えば、研削刃
の磨耗による経時変化によって、一定寸法の溝形状を得
ることが困難であるのが現状である。また加工工数とし
ては溝加工の占める割合が最も高くなっている。次に、
コイル用横溝にコイル37の巻線を行うが、ここでコイ
ル37の装着方法としては内側,外側コアのコイル用横
溝に被覆銅線を直接巻きながらコイル37を形成する方
法か、あるいは特に外側コアの場合は予め作製した空芯
コイルを入れ込む方法が用いられている。こうして内側
コアと外側コアを組み立ててロータリートランスの完成
品とする。
In this case, the parts that require particularly high precision are the relative gap size of the two cylindrical cores and the shape and dimensional accuracy of the coil lateral groove. The lateral groove shape is also as shown in the schematic diagram of the coil winding state in FIG. In addition, if the radius of curvature of the groove side taper portion 34 and the groove bottom corner portion 35 is large, and more than several hundred cores 36 are machined with the same groove grinding wheel, it will be constant due to changes with time due to wear of the grinding blade. At present, it is difficult to obtain a groove shape having a size. As for the number of man-hours, the ratio of groove processing is the highest. next,
The coil 37 is wound in the coil groove. Here, the coil 37 can be mounted by forming the coil 37 by directly winding the coated copper wire in the coil groove of the inner and outer cores, or particularly by using the outer core. In this case, a method of inserting a preliminarily prepared air core coil is used. In this way, the inner core and the outer core are assembled into a finished rotary transformer.

【0008】[0008]

【発明が解決しようとする課題】このように従来法によ
る円筒型のロータリートランスコアでは、フェライト焼
結体の大幅な収縮や中央部の反りの減少は不可避で、収
縮量を予め見込んで余裕ある寸法で円筒型のフェライト
焼結体を作製し、粗研削から最終的に精密加工で所望の
寸法,精度を出し、さらにコイル装着用の溝加工を行う
ことによってロータリートランス用フェライトコアに仕
上げている。しかし、この方法では特に溝加工をはじめ
として加工工数が多いことや、また材料が堅いため加工
時に割れや欠けなどが生じるなど工程歩留りが悪く、さ
らには研削加工による溝形状では、柵に溝側面のテーパ
ーや溝底コーナーの曲率半径が加工数量に伴って大きく
なり、一定寸法の溝形状が得にくいため、一層の整列巻
きが必要とされるコイル形成時においてコイルのはずれ
や浮きが生じ、巻線歩留りを低下させる原因になり、低
コストでロータリートランスを作るのが難しいという大
きな課題があった。さらに従来の方法では外側コアの内
周面の溝形成を金型成形によって作製する方法はなく、
溝加工は全て機械加工で行う方法しかなかった。
As described above, in the cylindrical rotary transformer core according to the conventional method, it is inevitable that the ferrite sintered body is significantly shrunk and the warp of the central portion is reduced, and the shrinkage amount is allowed in advance to allow a sufficient margin. A cylindrical ferrite sintered body with a size is produced, and finally the desired dimensions and accuracy are obtained by precision processing from rough grinding, and further groove processing for coil mounting is performed to finish the ferrite core for rotary transformer. .. However, this method has a large process man-hour including groove machining, and the material is hard, resulting in poor process yields such as cracks and chips during machining. Since the taper and radius of curvature of the groove bottom corner increase with the number of processed pieces, it is difficult to obtain a groove shape with a certain size, so when the coil is formed that requires more aligned winding, the coil may come off or float, There has been a big problem that it causes a decrease in wire yield and it is difficult to manufacture a rotary transformer at low cost. Furthermore, in the conventional method, there is no method of forming the groove on the inner peripheral surface of the outer core by molding,
Grooving was the only method of machining.

【0009】本発明は上述した従来技術の欠点を解消す
るもので、巻線歩留りを飛躍的に向上させたコストの安
い円筒型のロータリートランスの製造方法を提供するこ
とを目的とする。
The present invention solves the above-mentioned drawbacks of the prior art, and an object of the present invention is to provide a method of manufacturing a cylindrical rotary transformer at a low cost, in which the winding yield is dramatically improved.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に本発明は、中心軸の少なくとも一部に放射方向に突出
する縦溝形成片をもった縦溝形成用金型の周辺に周面に
複数のスリット状凹溝を有する突条を複数個周面に設け
た横溝形成用金型を複数個配置し組み合わせて内形金型
とし、この内形金型の外周に円筒状の外形金型を被せ、
この外形金型と内形金型との間に所望量の磁性粉を充填
し、さらに内形金型と外形金型との間に押し金型を入り
こませて上記磁性粉を圧縮成形した後、横溝形成用金型
を中心軸方向に移動させて成形体を抜き出し、この成形
体を高温処理して円筒状の外側コアとし、この外側コア
の内周面に形成したスリット状凸部を有した横溝に外側
コイルを組み込んだ後、この外側コアに外周面の横溝に
内側コイルを形成した内側コアを組み込むロータリート
ランスの製造方法とするものである。
In order to achieve this object, the present invention provides a peripheral surface around a vertical groove forming die having a vertical groove forming piece protruding in a radial direction on at least a part of a central axis. A plurality of lateral groove forming dies having a plurality of ridges having a plurality of slit-shaped grooves on the peripheral surface are arranged and combined to form an inner die, and a cylindrical outer die is formed on the outer periphery of the inner die. Cover the mold,
A desired amount of magnetic powder was filled between the outer mold and the inner mold, and a pressing mold was further inserted between the inner mold and the outer mold to compression-mold the magnetic powder. After that, the lateral groove forming die is moved in the central axis direction to extract the molded body, and the molded body is subjected to high temperature treatment to form a cylindrical outer core, and the slit-shaped convex portion formed on the inner peripheral surface of the outer core is formed. This is a method for manufacturing a rotary transformer in which an outer coil is installed in the lateral groove that is provided and then an inner core in which an inner coil is formed in a lateral groove on the outer peripheral surface is installed in the outer core.

【0011】[0011]

【作用】上記製造方法により、従来方法では不可避であ
った成形密度の不均一性による焼成時の反りや大きな収
縮の発生に伴う変形のために円筒型コアの内周面の溝形
成を機械加工で行っていた方法とは異なり、均一成形体
の実現と金型成形によって円筒状の外側コアおよび内側
コアを作製するため、これまでに行われていた溝加工工
程が不要になるという効果やコイル巻線用のガイドとし
てスリット状凸部があるため、従来のものよりもはるか
に巻線歩留りが向上した安価なものが得られることにな
る。
According to the above-mentioned manufacturing method, the groove formation on the inner peripheral surface of the cylindrical core is machined due to the warp during firing due to the nonuniformity of the molding density, which is inevitable in the conventional method, and the deformation accompanying the large shrinkage. Different from the method used in, the cylindrical outer core and inner core are manufactured by the realization of a uniform molded body and die molding, which eliminates the groove processing step that has been performed up to now. Since there is a slit-shaped convex portion as a winding guide, it is possible to obtain an inexpensive one with a much higher winding yield than the conventional one.

【0012】[0012]

【実施例】以下、本発明の一実施例について、図面を参
照しながら説明する。図3は本発明の一実施例における
ロータリートランスの製造工程図である。ロータリート
ランス用コアの製造方法としては、一例として図1のそ
の成形工程において使用する内形金型の分解斜視図に示
すように、まず中心軸1に放射方向に突出した4枚の板
状の縦溝形成片2をもった縦溝形成用金型3の周辺に、
4つに分割され、しかも両端にテーパー部4aをもち横
溝を形成するための図2の横溝形成用金型の拡大斜視図
に示すスリット状凹溝4cを有した突条4bを所望のチ
ャンネル数だけ周辺に設けた横溝形成用金型4を、内側
円筒部にテーパーを有するキャップ5,6で縦溝形成用
金型3の周辺に組み合わせて固定し、図4の斜視図に示
すような内形金型7を得る。次に図5の斜視図に示すよ
うに内形金型7を下押し金型8に挿入した後、図6の斜
視図に示すようにこの内形金型7の外周に円筒状の外形
金型9を被せ、この外形金型9と内形金型7の間に所望
量の磁性粉10を粉体供給ノズル11などで均一に充填
し、内形金型7と外形金型9との間に下押し金型8と上
押し金型12とを入り込ませて圧縮成形する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a manufacturing process diagram of a rotary transformer in one embodiment of the present invention. As an example of a method for manufacturing a core for a rotary transformer, as shown in an exploded perspective view of an inner die used in the molding step of FIG. Around the vertical groove forming die 3 having the vertical groove forming piece 2,
A ridge 4b divided into four and having a slit-shaped groove 4c shown in an enlarged perspective view of a lateral groove forming die of FIG. 2 for forming a lateral groove having tapered portions 4a at both ends has a desired number of channels. The lateral groove forming die 4 provided only on the periphery of the vertical groove forming die 3 is fixed to the periphery of the vertical groove forming die 3 by the caps 5 and 6 having a taper on the inner cylindrical portion. The mold 7 is obtained. Next, as shown in the perspective view of FIG. 5, after inserting the inner mold 7 into the downward pressing die 8, as shown in the perspective view of FIG. 9, and a desired amount of magnetic powder 10 is uniformly filled between the outer shape die 9 and the inner shape die 7 with a powder supply nozzle 11 or the like. The lower pressing mold 8 and the upper pressing mold 12 are inserted into and compression molded.

【0013】次に図7の一部切欠斜視図に示すように、
4個の横溝形成用金型4の固定用のキャップ5,6を抜
き取った後、縦溝形成用金型3を抜き出す。なお、同図
に示す13は磁性粉10の成形体である。
Next, as shown in the partially cutaway perspective view of FIG.
After removing the caps 5 and 6 for fixing the four lateral groove forming molds 4, the vertical groove forming mold 3 is extracted. In addition, 13 shown in the figure is a molded body of the magnetic powder 10.

【0014】次に図8の一部切欠斜視図に示すように、
上下端部に相反するネジ部をそれぞれ有する中心棒14
を縦溝形成用金型3を抜き取った空間に挿入し、上下端
部のネジ部に内側円筒部にテーパーをもつ抜き型15,
16を上下方向から4個の横溝形成用金型4のテーパー
部4aの直前までねじ込む。そして図9の一部切欠斜視
図に示すように中心棒14を抜き型15,16がお互い
が接近する方向に回転させることにより、抜き型15,
16を同速度で可動させ、抜き型15,16と横溝形成
用金型4のお互いのテーパーを利用することで、4個の
横溝形成用金型4を中心軸方向に移動させて成形体13
より抜き出し、そして最後に図10の一部切欠斜視図に
示すように外形金型9から成形体13を抜き型17によ
って抜き出すのである。
Next, as shown in the partially cutaway perspective view of FIG.
Center bar 14 having screw parts at the upper and lower ends which are opposite to each other
Is inserted into the space from which the vertical groove forming mold 3 has been removed, and the upper and lower end screw parts have a taper on the inner cylindrical part 15,
16 is screwed in from the vertical direction to just before the taper portions 4a of the four lateral groove forming dies 4. Then, as shown in the partially cutaway perspective view of FIG. 9, the center rod 14 is rotated in a direction in which the cutting dies 15 and 16 approach each other.
By moving 16 at the same speed and utilizing the mutual taper of the punching dies 15 and 16 and the lateral groove forming die 4, the four lateral groove forming dies 4 are moved in the central axis direction to form the molded body 13.
Then, as shown in the partially cut-away perspective view of FIG. 10, the molded body 13 is extracted from the outer shape die 9 by the die 17.

【0015】この際、成形体13の取り出し順序はこの
例に限ることはなく、まず外形金型9から成形体13を
抜いた後に内形金型7の縦溝形成用金型3を抜き出し、
横溝形成用金型4を上記と同様に中心軸方向に移動させ
て形成体13より抜き出してもよいものである。
At this time, the order of taking out the molded body 13 is not limited to this example. First, the molded body 13 is removed from the outer shape mold 9 and then the vertical groove forming mold 3 of the inner mold 7 is extracted.
The lateral groove forming die 4 may be moved in the central axis direction and withdrawn from the forming body 13 as described above.

【0016】次にこうして得られた成形体13を高温処
理して円筒状コアとし、図11のロターリートランスの
断面図に示すように、この円筒状コアを外側コア18と
してその内周面の横溝にコイルを組み込み外側コイル1
9を構成し、また内側コア20ではその外周面の横溝に
コイルを巻装して内側コイル21とするとともにショー
トリング22を形成し、これを上記外側コイル19内に
組み込んでロータリートランスを作製するのである。
Next, the molded body 13 thus obtained is subjected to a high temperature treatment to form a cylindrical core, and as shown in the sectional view of the rotary transformer of FIG. Outer coil 1 with built-in coil in lateral groove
In the inner core 20, a coil is wound around a lateral groove on the outer peripheral surface of the inner core 20 to form an inner coil 21, and a short ring 22 is formed. The short ring 22 is incorporated into the outer coil 19 to produce a rotary transformer. Of.

【0017】ここでは縦溝数が4本の場合の一例につい
て説明したがこれに限られるものではなく、基本的には
2本以上の縦溝数をもった縦溝形成用金型とそれに相当
した数に分割された横溝形成用金型とが組み合わされた
構成をしていればよいものである。
Here, an example in which the number of vertical grooves is four has been described, but the number of vertical grooves is not limited to this, and basically, a vertical groove forming die having two or more vertical grooves and its equivalent. It suffices that it has a configuration in which the lateral groove forming dies divided into the above number are combined.

【0018】また充填する磁性粉は所望量を粉末状態で
行ったが、本金型内に容易に投入できる形状に予備成形
してこの予備成形物を用いてもよいものである。
Although the desired amount of magnetic powder to be filled is used in a powder state, the preformed product may be used by preforming it into a shape that can be easily put into the mold.

【0019】磁性粉としてはフェライトの仮焼成物、ま
たは高温焼成で十分フェライト化が進んだ高結晶性フェ
ライト磁性粉とガラス粉末との混合物、あるいはそれら
と樹脂の混合物からなるものでもよい。
The magnetic powder may be a provisional calcined product of ferrite, a mixture of highly crystalline ferrite magnetic powder which has been sufficiently ferritized by high temperature sintering and glass powder, or a mixture of these and a resin.

【0020】さらに圧縮成形の際、上記ガラス粉末ある
いは樹脂の混合物の場合はそのガラス粉末あるいは樹脂
が溶融する温度の加熱状態で行うこともできる。また樹
脂は熱硬化性,熱可塑性のいずれでも使用できるもので
ある。
Further, in the case of the compression molding, in the case of the mixture of the above-mentioned glass powder or resin, it can be carried out in a heated state at a temperature at which the glass powder or resin is melted. The resin can be either thermosetting or thermoplastic.

【0021】以下、具体的な実施例について説明する。 (実施例1)図3に示すように、まずFe23 48m
ol%,NiO 15mol%,ZnO 34mol
%,CuO 3mol%よりなる出発原料を配合・混合
し、この混合物にポリビニルアルコール(PVA)の5
wt%水溶液を5wt%加え、これを造粒したものを1
250℃で6時間焼成したものを粉砕して、平均粒径5
0μmのNi−Zn−Cu系ソフトフェライト本焼成粉
を準備した。この粉末をX線解析した結果、ソフトフェ
ライト特有の鋭いスピネル構造回折線が得られ、結晶性
の非常に他界磁性粉末であることを確認した。次に上記
高結晶性フェライト磁性粉末に対して軟化点(Td)3
80℃、平均粒径1μmの無アルカリホウケイ酸鉛系ガ
ラス粉末を3wt%加えて混合した後、造粒した。
Specific examples will be described below. (Example 1) As shown in FIG. 3, firstly Fe 2 O 3 48m
ol%, NiO 15mol%, ZnO 34mol
%, CuO 3 mol% as a starting material, and mixed and mixed with polyvinyl alcohol (PVA) 5
Add 5 wt% of wt% aqueous solution and granulate 1
The average particle size is 5
A 0 μm Ni—Zn—Cu-based soft ferrite main fired powder was prepared. As a result of X-ray analysis of this powder, a sharp spinel structure diffraction line peculiar to soft ferrite was obtained, and it was confirmed that the powder was an extremely field crystalline magnetic powder. Next, the softening point (Td) 3 of the highly crystalline ferrite magnetic powder
3 wt% of alkali-free lead borosilicate glass powder having an average particle diameter of 1 μm at 80 ° C. was added and mixed, and then granulated.

【0022】次に、外側コアと内側コアとがそれぞれ対
向する面に各々コイルが巻装されるための横溝と縦溝を
成形によって作製するため、外側コア成形の場合は図1
〜図10に示す製造方法で金型内に所望量の造粒粉を図
6に示すように本金型内に均一に充填し、3ton/cm2
圧力で本成形して横溝,縦溝を有した外側コア用の円筒
状の成形体13を得た。
Next, since the lateral groove and the vertical groove for winding the coil are formed by molding on the surfaces where the outer core and the inner core face each other, in the case of molding the outer core, as shown in FIG.
~ According to the manufacturing method shown in Fig. 10, a desired amount of granulated powder is uniformly filled in the mold as shown in Fig. 6, and the main mold is formed at a pressure of 3 ton / cm 2 to form lateral grooves and vertical grooves. A cylindrical molded body 13 for the outer core was obtained.

【0023】また内側コアの場合、外周面に横溝を形成
するため、図12の内側コアの成形金型の正面断面図,
図13のその平面断面図に示すように、凸部を有した4
個の割り金型23に上記造粒粉を所望量充填し、上記と
同様3ton/cm2の圧力で上押し金型24,下押し金型2
5で加圧成形しコイル用横溝26およびショートリング
用横溝27、さらには縦溝を有した内側コア用の円筒状
の成形体28を作製した。
In the case of the inner core, since a lateral groove is formed on the outer peripheral surface, a front sectional view of the inner core molding die of FIG.
As shown in the plan sectional view of FIG.
A desired amount of the above-mentioned granulated powder is filled in each split mold 23, and the upper pressing mold 24 and the lower pressing mold 2 are pressed at a pressure of 3 ton / cm 2 as described above.
Then, a cylindrical shaped body 28 for the inner core having the lateral groove 26 for the coil, the lateral groove 27 for the short ring, and the vertical groove was produced by press molding.

【0024】次にこれら成形体13,28を電気炉内に
個々に設置し、1200℃、60分間空気中で加熱処理
し、ガラス結着型の外側コアおよび内側コアを得た。そ
して、これらにコイルおよびショートリングを巻装し、
これらを組み合わせてロータリートランスを作製した。
この際、図14のコイル巻線状態を示す斜視図に示すよ
うに、横溝29の溝底にはコイル30のピッチに相当し
たスリット状凸部31が形成されているため巻線時にコ
イル30のはずれや浮きがなく、一層の整列巻きが歩留
りよくできた。上記実施例1の材料特性等の測定結果を
(表1)に示す。
Next, these molded bodies 13 and 28 were individually placed in an electric furnace and heat-treated in air at 1200 ° C. for 60 minutes to obtain glass-bonded outer cores and inner cores. Then, wind a coil and a short ring around them,
A rotary transformer was produced by combining these.
At this time, as shown in the perspective view of the coil winding state of FIG. 14, since the slit-shaped convex portions 31 corresponding to the pitch of the coil 30 are formed at the groove bottom of the lateral groove 29, the coil 30 is wound at the time of winding. There was no detachment or floating, and more aligned winding was made with good yield. The measurement results of the material properties and the like of Example 1 are shown in (Table 1).

【0025】[0025]

【表1】 [Table 1]

【0026】実施例1では、外側コアおよび内側コアの
収縮率が0.1%以下と、ほとんど熱処理によるコア収
縮がないため金型寸法どおりのものが得られ、外側コア
と内側コアとの間の間隙は、70μm以下の極めて高精
度の円筒型ロータリートランスが実現でき、また磁気特
性,トランス特性にも優れたものが得られた。
In Example 1, the shrinkage of the outer core and the inner core was 0.1% or less, and there was almost no shrinkage of the core due to the heat treatment, so that the mold dimension was obtained. With the gap of 70 μm or less, a highly accurate cylindrical rotary transformer can be realized, and a magnetic characteristic and a transformer characteristic are excellent.

【0027】(実施例2)実施例1で用いた同一のフェ
ライト本焼成に対して同一のガラス粉末を3wt%、樹
脂としてエポキシ粉末を5wt%加えて混合した後、樹
脂の軟化温度以上の90℃で2分間熱混練し、これを粉
砕・造粒した後、この造粒粉を所望量だけ実施例1と同
様の金型に充填し、金型温度180℃で30秒間、1to
n/cm2で圧縮成形し、外側用および内側用の円筒状の成
形体をそれぞれ作製した。
(Embodiment 2) 3 wt% of the same glass powder and 5 wt% of epoxy powder as a resin were added to the same ferrite main calcination used in Embodiment 1 and mixed, and then the softening temperature of the resin was 90 or higher. After heat kneading at ℃ for 2 minutes, crushing and granulating this, the desired amount of this granulated powder was filled in the same mold as in Example 1, and the mold temperature was 180 ° C. for 30 seconds at 1 to
Compression molding was carried out at n / cm 2 to produce outer and inner cylindrical molded bodies, respectively.

【0028】次にこれら成形体を電気炉内に個々に設置
し、脱脂工程を経た後、1200℃、60分間空気中で
加熱処理しガラス結着型の円筒型ロータリートランス用
フェライトコアを得た。そして実施例1と同様にこれら
横溝にコイルおよびショートリングを巻装し、これらを
組み合わせてロータリートランスを作製した。
Next, these molded bodies were individually placed in an electric furnace, and after undergoing a degreasing process, they were heat-treated in air at 1200 ° C. for 60 minutes to obtain glass-bonding type ferrite cores for cylindrical rotary transformers. .. Then, as in Example 1, a coil and a short ring were wound around these lateral grooves, and these were combined to produce a rotary transformer.

【0029】この際も、巻線時の歩留りは非常に高いも
のであった。上記実施例2の材料特性等の測定結果を
(表1)に示した。実施例2では、コアの収縮率が0.
1%以下と、ほとんど熱処理によるコア収縮がないため
金型寸法どおりのものが得られ、外側コアと内側コア間
の間隙は、70μm以下の極めて高精度の円筒型ロータ
リートランスが実現でき、また磁気特性,トランス特性
にも優れたものが得られた。
Also in this case, the yield at the time of winding was very high. The measurement results of the material properties and the like of Example 2 are shown in (Table 1). In Example 2, the shrinkage ratio of the core was 0.
1% or less, core shrinkage due to almost no heat treatment is obtained, so that the size of the mold can be obtained, the gap between the outer core and the inner core is 70 μm or less, and a highly accurate cylindrical rotary transformer can be realized. Excellent characteristics and transformer characteristics were obtained.

【0030】(実施例3)実施例1で用いた同一のフェ
ライト本焼粉に対して同一のガラス粉末を10wt%加
えて混合した後、PVA水溶液で造粒した。次にこの造
粒粉を実施例2と同様の方法でステライト製の同金型に
所望量均一に充填する。この際、外形金型にはその周囲
にヒータが取り付けられ、温度150℃で1分間、1to
n/cm2の圧力で上下押し金型を圧縮し、磁性粉間に介在
するガラス粉末を軟化溶融させながら成形を行った。そ
して成形が終了した後、金型を冷却し成形体を実施例2
と同様にして取り出し、外側用および内側用の円筒型の
成形体をそれぞれ作製した。
(Example 3) The same ferrite powder used in Example 1 was added with 10 wt% of the same glass powder and mixed, and then granulated with an aqueous PVA solution. Next, this granulated powder is uniformly filled in a desired amount in the same mold made of stellite by the same method as in Example 2. At this time, a heater is attached to the outer periphery of the outer mold and the temperature is 150 ° C. for 1 minute for 1 to
Molding was performed by compressing the vertical pressing die with a pressure of n / cm 2 to soften and melt the glass powder interposed between the magnetic powders. After the molding is completed, the mold is cooled to form the molded body in Example 2.
It was taken out in the same manner as in (1) to produce outer and inner cylindrical shaped bodies, respectively.

【0031】次にこれら成形体を電気炉内に個々に設置
し、1200℃、60分間空気中で加熱処理してガラス
結着型の外側コアおよび内側コアを得、そして実施例2
と同様にしてロータリートランスを作製した。この際
も、巻線時の歩留りは非常に高いものであった。上記実
施例3の材料特性等の測定結果を(表1)に示した。
Next, these molded bodies were individually placed in an electric furnace, and heat-treated in air at 1200 ° C. for 60 minutes to obtain glass-bonded outer cores and inner cores.
A rotary transformer was produced in the same manner as in. Also in this case, the yield at the time of winding was very high. The measurement results of the material properties and the like of Example 3 are shown in (Table 1).

【0032】実施例3では、コアの収縮率が1%で熱処
理によるコア収縮が小さいため金型寸法に近いものが得
られ、外側コアと内側コアとの間の間隙は、70μm以
下の極めて高精度の円筒型ロータリートランスが実現で
き、また磁気特性,トランス特性にも優れたものが得ら
れた。
In Example 3, since the core shrinkage rate is 1% and the core shrinkage due to the heat treatment is small, a mold size close to that of the mold is obtained, and the gap between the outer core and the inner core is extremely high, 70 μm or less. It was possible to realize a cylindrical rotary transformer with high accuracy, and it was also possible to obtain excellent magnetic and transformer characteristics.

【0033】(比較例1)実施例1と同一の配合組成を
もった出発原料の混合物に5wt%PVA水溶液を5w
t%加え、この造粒粉を1000℃、2時間で仮焼成を
行い、これを2〜5μmに微粉砕した後、この造粒粉を
円筒型ムク成形用金型に所望量充填し、3ton/cm2の圧
力で加圧成形し内側,外側コア用円筒型ムク成形体をそ
れぞれ作製した。
(Comparative Example 1) A mixture of starting materials having the same composition as in Example 1 was added with 5 w of a 5 wt% PVA aqueous solution.
After adding t%, the granulated powder is calcined at 1000 ° C. for 2 hours, finely pulverized to 2 to 5 μm, and the granulated powder is filled in a desired amount in a cylindrical mold for molding, and 3 ton Pressure molding was carried out at a pressure of / cm 2 to prepare cylindrical inner and outer core hollow molded bodies.

【0034】この成形品を電気炉内に設置し、1200
℃、3時間空気中で招請した後、除冷しながら降温させ
Ni−Zn−Cu系フェライト焼結型の円筒型コアを得
た。得られた円筒型コアを所望寸法にするため、全周面
とコイル溝を機械加工し外側コアおよび内側コアを作製
した。次にこれらのコアにコイル巻線をしたが、図17
に示すように、コアの溝底コーナー部でコイルの浮きが
生じ巻線歩留りがやや低かった。上記比較例1の材料特
性等の測定結果を(表1)に示した。
This molded product was placed in an electric furnace, and 1200
After inviting in the air at 3 ° C. for 3 hours, the temperature was lowered while being cooled to obtain a Ni—Zn—Cu-based ferrite sintered type cylindrical core. In order to make the obtained cylindrical core into a desired size, the entire peripheral surface and the coil groove were machined to produce an outer core and an inner core. Next, coil winding was performed on these cores.
As shown in (4), the coil was lifted at the corner of the groove bottom of the core and the winding yield was slightly low. The measurement results of the material properties and the like of Comparative Example 1 are shown in (Table 1).

【0035】[0035]

【発明の効果】以上のように本発明によるロータリート
ランスの製造方法は、従来の円筒型コアの溝形成が全て
コアを機械加工によって得るのとは異なって金型成形に
よって作製するため製造プロセスが非常に簡単になり、
加工コストも大幅に低減でき、さらに巻線歩留りも飛躍
的に向上することで、従来よりもはるかに安価なロータ
リートランスが得られるものである。
INDUSTRIAL APPLICABILITY As described above, the rotary transformer manufacturing method according to the present invention requires a manufacturing process because the groove formation of the conventional cylindrical core is made by molding, unlike the case where the core is obtained by machining. Very easy,
The processing cost can be significantly reduced, and the yield of windings can be dramatically improved, so that a rotary transformer much cheaper than the conventional one can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるロータリートランス
の製造方法の成形工程に用いる内形金型の分解斜視図
FIG. 1 is an exploded perspective view of an inner mold used in a molding step of a method for manufacturing a rotary transformer according to an embodiment of the present invention.

【図2】同内形金型に用いる横溝形成用金型の突条の拡
大斜視図
FIG. 2 is an enlarged perspective view of a ridge of a lateral groove forming die used for the internal die.

【図3】同ロータリートランスの製造工程図[FIG. 3] Manufacturing process diagram of the rotary transformer

【図4】同成形工程に用いる内形金型の斜視図FIG. 4 is a perspective view of an inner mold used in the molding process.

【図5】同内形金型を下押し金型に組み込んだ状態を示
す斜視図
FIG. 5 is a perspective view showing a state where the internal mold is incorporated in a downward pressing mold.

【図6】同内形金型に外形金型を組み込んだ成形金型に
磁性粉を供給する状態を示す斜視図
FIG. 6 is a perspective view showing a state in which magnetic powder is supplied to a molding die in which an outer shape die is incorporated into the inner shape die.

【図7】同成形金型から成形後キャップを取り除く状態
を示す一部切欠斜視図
FIG. 7 is a partially cutaway perspective view showing a state where a cap is removed from the molding die after molding.

【図8】同成形金型に抜き型を組み込む状態を示す一部
切欠斜視図
FIG. 8 is a partially cutaway perspective view showing a state in which a cutting die is incorporated in the molding die.

【図9】同成形金型に抜き型を組み込んだ状態を示す一
部切欠斜視図
FIG. 9 is a partially cutaway perspective view showing a state in which a cutting die is incorporated in the molding die.

【図10】同成形金型から成形体を取り出す状態を示す
一部切欠斜視図
FIG. 10 is a partially cutaway perspective view showing a state where a molded body is taken out from the molding die.

【図11】同製造方法によって作製したロータリートラ
ンスの断面図
FIG. 11 is a sectional view of a rotary transformer manufactured by the manufacturing method.

【図12】本発明の第1の実施例における内側コアの成
形金型の正面断面図
FIG. 12 is a front sectional view of a molding die for the inner core in the first embodiment of the present invention.

【図13】同成形金型の正面断面図FIG. 13 is a front sectional view of the molding die.

【図14】本発明の第1の実施例のコイル横溝における
コイル巻線状態を示す模式図
FIG. 14 is a schematic diagram showing a coil winding state in a coil lateral groove according to the first embodiment of the present invention.

【図15】従来のロータリートランスの製造工程図FIG. 15 is a manufacturing process diagram of a conventional rotary transformer.

【図16】従来の円筒型成形体の焼成によるコアの反り
と収縮の状態を示す斜視図
FIG. 16 is a perspective view showing a warped state and a contracted state of a core due to firing of a conventional cylindrical molded body.

【図17】従来のコアのコイル横溝におけるコイル巻線
状態を示す模式図
FIG. 17 is a schematic diagram showing a coil winding state in a coil lateral groove of a conventional core.

【符号の説明】[Explanation of symbols]

1 中心軸 2 縦溝形成片 3 縦溝形成用金型 4 横溝形成用金型 4b 突条 4c スリット状凹溝 7 内形金型 8 下押し金型 9 外形金型 10 磁性粉 12 上押し金型 13 成形体 18 外側コア 19 外側コイル 20 内側コア 21 内側コイル 31 スリット状凸部 1 central axis 2 vertical groove forming piece 3 vertical groove forming mold 4 horizontal groove forming mold 4b ridge 4c slit groove 7 internal mold 8 bottom pressing mold 9 external mold 10 magnetic powder 12 top pressing mold 13 molded body 18 outer core 19 outer coil 20 inner core 21 inner coil 31 slit-shaped convex portion

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 浩 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Fujii 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中心軸の少なくとも一部に放射方向に突
出する縦溝形成片をもった縦溝形成用金型の周辺に周面
に複数のスリット状凹溝を有する突条を複数個周面に設
けた横溝形成用金型を複数個配置し組み合わせて内形金
型とし、この内形金型の外周に円筒状の外形金型を被
せ、この外形金型と上記内形金型との間に所望量の磁性
粉を充填し、上記内形金型と上記外形金型との間に押し
金型を入りこませて上記磁性粉を圧縮成形した後、上記
横溝形成用金型を中心軸方向に移動させて成形体を抜き
出し、この成形体を高温処理して円筒状の外側コアと
し、この外側コアの内周面に形成したスリット状凸部を
有した横溝に外側コイルを組み込んだ後、この外側コア
に外周面の横溝に内側コイルを形成した内側コアを組み
込むロータリートランスの製造方法。
1. A plurality of ridges having a plurality of slit-shaped grooves on the peripheral surface are provided around a vertical groove forming die having a vertical groove forming piece protruding in a radial direction on at least a part of a central axis. A plurality of lateral groove forming dies provided on the surface are arranged and combined to form an inner die, and the outer periphery of the inner die is covered with a cylindrical outer die, and the outer die and the inner die are combined with each other. After filling a desired amount of magnetic powder between, and press-molding the magnetic powder by inserting a pressing mold between the inner mold and the outer mold, the lateral groove forming mold The molded body is extracted by moving it in the direction of the central axis, the molded body is subjected to high temperature treatment to form a cylindrical outer core, and the outer coil is incorporated in a lateral groove having a slit-shaped convex portion formed on the inner peripheral surface of the outer core. After that, a rotary transformer that incorporates an inner core with an inner coil formed in the lateral groove of the outer peripheral surface into this outer core Manufacturing method.
【請求項2】 磁性粉が、高温焼成で十分にフェライト
化が進んだ高結晶性フェライト磁性粉末にガラス粉末お
よび樹脂のうち少なくとも1種を加えた混合物からなる
請求項1記載のロータリートランスの製造方法。
2. The production of a rotary transformer according to claim 1, wherein the magnetic powder is a mixture of highly crystalline ferrite magnetic powder which has been sufficiently ferritized by high temperature firing and at least one of glass powder and resin is added. Method.
【請求項3】 圧縮成形が、ガラス粉末または樹脂を溶
融する加熱状態で行われる請求項2記載のロータリート
ランスの製造方法。
3. The method for manufacturing a rotary transformer according to claim 2, wherein the compression molding is performed in a heating state in which glass powder or resin is melted.
JP4111180A 1992-04-30 1992-04-30 Manufacture of rotary transformer Pending JPH05308026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4111180A JPH05308026A (en) 1992-04-30 1992-04-30 Manufacture of rotary transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4111180A JPH05308026A (en) 1992-04-30 1992-04-30 Manufacture of rotary transformer

Publications (1)

Publication Number Publication Date
JPH05308026A true JPH05308026A (en) 1993-11-19

Family

ID=14554525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4111180A Pending JPH05308026A (en) 1992-04-30 1992-04-30 Manufacture of rotary transformer

Country Status (1)

Country Link
JP (1) JPH05308026A (en)

Similar Documents

Publication Publication Date Title
US4523170A (en) Adjustable air gap ferrite structures and methods of manufacture
US5120366A (en) Composite ferrite material
JP3039021B2 (en) Manufacturing method of rotary transformer
JP3114222B2 (en) Manufacturing method of rotary transformer
JPH05308026A (en) Manufacture of rotary transformer
JPH05144644A (en) Manufacture of rotary transformer
JPH07115026A (en) Manufacture of rotating transformer
KR970011865B1 (en) Rotary transformer
JPH1197229A (en) Dust core and method for manufacturing it
JP3550779B2 (en) Rotary transformer core and rotary transformer
JP3165523B2 (en) Compacting mold for rotary transformer core and rotary transformer core
JPH03289113A (en) Manufacture of rotary transformer
JPH03289112A (en) Manufacture of rotary transformer
SU1359077A1 (en) Method of producing manganese-zinc ferrites
JPH03289106A (en) Rotary transformer and manufacture thereof
JP2973440B2 (en) Manufacturing method of rotary transformer
JP3239439B2 (en) Ferrite manufacturing method
JP3358635B2 (en) Manufacturing method of flat type rotary transformer core
JPH0140171Y2 (en)
JPH073303A (en) Production of metallic or ceramic sintered compact
JPH05304031A (en) Rotary transformer
JPS6337606A (en) Core for rotary transformer and manufacture thereof
JPH0555065A (en) Fabrication of magnetic head core
JPH06267750A (en) Manufacture of rotary transformer core by injection molding
JPH0140725B2 (en)