JP3113514B2 - Amorphous magnetic alloy thin film and thin film magnetic head using the same - Google Patents

Amorphous magnetic alloy thin film and thin film magnetic head using the same

Info

Publication number
JP3113514B2
JP3113514B2 JP06198661A JP19866194A JP3113514B2 JP 3113514 B2 JP3113514 B2 JP 3113514B2 JP 06198661 A JP06198661 A JP 06198661A JP 19866194 A JP19866194 A JP 19866194A JP 3113514 B2 JP3113514 B2 JP 3113514B2
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
atomic
magnetic
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06198661A
Other languages
Japanese (ja)
Other versions
JPH07115020A (en
Inventor
伸二 小林
直人 的野
知己 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP06198661A priority Critical patent/JP3113514B2/en
Publication of JPH07115020A publication Critical patent/JPH07115020A/en
Application granted granted Critical
Publication of JP3113514B2 publication Critical patent/JP3113514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薄膜磁気ヘッドの磁気
コア材等として用いられる非晶質磁性合金薄膜に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous magnetic alloy thin film used as a magnetic core material of a thin film magnetic head.

【0002】[0002]

【従来の技術】薄膜磁気ヘッドの磁気コア材としては、
従来、Ni−Fe合金薄膜が用いられることが多かっ
た。該Ni−Fe合金薄膜は、高透磁率で耐食性にも優
れているが、飽和磁束密度が高々1.0T程度であるた
め、磁気記録の高密度化には十分に対応できないという
問題がある。
2. Description of the Related Art As a magnetic core material of a thin film magnetic head,
Conventionally, Ni-Fe alloy thin films have often been used. The Ni—Fe alloy thin film has high magnetic permeability and excellent corrosion resistance, but has a problem that it cannot sufficiently cope with high density of magnetic recording because its saturation magnetic flux density is at most about 1.0 T.

【0003】高飽和磁束密度、高透磁率の磁性合金薄膜
としては、スパッタリング法により作製されたCo−Z
r2元系の非晶質合金薄膜が特開昭59−125607
号公報に開示されている。該Co−Zr合金薄膜は、Z
rの含有量が約4.5原子%以上の領域で非晶質化して
優れた軟磁気特性を示し、Zrの含有量が約5原子%の
ときの飽和磁束密度は約1.6Tとなるが、飽和磁束密
度が約1.5T以上となる組成領域においては成膜時の
基板温度が約100℃以下でないと非晶質化せず、非晶
質化促進のためにZrの量を増やすと、1原子%増加す
る毎に飽和磁束密度が約0.06Tも低下するという問
題がある。
As a magnetic alloy thin film having a high saturation magnetic flux density and a high magnetic permeability, Co-Z prepared by a sputtering method is used.
An r-binary amorphous alloy thin film is disclosed in
No. 6,009,045. The Co-Zr alloy thin film is made of Z
In the region where the content of r is about 4.5 atomic% or more, the amorphous state is obtained and excellent soft magnetic characteristics are exhibited. When the Zr content is about 5 atomic%, the saturation magnetic flux density becomes about 1.6T. However, in the composition region where the saturation magnetic flux density is about 1.5 T or more, the substrate does not become amorphous unless the substrate temperature at the time of film formation is about 100 ° C. or less, and the amount of Zr is increased to promote the amorphousization. Then, there is a problem that the saturation magnetic flux density is reduced by about 0.06 T for every 1 atomic% increase.

【0004】一方、特開昭55−138049号公報に
は、鉄族元素とZrからなる非晶質磁性合金にCr、M
o、W、Ti、V、Sn等の第3元素を添加したものが
開示されている。しかしながら、該公報に開示された非
晶質磁性合金は、液相からの急冷によって得られる薄帯
状のものであるため、製法上、薄膜磁気ヘッドの磁気コ
ア材として使いにくいばかりでなく、非晶質化するため
にはZrと前記第3元素との含有量の和を約8原子%以
上とする必要があるため、飽和磁束密度もあまり高くな
い。
On the other hand, Japanese Patent Application Laid-Open No. 55-138049 discloses that an amorphous magnetic alloy comprising an iron group element and Zr contains Cr, M
It is disclosed that a third element such as o, W, Ti, V, and Sn is added. However, since the amorphous magnetic alloy disclosed in this publication is a thin ribbon obtained by quenching from a liquid phase, not only is it difficult to use as a magnetic core material of a thin film magnetic head, but also amorphous Since the total content of Zr and the third element needs to be about 8 atomic% or more in order to improve the quality, the saturation magnetic flux density is not so high.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑み為されたものであり、飽和磁束密度が
高くて耐熱性にも優れ、薄膜磁気ヘッドの磁気コア材等
として好適な磁性合金薄膜を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has a high saturation magnetic flux density and excellent heat resistance, and is suitable as a magnetic core material of a thin film magnetic head. The present invention provides a thin magnetic alloy thin film.

【0006】[0006]

【課題を解決するための手段】本発明による非晶質磁性
合金薄膜は、CoとZrとSnを含有し、気相急冷法に
よって作製されたことを特徴とするものであり、さらに
好ましくは、Coの含有量が92原子%以上、Zrの含
有量が4.5〜6.5原子%、Snの含有量が0.03
原子%以上であることを特徴とするものである。
The amorphous magnetic alloy thin film according to the present invention contains Co, Zr and Sn, and is produced by a gas phase quenching method. The content of Co is 92 atomic% or more, the content of Zr is 4.5 to 6.5 atomic%, and the content of Sn is 0.03%.
Atomic% or more.

【0007】[0007]

【作用】本願発明者は、気相急冷法の一種であるスパッ
タリング法によって各種組成のCo−Zr−Sn合金薄
膜を作製し、該Co−Zr−Sn合金薄膜はCo−Zr
合金薄膜に比べて保磁力が小さく、比抵抗が大きく、高
温で成膜しても非晶質化しやすく、Co含有量の減少に
伴う飽和磁束密度の低下傾向も小さいことを実験的に見
いだした。
The present inventor has prepared Co—Zr—Sn alloy thin films of various compositions by sputtering, which is a kind of gas phase quenching method, and the Co—Zr—Sn alloy thin film
We have experimentally found that the coercive force is smaller than the alloy thin film, the specific resistance is large, the film is easily amorphized even at a high temperature, and the tendency of the saturation magnetic flux density to decrease with a decrease in the Co content is small. .

【0008】[0008]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0009】まず、Zrの含有量を一定(5.5原子
%)としたCo−Zr−Sn合金薄膜における、保磁力
とSn含有量との関係を図1に示す。
First, FIG. 1 shows the relationship between the coercive force and the Sn content in a Co—Zr—Sn alloy thin film in which the Zr content is constant (5.5 at%).

【0010】ここで、成膜にはDCマグネトロン方式の
スパッタリング装置を用い、ターゲットから基板までの
距離は70mm、Arガス圧は6mTorr、投入電力
は1kW、基板温度は100℃とした。また、磁性合金
薄膜に一軸異方性を付与して透磁率を向上させるため、
基板の近くに永久磁石を配置して膜面内の一方向に50
Oeの静磁場を印加しながら成膜した。該磁性合金薄膜
を薄膜磁気ヘッドの磁気コア材とする場合には、前記静
磁場を印加した方向をトラック幅方向として用いる。
Here, a DC magnetron type sputtering apparatus was used for film formation, the distance from the target to the substrate was 70 mm, the Ar gas pressure was 6 mTorr, the input power was 1 kW, and the substrate temperature was 100 ° C. Also, in order to improve the magnetic permeability by imparting uniaxial anisotropy to the magnetic alloy thin film,
A permanent magnet is placed close to the substrate and 50
The film was formed while applying a static magnetic field of Oe. When the magnetic alloy thin film is used as a magnetic core material of a thin film magnetic head, the direction in which the static magnetic field is applied is used as a track width direction.

【0011】図1を見ればわかるように、Co−Zr合
金薄膜(三角印)のCoを僅か0.1原子%程度のSn
に置き換えるだけで保磁力は著しく低下し、Snの含有
量を増やすと保磁力はさらに小さくなる。なお、図1に
示したCo−Zr−Sn合金薄膜に関する測定点(丸
印)の内で、Snの含有量が最も少ないものについてS
nの含有量を精密に定量分析したところ、0.03原子
%Snであった。
As can be seen from FIG. 1, Co of the Co—Zr alloy thin film (triangular mark) contains only about 0.1 atomic% of Sn.
, The coercive force is significantly reduced, and when the Sn content is increased, the coercive force is further reduced. In addition, among the measurement points (circles) of the Co—Zr—Sn alloy thin film shown in FIG.
When the content of n was quantitatively analyzed precisely, it was 0.03 atomic% Sn.

【0012】次に、Zrの含有量を一定(5.5原子
%)としたCo−Zr−Sn合金薄膜における、比抵抗
とSn含有量との関係を図2に示す。
Next, FIG. 2 shows the relationship between the specific resistance and the Sn content in a Co—Zr—Sn alloy thin film in which the Zr content is constant (5.5 at%).

【0013】図2を見ればわかるように、Snの含有量
が増加するに従って比抵抗が大きくなる。薄膜磁気ヘッ
ドの磁気コア材としての磁性薄膜は、比抵抗が増大する
と渦電流損失が小さくなり、好ましいものとなる。
As can be seen from FIG. 2, the specific resistance increases as the Sn content increases. The magnetic thin film as the magnetic core material of the thin film magnetic head is preferable because the eddy current loss decreases as the specific resistance increases.

【0014】次に、Co−Zr合金薄膜とCo−Zr−
Sn合金薄膜について、成膜時の基板温度と保磁力との
関係を図3に示す。
Next, a Co-Zr alloy thin film and a Co-Zr-
FIG. 3 shows the relationship between the substrate temperature and the coercive force during film formation of the Sn alloy thin film.

【0015】図3を見ればわかるように、94.5原子
%Co−5.5原子%Zr合金薄膜(曲線A)において
は、成膜時の基板温度が100℃を越えると保磁力が著
しく増大し、これは結晶化によるものと考えられるのに
対して、93原子%Co−5.5原子%Zr−1.5原
子%Sn合金薄膜(曲線B)においては、成膜時の基板
温度が100℃を越えて200℃に達しても保磁力が約
0.1Oe以下の値となっており、結晶化が抑制されて
いる。成膜時の基板温度を高く設定することができれ
ば、基板に対する膜の付着力が向上するので、薄膜磁気
ヘッドの製法上、有利である。また、成膜時の基板温度
が高くても保磁力が大きくならないということは、結晶
化温度が高いことを予測させ、成膜後の耐熱性にも優れ
ることを予測させる。
As can be seen from FIG. 3, in the 94.5 atomic% Co-5.5 atomic% Zr alloy thin film (curve A), the coercive force becomes remarkable when the substrate temperature exceeds 100 ° C. This is thought to be due to crystallization. On the other hand, in the 93 atomic% Co-5.5 atomic% Zr-1.5 atomic% Sn alloy thin film (curve B), the substrate temperature during film formation was increased. Exceeds 100 ° C. and reaches 200 ° C., the coercive force has a value of about 0.1 Oe or less, and crystallization is suppressed. If the substrate temperature at the time of film formation can be set high, the adhesion of the film to the substrate is improved, which is advantageous in the method of manufacturing a thin-film magnetic head. The fact that the coercive force does not increase even when the substrate temperature during film formation is high indicates that the crystallization temperature is high and that the heat resistance after film formation is also excellent.

【0016】次に、種々の組成を有するCo−Zr−S
n合金薄膜について、飽和磁束密度が等しくなる組成を
結んだ曲線を図4に示す。
Next, Co-Zr-S having various compositions
FIG. 4 shows a curve connecting compositions in which the saturation magnetic flux densities are equal for the n alloy thin film.

【0017】図4を見ればわかるように、等飽和磁束密
度曲線は等Co濃度直線に比べてCo低濃度側に膨らん
でおり、このことは、Co−Zr合金薄膜におけるCo
含有量の減少に伴う飽和磁束密度の低下傾向が、Zrを
Snに置き換えることによって抑制されることを意味し
ている。そして、前記図1〜図3に示したCo−Zr−
Sn合金薄膜におけるZrの含有量(5.5原子%)か
らZrの含有量が約±1%の範囲内で変動しても、Co
の含有量が約92原子%以上であれば約1.4T以上の
高い飽和磁束密度が得られている。
As can be seen from FIG. 4, the iso-saturation magnetic flux density curve swells to the lower Co concentration side as compared with the iso-Co concentration straight line, which indicates that the Co-Zr alloy thin film
This means that the tendency of the saturation magnetic flux density to decrease with a decrease in the content is suppressed by replacing Zr with Sn. The Co-Zr- shown in FIGS.
Even if the Zr content fluctuates within a range of about ± 1% from the Zr content (5.5 atomic%) in the Sn alloy thin film,
, A high saturation magnetic flux density of about 1.4 T or more is obtained.

【0018】次に、Co−Zr−Sn合金薄膜に第4の
元素を添加することによる耐食性向上の効果について説
明する。
Next, the effect of improving the corrosion resistance by adding the fourth element to the Co—Zr—Sn alloy thin film will be described.

【0019】図5は、JIS−Z2317規格に準じた
塩水噴霧試験の結果を示すものであり、横軸は時間、縦
軸は飽和磁束密度を各試料の塩水噴霧試験前の値で規格
化して示したものである。そして、曲線C(白四角印)
は94原子%Co−5.5原子%Zr−0.5原子%S
n合金薄膜、曲線D(黒三角印)は93原子%Co−
5.5原子%Zr−0.5原子%Sn−1原子%Cr合
金薄膜、曲線E(黒四角印)は92原子%Co−5.5
原子%Zr−0.5原子%Sn−2原子%Cr合金薄膜
についての試験結果を示している。
FIG. 5 shows the results of the salt spray test according to the JIS-Z2317 standard. The horizontal axis represents time, and the vertical axis represents the saturation magnetic flux density normalized by the value of each sample before the salt spray test. It is shown. And curve C (white square mark)
Is 94 atomic% Co-5.5 atomic% Zr-0.5 atomic% S
n alloy thin film, curve D (black triangle) is 93 atomic% Co-
5.5 atomic% Zr-0.5 atomic% Sn-1 atomic% Cr alloy thin film, curve E (solid square) shows 92 atomic% Co-5.5
The test result about the atomic% Zr-0.5 atomic% Sn-2 atomic% Cr alloy thin film is shown.

【0020】図5を見ればわかるように、Co−Zr−
Sn系合金薄膜にCrを添加すると、塩水噴霧試験によ
る飽和磁束密度の低下傾向が抑制され、このことはCr
添加による耐食性の向上を意味している。
As can be seen from FIG. 5, Co-Zr-
When Cr is added to the Sn-based alloy thin film, the tendency of the saturation magnetic flux density to decrease in the salt spray test is suppressed.
It means improvement of corrosion resistance by addition.

【0021】[0021]

【発明の効果】本発明によれば、約1.4T以上の高飽
和磁束密度を有し、成膜時の基板温度が高くても良好な
軟磁気特性を示し、薄膜磁気ヘッドの磁気コア材等とし
て好適な磁性合金薄膜が得られる。
According to the present invention, the magnetic core material of the thin film magnetic head has a high saturation magnetic flux density of about 1.4 T or more, exhibits good soft magnetic characteristics even when the substrate temperature during film formation is high. Thus, a magnetic alloy thin film suitable as such is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Co−Zr−Sn合金薄膜における保磁力とS
n含有量との関係を示す実験結果図である。
FIG. 1 shows coercive force and S in a Co—Zr—Sn alloy thin film.
It is an experimental-result figure which shows the relationship with n content.

【図2】Co−Zr−Sn合金薄膜における比抵抗とS
n含有量との関係を示す実験結果図である。
FIG. 2 shows specific resistance and S in a Co—Zr—Sn alloy thin film.
It is an experimental-result figure which shows the relationship with n content.

【図3】Co−Zr合金薄膜及びCo−Zr−Sn合金
薄膜における保磁力と基板温度との関係を示す実験結果
図である。
FIG. 3 is an experimental result diagram showing a relationship between a coercive force and a substrate temperature in a Co—Zr alloy thin film and a Co—Zr—Sn alloy thin film.

【図4】Co−Zr−Sn合金薄膜における飽和磁束密
度と組成との関係を示す実験結果図である。
FIG. 4 is an experimental result diagram showing a relationship between a saturation magnetic flux density and a composition in a Co—Zr—Sn alloy thin film.

【図5】Co−Zr−Sn合金薄膜及びCo−Zr−S
n−Cr合金薄膜についての耐食性試験結果図である。
FIG. 5 shows a Co—Zr—Sn alloy thin film and Co—Zr—S
It is a corrosion-resistive test result figure about an n-Cr alloy thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI G11B 5/31 G11B 5/31 C (56)参考文献 特開 平1−92359(JP,A) 特開 昭55−138049(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/16 C22C 19/07 C22C 45/04 C23C 14/14 C23C 14/34 G11B 5/31 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification code FI G11B5 / 31 G11B5 / 31C (56) References JP-A-1-92359 (JP, A) JP-A-55-138049 ( JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/16 C22C 19/07 C22C 45/04 C23C 14/14 C23C 14/34 G11B 5/31

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 92原子%を超えるCoと、4.5〜
6.5原子%のZrと、0.03原子%以上のSnとを
含有し、気相急冷法によって作製されたことを特徴とす
る非晶質磁性合金薄膜。
1. The method according to claim 1, wherein the content of Co exceeds 92 atomic% and 4.5 to 4.5 atomic%.
An amorphous magnetic alloy thin film containing 6.5 atomic% of Zr and 0.03 atomic% or more of Sn and produced by a vapor phase quenching method.
【請求項2】 前記CoとZrとSnの他に、1〜2原
子%のCrを含有することを特徴とする請求項1記載の
非晶質磁性合金薄膜。
2. The amorphous magnetic alloy thin film according to claim 1, further comprising 1 to 2 atomic% of Cr in addition to said Co, Zr and Sn.
【請求項3】 請求項1又は2記載の非晶質磁性合金薄
膜を磁気コア材として用いた薄膜磁気ヘッド。
3. A thin-film magnetic head using the amorphous magnetic alloy thin film according to claim 1 as a magnetic core material.
JP06198661A 1993-08-27 1994-08-23 Amorphous magnetic alloy thin film and thin film magnetic head using the same Expired - Fee Related JP3113514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06198661A JP3113514B2 (en) 1993-08-27 1994-08-23 Amorphous magnetic alloy thin film and thin film magnetic head using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-212820 1993-08-27
JP21282093 1993-08-27
JP06198661A JP3113514B2 (en) 1993-08-27 1994-08-23 Amorphous magnetic alloy thin film and thin film magnetic head using the same

Publications (2)

Publication Number Publication Date
JPH07115020A JPH07115020A (en) 1995-05-02
JP3113514B2 true JP3113514B2 (en) 2000-12-04

Family

ID=26511105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06198661A Expired - Fee Related JP3113514B2 (en) 1993-08-27 1994-08-23 Amorphous magnetic alloy thin film and thin film magnetic head using the same

Country Status (1)

Country Link
JP (1) JP3113514B2 (en)

Also Published As

Publication number Publication date
JPH07115020A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
JP2763165B2 (en) Manufacturing method of magnetic recording medium
JP3113514B2 (en) Amorphous magnetic alloy thin film and thin film magnetic head using the same
KR970011188B1 (en) Magnetic thin film & its using magnetic head
KR890003038B1 (en) Magnetic recording carrier
JP2710440B2 (en) Soft magnetic alloy film
JPH0750008A (en) Magnetic recording medium
JPS6056414B2 (en) Co-based alloy for magnetic recording media
JP2675178B2 (en) Soft magnetic alloy film
JP3087265B2 (en) Magnetic alloy
JPS6313256B2 (en)
JP2797509B2 (en) Magnetic thin film material
JP3019400B2 (en) Amorphous soft magnetic material
JP2727274B2 (en) Soft magnetic thin film
JPH0766035A (en) Magnetic thin film
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JPH0130219B2 (en)
JPS6184005A (en) Magnetic recording material
JP2001110634A (en) Soft magnetic membrane and magnetic head using the same
JPS62104107A (en) Soft magnetic thin film
JPH08124744A (en) Magnetic alloy film and composite magnetic head
JPH0130218B2 (en)
JPH02194168A (en) Target member
JPH0540916A (en) Magnetic head
JPS60170027A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees