JP3111657U - Dome end of ultra vacuum insulation tank for cryogenic liquefied gas - Google Patents

Dome end of ultra vacuum insulation tank for cryogenic liquefied gas Download PDF

Info

Publication number
JP3111657U
JP3111657U JP2005002375U JP2005002375U JP3111657U JP 3111657 U JP3111657 U JP 3111657U JP 2005002375 U JP2005002375 U JP 2005002375U JP 2005002375 U JP2005002375 U JP 2005002375U JP 3111657 U JP3111657 U JP 3111657U
Authority
JP
Japan
Prior art keywords
dome end
inner container
tank
ultra
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005002375U
Other languages
Japanese (ja)
Inventor
ヤオ チュンロン
ヤン ヤン
チェン ヤオチュン
ワン ロンシュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China International Marine Containers Group Co Ltd
Original Assignee
China International Marine Containers Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China International Marine Containers Group Co Ltd filed Critical China International Marine Containers Group Co Ltd
Application granted granted Critical
Publication of JP3111657U publication Critical patent/JP3111657U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/12Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge with provision for thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/04Vessels not under pressure with provision for thermal insulation by insulating layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/08Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/014Suspension means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/031Dealing with losses due to heat transfer
    • F17C2260/033Dealing with losses due to heat transfer by enhancing insulation

Abstract

【課題】タンクの内部容器のドーム端と、同ドーム端を用いた超真空断熱タンクとを提供する。
【解決手段】 タンクはフレーム構造とタンク本体とを含み、タンク本体は、外殻と、内部容器と、外殻と内部容器を連結する複合支持構造物とを含む。複合支持構造物は、タンクの両端において、外殻のドーム端と内部容器のドーム端との間にのみ設けられ、これによって、緯度方向と経度方向の両方の力に耐えることができる。内部容器と外殻の間の伝熱面は小さく、それでいて支持構造物は重い負荷に耐えることができ、内部容器の有効積載量は大きい。
【選択図】 図3
A dome end of an inner container of a tank and an ultra-vacuum heat insulation tank using the dome end are provided.
The tank includes a frame structure and a tank body, and the tank body includes an outer shell, an inner container, and a composite support structure that connects the outer shell and the inner container. The composite support structure is provided only at both ends of the tank, between the dome end of the outer shell and the dome end of the inner container, so that it can withstand both latitudinal and longitude forces. The heat transfer surface between the inner container and the outer shell is small, yet the support structure can withstand heavy loads and the effective load capacity of the inner container is large.
[Selection] Figure 3

Description

本考案は、極低温液化ガスの貯蔵設備または輸送設備の一種に関し、より詳細には、極低温液化ガスを効率よく輸送するための、内部容器のドーム端と、同ドーム端を用いた超真空断熱タンクとに関する。   The present invention relates to a kind of cryogenic liquefied gas storage facility or transport facility, and more particularly, an ultra-vacuum using the dome end of the inner container and the dome end for efficiently transporting the cryogenic liquefied gas. It relates to an insulation tank.

極低温タンクの性能は、1909年に発明された真空粉末断熱技術によってめざましく向上した。真空粉末断熱技術は、過去30年の間に、極低温技術の全分野で広く用いられるようになった。その代表例が空気分離液化技術である。50年ほど前に、超真空多層断熱技術が登場した。これは、極低温断熱技術の歴史における非常に重要な進展であった。特に、過去50年の間に、宇宙技術の発展に伴い、液体水素および液体ヘリウムの消費が急激に拡大し、このことが、超真空多層断熱技術の研究および応用の動機付けとなった。その主な応用製品が、極低温液化ガス用のタンク自動車やタンクコンテナであった。   The performance of the cryogenic tank has been dramatically improved by the vacuum powder insulation technology invented in 1909. Vacuum powder insulation technology has become widely used in all fields of cryogenic technology during the past 30 years. A typical example is air separation liquefaction technology. About 50 years ago, ultra-vacuum multilayer insulation technology appeared. This was a very important development in the history of cryogenic thermal insulation technology. In particular, during the past 50 years, with the development of space technology, the consumption of liquid hydrogen and liquid helium has increased rapidly, which has motivated research and application of ultra-vacuum multilayer insulation technology. Its main application products were tank cars and tank containers for cryogenic liquefied gas.

極低温技術の分野では、極低温液化ガスとは、−160℃を下回る温度で液体状態にあるガスのことであり、たとえば、液化酸素、液化窒素、液化アルゴン、液化水素、液化ヘリウム、液化メタン、液化天然ガス(LNG)などがある。これらのガスは、液体状態での体積が気体状態での体積の600分の1よりも小さいので、液体状態で輸送されることが多い。極低温液化ガスの輸送設備として、タンク自動車やタンクコンテナなどがある。タンクの形態は二重構造であり、支持構造物で接続された内部容器と外殻の間に真空の中間層が配置される。輸送規制の要件により、(タンク自動車やタンクコンテナなどの)すべての輸送設備が最大全体寸法の制限を遵守しなければならず、有効積載量は、その制限内で、真空層の厚さによって決まる。   In the field of cryogenic technology, a cryogenic liquefied gas is a gas in a liquid state at a temperature below −160 ° C., for example, liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied hydrogen, liquefied helium, liquefied methane. And liquefied natural gas (LNG). These gases are often transported in the liquid state because their volume in the liquid state is less than 1/600 of the volume in the gas state. Examples of cryogenic liquefied gas transportation facilities include tank cars and tank containers. The tank has a double structure, and a vacuum intermediate layer is disposed between the inner container and the outer shell connected by the support structure. Due to the requirements of transport regulations, all transport equipment (such as tank cars and tank containers) must comply with the maximum overall size limit, and the effective load capacity is determined by the thickness of the vacuum layer within that limit .

現在、極低温輸送設備として、真空粉末断熱のタンク自動車およびタンクコンテナが広く用いられている。図1は、関連技術による輸送設備10の主な構造を示す。この構造は、外殻1、内部容器2、断熱構造物3、外殻1と内部容器2の間の、複数の半径方向の支持体4と前部および後部の長手方向の支持体15および16、および剛性のある組立体6を含む。内部容器2と外殻1の間に超真空層8が形成され、この中に、断熱を実現するために、パーライトなどの材料を加えることができる。十分な断熱効果を達成するために、真空層8は、大きな厚み(たいていは200〜300mmの範囲)を持つように設計される。しかしながら、そのような設備にすると最大積載量が犠牲になり、また、パーライトが輸送中に徐々に沈み込んで断熱性能に悪影響を及ぼす。そこで、多層断熱技術が開発された。これにより、特に、極低温液化ガスを輸送する設備の実用性が向上した。   Currently, vacuum powder insulated tank cars and tank containers are widely used as cryogenic transport facilities. FIG. 1 shows the main structure of a transport facility 10 according to the related art. This structure consists of an outer shell 1, an inner container 2, a thermal insulation structure 3, a plurality of radial supports 4 and front and rear longitudinal supports 15 and 16 between the outer shell 1 and the inner container 2. And a rigid assembly 6. An ultra-vacuum layer 8 is formed between the inner container 2 and the outer shell 1, and a material such as pearlite can be added therein to achieve heat insulation. In order to achieve a sufficient thermal insulation effect, the vacuum layer 8 is designed to have a large thickness (usually in the range of 200 to 300 mm). However, such a facility sacrifices the maximum loading capacity, and perlite gradually sinks during transportation, which adversely affects the heat insulation performance. Therefore, multilayer insulation technology was developed. This has improved the practicality of equipment for transporting cryogenic liquefied gas.

多層断熱技術では、前述の輸送設備10において、内部容器2の外側に断熱材料を巻き付け、複数層の断熱材料からなる真空の中間層をポンプで超真空状態にすることによって断熱層を形成する。真空の中間層を薄くするほど、タンクの積載量が多くなるが、それには問題がある。すなわち、断熱層を薄くするほど、内部容器と外殻の間に支持構造物を設置するのが困難になる。また、断熱層を薄くするほど、真空度が低くなり、内部容器から外殻に伝わる熱が多くなる。   In the multilayer heat insulation technique, a heat insulation layer is formed by winding a heat insulation material around the outer side of the inner container 2 in the transport facility 10 described above, and turning a vacuum intermediate layer made of a plurality of layers of heat insulation material into a super vacuum state with a pump. The thinner the vacuum intermediate layer, the larger the tank load, but there are problems. That is, the thinner the heat insulating layer, the more difficult it is to install the support structure between the inner container and the outer shell. Further, the thinner the heat insulating layer, the lower the degree of vacuum and the more heat transferred from the inner container to the outer shell.

たとえば中国特許第ZL 00249960.6号明細書および第ZL 01272605.2号明細書で開示されているように、現在のほとんどの多層断熱技術では、真空層に半径方向の支持体を設置するために、真空層の厚さを約100mmにしなければならない。   For example, as disclosed in Chinese Patent Nos. ZL 00249960.6 and ZL 01272605.2, most current multi-layer insulation techniques are used to install a radial support in the vacuum layer. The thickness of the vacuum layer must be about 100 mm.

実際、内部容器と外殻の間の支持構造物は、液体からの荷重、タンクの重量、および衝撃加速によって発生する力に耐えるだけでなく、支持構造物自体が原因となる熱漏れを可能な限り減らすことも必要である。したがって、極低温タンクの支持構造物の設計は重要である。この支持構造物は、前述の輸送設備においては、半径方向の支持体4、前部の長手方向の支持体15、および後部の長手方向の支持体16を含む。後部の長手方向の支持体16を例に取ると、支持体16は、内部容器用の補強板23と支持鋼管24、断熱補助リング26とその押さえリング25、外殻用支持鋼管32、および補強リブ33を含む。内部容器用支持鋼管24は、補強板23を介して、内部容器2の後部ドーム端の外側表面に溶接されていて、外殻用支持鋼管32は、外殻1の後部ドーム端の内側表面に溶接されている。内部容器用支持鋼管24は、断熱補助リング26および押さえリング25を介して、外殻用支持鋼管32によって保持されている。剛性のある組立体6は、断熱充填ブロック28、断熱充填ブロック28の内側ナット27と圧縮ナット29、支持軸ピン30、および支持蓋31を含む。剛性のある組立体6は、内側ナット27を介して支持鋼管24に連結されている。圧縮ナット29は、支持蓋31に溶接されている。支持蓋31は、外殻用支持鋼管32に溶接されている。前述の、内部容器と外殻の間の断熱充填ブロックの構造では、複数の超真空断熱層の間の間隙が狭いために支持構造物による熱漏れが非常に大きいという問題も、内部容器の熱膨張および低温収縮によって複数の超真空断熱層が損傷したり、機能停止したりするという問題も、効果的に解決できないことは明らかである。また、内部容器のドーム端と外殻のドーム端の間にステンレス鋼のスリーブ管を設けることは非常に困難である。さらに、内部容器のドーム端と外殻のドーム端の間の距離が大きいために耐衝撃性が低い。   In fact, the support structure between the inner container and the outer shell not only can withstand the load from the liquid, the weight of the tank, and the force generated by the acceleration of the impact, but also allows heat leakage due to the support structure itself. It is also necessary to reduce as much as possible. Therefore, the design of the cryogenic tank support structure is important. This support structure includes a radial support 4, a front longitudinal support 15, and a rear longitudinal support 16 in the aforementioned transport facility. Taking the rear longitudinal support 16 as an example, the support 16 is composed of an inner vessel reinforcing plate 23 and a supporting steel pipe 24, a heat insulation auxiliary ring 26 and its holding ring 25, an outer shell supporting steel pipe 32, and a reinforcement. Ribs 33 are included. The inner container support steel pipe 24 is welded to the outer surface of the rear dome end of the inner container 2 via the reinforcing plate 23, and the outer shell support steel pipe 32 is attached to the inner surface of the rear dome end of the outer shell 1. Welded. The inner container support steel pipe 24 is held by the outer shell support steel pipe 32 via the heat insulation auxiliary ring 26 and the pressing ring 25. The rigid assembly 6 includes a heat insulating filling block 28, an inner nut 27 and a compression nut 29 of the heat insulating filling block 28, a support shaft pin 30, and a support lid 31. The rigid assembly 6 is connected to the support steel pipe 24 via the inner nut 27. The compression nut 29 is welded to the support lid 31. The support lid 31 is welded to the outer shell support steel pipe 32. In the above-described structure of the heat insulating filling block between the inner container and the outer shell, the gap between the plurality of ultra-vacuum heat insulating layers is narrow, so that the heat leakage due to the support structure is very large. It is clear that the problems of damage to multiple ultra-vacuum thermal insulation layers due to expansion and low temperature shrinkage and failure of the layers cannot be effectively solved. Also, it is very difficult to provide a stainless steel sleeve tube between the dome end of the inner container and the dome end of the outer shell. Furthermore, since the distance between the dome end of the inner container and the dome end of the outer shell is large, the impact resistance is low.

極低温コンテナの支持構造物として、「サスペンダー」構造と呼ばれるものもあるが、これは、熱膨張および低温収縮のために耐衝撃性が弱まるという問題を効果的に克服することができない。ステンレス鋼のサスペンダーの支持能力を強化すると、伝わる熱が多くなり、その結果、極低温コンテナの気化損失が増えて、極低温の液体の貯蔵効率が低下する。   Some cryogenic container support structures are called “suspender” structures, but this cannot effectively overcome the problem of reduced impact resistance due to thermal expansion and cold shrinkage. Increasing the support capacity of stainless steel suspenders increases the heat transferred, resulting in increased vaporization losses in cryogenic containers and reduced cryogenic liquid storage efficiency.

中国特許第ZL 00216678.X号明細書は、図2に示すような、極低温コンテナの強い衝撃に耐える支持構造物40を開示している。この支持構造物40は、極低温コンテナの各端部の外殻の内側表面に設けられた半径方向の支持体と、極低温コンテナの一端に設けられた長手方向の支持体とを含み、極低温コンテナのもう一端は自由端である。この半径方向の支持体は、半径方向の支持リング41、外殻用支持管42、および補強リブ43を含む。内部容器の支持管51の一端が、内部容器50の各ドーム端の外側表面の中央に溶接されていて、もう一端が、半径方向の支持リング41に嵌挿されている。支持管42、補強リブ43、および外殻44は一体的に固定されている。長手方向の支持体は、長手方向のスタンドバー45と、支持管51にねじで連結され、溶接によって位置決めされている長手方向の支持板47と、長手方向の支持板47の各端部に装着された、ガラス強化プラスチック支持板46と、長手方向の支持板47と協同してガラス強化プラスチック支持板46を強く押さえつける押さえ鋼帯48と、長手方向のスタンドバー45を外殻44のドーム端に溶接するための異材継手49とを含む。この支持構造物の場合は、ドーム端とドーム端の間の距離が大きいが、これは、極低温コンテナの各端部に半径方向と長手方向の両方の支持構造物が設けられているからである。そのため、耐衝撃性は弱くなり、かつ、常温から低温に移行する間に接触間隙が広がる。   Chinese Patent No. ZL 00216678. No. X discloses a support structure 40 that can withstand the strong impact of a cryogenic container, as shown in FIG. The support structure 40 includes a radial support provided on the inner surface of the outer shell at each end of the cryogenic container, and a longitudinal support provided at one end of the cryogenic container, The other end of the cryocontainer is a free end. The radial support includes a radial support ring 41, an outer shell support tube 42, and reinforcing ribs 43. One end of the support tube 51 of the inner container is welded to the center of the outer surface of each dome end of the inner container 50, and the other end is fitted into the radial support ring 41. The support tube 42, the reinforcing rib 43, and the outer shell 44 are fixed integrally. The longitudinal support is attached to each end of the longitudinal support bar 47, the longitudinal support plate 47 which is connected to the support tube 51 by screws and positioned by welding, and the longitudinal support plate 47. The glass reinforced plastic support plate 46, the holding steel band 48 that strongly presses the glass reinforced plastic support plate 46 in cooperation with the longitudinal support plate 47, and the longitudinal stand bar 45 at the dome end of the outer shell 44. And a dissimilar material joint 49 for welding. In the case of this support structure, the distance between the dome end and the dome end is large because both radial and longitudinal support structures are provided at each end of the cryogenic container. is there. For this reason, the impact resistance becomes weak and the contact gap widens during the transition from normal temperature to low temperature.

極低温液化ガスの貯蔵タンクや輸送タンクの進歩に伴い、制限された全体寸法の範囲内で、極低温液化ガス用の有効容量を効果的に増やし、耐衝撃性を効果的に高めることが求められる。   With the advancement of cryogenic liquefied gas storage tanks and transport tanks, it is necessary to effectively increase the effective capacity for cryogenic liquefied gas and effectively improve impact resistance within the limited overall dimensions. It is done.

そこで、本考案の目的は、支持構造物を配置するための、中央に逆向きの小さなドーム端を有するドーム端構造物を提供することである。これによって、実質的に、関連技術にあった設計の問題が未然に回避され、タンクの断熱層をより薄くすることによって優れた断熱性能が実現され、より大きな有効容量が得られる。   Therefore, an object of the present invention is to provide a dome end structure having a small dome end in the opposite direction in the center for arranging the support structure. This substantially avoids design problems in accordance with the related art, and achieves a superior thermal insulation performance by making the tank thermal insulation layer thinner, resulting in a larger effective capacity.

本考案の別の目的は、このドーム端構造物を用いた超真空断熱タンクを提供することである。これによって、関連技術の制約や不利点に起因する問題のうちの1つまたは複数が実質的に未然に回避される。   Another object of the present invention is to provide an ultra-vacuum heat insulation tank using this dome end structure. This substantially obviates one or more of the problems resulting from the limitations and disadvantages of the related art.

以下の説明では、本考案のさらなる利点および特徴についても示す。それらは、当業者であれば自明の部分もあろうし、本考案を実施すれば習得できよう。本考案のこれらの利点および他の利点は、本考案の明細書本文および請求項、ならびに添付図面で詳細に示されている構造によって実現および達成される。   The following description also shows further advantages and features of the present invention. Those skilled in the art will be able to understand those skilled in the art by implementing the present invention. These and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.

これらの利点および他の利点を達成するために、かつ本考案の目的に従い、本明細書で実例を示して大まかに説明するように、極低温液化ガス用超真空断熱タンクのドーム端は、湾曲した表面を有する本体と、本体に連結された逆向きの小さなドーム端とを含む。具体的には、逆向きの小さなドーム端は、内部容器のドーム端の湾曲した表面とは逆向きの湾曲した表面によって形成される。この逆向きの小さなドーム端は、拡張ネックによって本体に連結される。そして、この拡張ネックは、逆向きの小さなドーム端および本体と、それぞれ丸み付け形状により連結される。さらに、この拡張ネックに補強構造物が設けられ、内部容器のドーム端の内側表面に補強板が設けられる。   In order to achieve these and other advantages, and in accordance with the purpose of the present invention, the dome end of the ultra-vacuum insulation tank for cryogenic liquefied gas is curved as illustrated and broadly described herein. A main body having a curved surface and a small dome end facing away from the main body. Specifically, the opposite small dome end is formed by a curved surface facing away from the curved surface of the inner container dome end. This opposite small dome end is connected to the body by an expansion neck. And this expansion neck is connected with the small dome end and main body of the opposite direction by the rounding shape, respectively. Further, a reinforcing structure is provided on the expansion neck, and a reinforcing plate is provided on the inner surface of the dome end of the inner container.

別の態様では、極低温液化ガス用超真空断熱タンクは、フレーム構造とタンク本体とを含み、タンク本体は、円筒と2つのドーム端とを有する外殻と、円筒と2つのドーム端とを有する内部容器と、外殻と内部容器の間にある超真空断熱層と、外殻と内部容器を連結する支持構造物とを含み、内部容器のドーム端は、湾曲した表面を有する本体と、本体に連結された逆向きの小さなドーム端とを含む。   In another aspect, an ultra-vacuum insulated tank for cryogenic liquefied gas includes a frame structure and a tank body, the tank body comprising an outer shell having a cylinder and two dome ends, a cylinder and two dome ends. An inner container, an ultra-vacuum thermal insulation layer between the outer shell and the inner container, and a support structure for connecting the outer shell and the inner container, the dome end of the inner container having a body with a curved surface; Including a small dome end in the opposite direction connected to the main body.

本考案によれば、複合支持構造物は、タンクの両端の内部ドーム端と外部ドーム端の間にのみ設けられ、半径方向の支持体は外殻に直接には接触していない。これにより、内部容器と外殻の間の支持体の熱伝導領域が少なくなり、よりよい断熱性能が得られる。同時に、まっすぐな部分に半径方向の支持体がないため、内部容器と外殻の間の超真空断熱層を50mmまで薄くすることができる。これにより、内部容器の有効容量が増え、積載効率が高まる。   According to the present invention, the composite support structure is provided only between the inner dome end and the outer dome end at both ends of the tank, and the radial support is not in direct contact with the outer shell. Thereby, the heat conduction area | region of the support body between an inner container and an outer shell decreases, and a better heat insulation performance is obtained. At the same time, since there is no radial support in the straight part, the ultra-vacuum insulation layer between the inner container and the outer shell can be thinned to 50 mm. This increases the effective capacity of the inner container and increases the loading efficiency.

さらに、本考案によるタンクの外殻は、2つのドーム端と、円筒と、複数の補強リングとを含む。関連技術と異なり、補強リングは外殻の外側に設けられる。これにより、外殻の内側の直径を同一にし、補強リングの寸法を同一にするという前提条件を満たしながら、外殻に使われる材料が減り、より軽量になり、コストが下がる。同時に、補強リングは外殻の保護体としても作用する。内部容器のドーム端と外殻のドーム端(以下、それぞれ内部ドーム端、外部ドーム端と呼ぶ)は互いに逆向きに配置されていて、内部容器には複数層の断熱材料が巻き付けられている。内部容器は、両端の内部ドーム端と外部ドーム端の間の複合支持構造物によって外殻と連結され、この複合支持構造物は、同時に半径方向の力と長手方向の力に耐える。内部容器のドーム端と外殻のドーム端が逆向きに配置されているので、複合支持構造物を内部ドーム端の内側に設けることができ、これによって、内部ドーム端と外部ドーム端の間の距離がより小さくなる。したがって、外殻の寸法が同じままで、内部容器の有効容量がより大きくなる。   Further, the outer shell of the tank according to the present invention includes two dome ends, a cylinder, and a plurality of reinforcing rings. Unlike the related art, the reinforcing ring is provided outside the outer shell. This reduces the material used for the outer shell, making it lighter and lowering costs while meeting the preconditions that the inner diameter of the outer shell is the same and the dimensions of the reinforcing ring are the same. At the same time, the reinforcing ring also acts as a protector for the outer shell. A dome end of the inner container and a dome end of the outer shell (hereinafter referred to as an inner dome end and an outer dome end, respectively) are arranged in opposite directions, and a plurality of layers of heat insulating material are wound around the inner container. The inner container is connected to the outer shell by a composite support structure between the inner dome end and the outer dome end at both ends, which simultaneously withstands radial and longitudinal forces. Because the dome end of the inner container and the dome end of the outer shell are arranged in opposite directions, a composite support structure can be provided inside the inner dome end, thereby providing a space between the inner dome end and the outer dome end. The distance becomes smaller. Thus, the effective capacity of the inner container is increased while the outer shell dimensions remain the same.

本考案によれば、超真空内部支持構造物に、耐衝撃性能ならびに断熱性能が非常に高い複数の断熱層を提供することができる。その結果、極低温液化ガスの貯蔵設備または輸送設備の耐衝撃性および積載物の温度変動は、極低温液化ガスの貯蔵または輸送の要件を満足する。さらに、極低温タンクの内部容器と外殻の間の超真空層を非常に薄くして、最終的に極低温液化ガスの積載効率を最大にすることができる。   According to the present invention, it is possible to provide the ultra-vacuum internal support structure with a plurality of heat insulation layers having extremely high impact resistance and heat insulation performance. As a result, the impact resistance of the cryogenic liquefied gas storage or transport facility and the temperature fluctuations of the load satisfy the requirements for the cryogenic liquefied gas storage or transport. Furthermore, the ultra-vacuum layer between the inner container and the outer shell of the cryogenic tank can be made very thin to ultimately maximize the loading efficiency of the cryogenic liquefied gas.

本考案の先述の一般的な説明と後述の詳細説明は例示的かつ説明的であって、請求する本考案をより詳細に説明することを意図したものである。   The foregoing general description of the invention and the following detailed description are exemplary and explanatory, and are intended to describe the claimed invention in greater detail.

本考案のより深い理解が得られるように本明細書に組み込まれ、その一部を形成する添付図面は、本考案の実施形態を示しており、説明とともに本考案の原理を説明するのに役立つ。   The accompanying drawings, which are incorporated in and form a part of this specification for a better understanding of the invention, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. .

以下、好ましい実施形態について詳細に説明し、実施例を添付図面に示す。   Preferred embodiments are described in detail below, and examples are shown in the accompanying drawings.

図3は、本考案による極低温液化ガス用超真空多層断熱タンクの斜視図である。図3に示すように、タンク100は、フレーム構造101およびタンク本体102を含み、これらは特定の方法で互いに溶接されている。タンク自動車の場合、フレーム構造101は、タンク本体102を自動車のシャーシに固定する構造物を指し、タンクコンテナの場合、フレーム構造101は、タンク本体102をコンテナの所定の場所に固定する構造物を指す。さらに、タンクの外側の表面に多数の補強リング103が設けられている。   FIG. 3 is a perspective view of an ultra-vacuum multilayer insulation tank for cryogenic liquefied gas according to the present invention. As shown in FIG. 3, the tank 100 includes a frame structure 101 and a tank body 102, which are welded together in a specific manner. In the case of a tank car, the frame structure 101 refers to a structure that fixes the tank main body 102 to the chassis of the car. In the case of a tank container, the frame structure 101 refers to a structure that fixes the tank main body 102 to a predetermined location of the container. Point to. In addition, a number of reinforcing rings 103 are provided on the outer surface of the tank.

図4は、図3に示したタンクの概略垂直断面図である。図4を参照すると、タンク本体102は、外殻110および内部容器120を含み、外殻110は、円筒111と、円筒111の2つの端部をそれぞれ密閉する第1のドーム端112および第2のドーム端113とを含み、外殻110の内部に配置された内部容器120は、円筒121と、円筒121の2つの端部をそれぞれ密閉する第1のドーム端122および第2のドーム端123とを含む。外殻110と内部容器120の間に超真空断熱層104が形成され、超真空断熱層104において、内部容器120の外側表面に複数層の断熱材料105が巻き付けられている。   FIG. 4 is a schematic vertical sectional view of the tank shown in FIG. Referring to FIG. 4, the tank body 102 includes an outer shell 110 and an inner container 120, and the outer shell 110 seals the two ends of the cylinder 111 and the cylinder 111 with a first dome end 112 and a second dome end 112. The inner container 120 disposed inside the outer shell 110 includes the first dome end 122 and the second dome end 123 that respectively seal the two ends of the cylinder 121. Including. An ultra-vacuum heat insulating layer 104 is formed between the outer shell 110 and the inner container 120, and a plurality of layers of heat insulating material 105 are wound around the outer surface of the inner container 120 in the ultra-vacuum heat insulating layer 104.

図4および図5を参照すると、図5は、図3に示したタンクの第1のドーム端の斜視断面図である。詳細には、内部容器120の第1のドーム端122は、第1の本体1221と、第1の本体1221の中央から内部容器120の中にへこんだ形で形成された第1の逆向きの小さなドーム端1222と(すなわち、第1の逆向きの小さなドーム端1222の湾曲した表面は、結果として、外殻110の対応する側のドーム端112の湾曲した表面と向かい合っている)、第1の逆向きの小さなドーム端1222と第1の本体1221の間に溶接されて丸み付け構造を形成し、それによって内部容器120の内部応力を低減する第1の拡張ネック1223とを含む。また、耐衝撃性能を高めるために、内部容器120のドーム端122の内側に補強板1224をさらに設けることができる。同様に、図4および図6を参照すると、内部容器120の第2のドーム端123は、第2の本体1231と、第2の本体1231の中央から内部容器120の中にへこんだ形で形成された第2の逆向きの小さなドーム端1232と(すなわち、第2の逆向きの小さなドーム端1232の湾曲した表面は、結果として、外殻110の対応する側のドーム端113の湾曲した表面と向かい合っている)、第2の逆向きの小さなドーム端1232と第2の本体1231の間に溶接されて丸み付け構造を形成し、それによって内部容器120の内部応力を低減する第2の拡張ネック1233とを含む。また、耐衝撃性能を高めるために、内部容器120のドーム端123の内側に補強板1234をさらに設けることができる。   Referring to FIGS. 4 and 5, FIG. 5 is a perspective sectional view of the first dome end of the tank shown in FIG. 3. Specifically, the first dome end 122 of the inner container 120 has a first main body 1221 and a first reverse direction formed in a recessed shape from the center of the first main body 1221 into the inner container 120. With the small dome end 1222 (ie, the curved surface of the first opposite small dome end 1222 results in the opposite of the curved surface of the dome end 112 on the corresponding side of the outer shell 110), the first And a first expansion neck 1223 that is welded between the opposite small dome end 1222 and the first body 1221 to form a rounded structure, thereby reducing the internal stress of the inner container 120. In addition, a reinforcing plate 1224 can be further provided inside the dome end 122 of the inner container 120 in order to improve impact resistance. Similarly, referring to FIGS. 4 and 6, the second dome end 123 of the inner container 120 is formed into a second body 1231 and a recessed shape from the center of the second body 1231 into the inner container 120. Second opposite small dome end 1232 (ie, the curved surface of the second opposite small dome end 1232 results in the curved surface of the dome end 113 on the corresponding side of the outer shell 110). A second extension that is welded between the second opposite small dome end 1232 and the second body 1231 to form a rounded structure, thereby reducing the internal stress of the inner container 120. And a neck 1233. In addition, a reinforcing plate 1234 can be further provided on the inner side of the dome end 123 of the inner container 120 in order to improve impact resistance.

外殻110の第1のドーム端112は、十分な強度を保証するために、本体1121と、本体1121の中央に形成された補強板1122と、補強板1122に連結された補強管1123とをさらに含む。補強管1123には、構造の強度を高める補強板1124が設けられている。第1のドーム端112の強度を高めるために、第1のドーム端112の内側に補強板1126を設けることが好ましい。外殻110の第2のドーム端113は、組み立ての要件を満たすために、本体1131と、本体1131の中央に内側から装着された支持管1132と、本体1131の中央に形成され、支持管1132に連結された補強板1133と、補強板1133に連結され、支持管1132を囲む補強管1134と(補強管1134には、構造の強度を高めるために補強板1135が設けられている)、第2のドーム端113の内側に設けられた補強板1136とを含む。これらによって、本考案は、外殻のドーム端と内部容器のドーム端の間の距離を、複合支持構造物を配置するために十分に活用できる。   The first dome end 112 of the outer shell 110 includes a main body 1121, a reinforcing plate 1122 formed at the center of the main body 1121, and a reinforcing tube 1123 connected to the reinforcing plate 1122 to ensure sufficient strength. In addition. The reinforcing pipe 1123 is provided with a reinforcing plate 1124 that increases the strength of the structure. In order to increase the strength of the first dome end 112, it is preferable to provide a reinforcing plate 1126 inside the first dome end 112. The second dome end 113 of the outer shell 110 is formed at the center of the main body 1131, the support tube 1132 attached from the inside to the center of the main body 1131, and the support tube 1132 to satisfy the assembly requirements. A reinforcing plate 1133 connected to the reinforcing plate 1133 and a reinforcing tube 1134 connected to the reinforcing plate 1133 and surrounding the support tube 1132 (the reinforcing tube 1134 is provided with a reinforcing plate 1135 for increasing the strength of the structure), 2 and the reinforcing plate 1136 provided inside the dome end 113. With these, the present invention can fully utilize the distance between the dome end of the outer shell and the dome end of the inner container to arrange the composite support structure.

図4を参照すると、複合支持構造物は、半径方向の支持構造物と、長手方向の支持構造物とを別々に含む。半径方向の支持構造物は、内部容器120の第1のドーム端122と協同する第1の半径方向の支持構造物210と、内部容器120の第2のドーム端123と協同する第2の半径方向の支持構造物220とを含む。第1/第2の半径方向の支持構造物210/220は、内側固定リング2101/2201と、外側固定リング2102/2202と、第1/第2の半径方向の支持板2103/2203とを、それぞれ別々に含む。内側固定リング2101/2201と外側固定リング2102/2202は、拡張ネック1223/1233の内側か、逆向きの小さなドーム端1222/1232の内側の、所定の位置に固定される。半径方向の支持板2103/2203は、内側固定リング2101/2201と外側固定リング2102/2202の間に固定され、異材接合管1223/1233か、逆向きのドーム端1222/1232と密接に協同する。内部容器のドーム端は丸み付け構造になっているので、明らかに、拡張ネックから逆向きの小さなドーム端にかけて孤度が徐々に小さくなっている。すなわち、半径方向の支持板とドーム端の間の接触間隙が自己調整されている。したがって、常温状態から極低温状態に移行するときに、熱膨張と低温収縮の影響が内部容器120にあるが、第1および第2の半径方向の支持板が、逆向きの小さなドーム端または拡張ネックと密に連結されたままになり、間隙が生じないようにできる。さらに重要なことに、半径方向の支持体が内部容器のドーム端に直接設けられているので、内部容器と外殻の間の超真空断熱層を50mmまで薄くすることができ、これによって、内部容器の有効容量がさらに増える。   Referring to FIG. 4, the composite support structure includes a radial support structure and a longitudinal support structure separately. The radial support structure includes a first radial support structure 210 that cooperates with the first dome end 122 of the inner container 120 and a second radius that cooperates with the second dome end 123 of the inner container 120. Directional support structure 220. The first / second radial support structure 210/220 includes an inner fixation ring 2101/2201, an outer fixation ring 2102/2202, and a first / second radial support plate 2103/2203, Includes each separately. The inner fixation ring 2101/2201 and the outer fixation ring 2102/2202 are fixed in place inside the expansion neck 1223/1233 or inside the small dome end 1222/1232 in the opposite direction. The radial support plate 2103/2203 is fixed between the inner fixing ring 2101/2201 and the outer fixing ring 2102/2202, and cooperates closely with the dissimilar joint pipe 1223/1233 or the opposite dome end 1222/1232. . Clearly, the dome end of the inner container has a rounded structure, so that the loneliness gradually decreases from the expansion neck to the small dome end in the opposite direction. That is, the contact gap between the radial support plate and the dome end is self-adjusted. Therefore, when transitioning from a normal temperature state to a cryogenic state, the inner container 120 is affected by thermal expansion and low temperature shrinkage, but the first and second radial support plates are opposite small dome ends or extensions. It can remain tightly connected to the neck and avoid gaps. More importantly, since the radial support is provided directly on the dome end of the inner container, the ultra-vacuum insulation layer between the inner container and the outer shell can be thinned to 50 mm, which The effective capacity of the container is further increased.

さらに、長手方向の支持構造物230が、外殻の第1のドーム端112と内部容器の第1のドーム端122の間に設けられ、第1の半径方向の支持板2103を貫通している。長手方向の支持構造物230は、外殻110の補強板1122に装着され、内側にスペーシング用ブローアップ2302が設けられた支持管2301と、逆向きの小さなドーム端1222の中央に装着され、支持管2301まで延びる支持軸2303と、支持軸2303の端部に設けられた固定部品2304と、固定部品2304とブローアップ2302の間で固定された第1の充填ブロック2305と、逆向きの小さなドーム端2222と支持管のブローアップ2302の間で固定された第2の充填ブロック2306とを含む。補強管1123とその補強板1124は、支持管2301の構造を強化するために、支持管2301を囲んでいる。その結果、タンク100の移動中に内部容器120および積載物によって発生する、図の左向きおよび右向きの長手方向の力は、第2の充填ブロックおよび第1の充填ブロックをそれぞれ押し、支持管を通って外殻に伝わる。有限要素構造解析および温度解析ソフトウェアを用いて、熱漏れおよび応力の要件を満たしながら積載容量を最大限にする内部支持構造物を計画的に設計し、長手方向の支持体が設けられる第1のドーム端の間隔については、組み立ての要件を満たすだけで、超真空多層断熱構造に適合する内部支持構造物が得られる。本考案では、長手方向の支持構造物が設けられた端部における、長手方向の力が伝わる、内部容器のドーム端と外殻のドーム端の間の距離は、液体またはガスを送出する管の液封じと、熱膨張および低温収縮の影響を補償するために必要な間隔とによって決まり、たとえば、この間隔を300mm前後にすることができる。また、支持管の強度を高めるために、支持管に補強構造物を設けることができる。   In addition, a longitudinal support structure 230 is provided between the first dome end 112 of the outer shell and the first dome end 122 of the inner container and penetrates the first radial support plate 2103. . The longitudinal support structure 230 is attached to the reinforcing plate 1122 of the outer shell 110, and is attached to the center of a support tube 2301 provided with a spacing blow-up 2302 inside and a small dome end 1222 in the opposite direction, A support shaft 2303 extending to the support tube 2301, a fixed component 2304 provided at an end of the support shaft 2303, a first filling block 2305 fixed between the fixed component 2304 and the blow-up 2302, and a small reverse direction And a second filling block 2306 secured between the dome end 2222 and the blowup 2302 of the support tube. The reinforcing tube 1123 and its reinforcing plate 1124 surround the support tube 2301 in order to strengthen the structure of the support tube 2301. As a result, the leftward and rightward longitudinal forces generated by the inner container 120 and the load during movement of the tank 100 push the second and first filling blocks, respectively, through the support tube. To the outer shell. A first finite element structural analysis and temperature analysis software is used to systematically design an internal support structure that maximizes load capacity while meeting heat leak and stress requirements, and is provided with a longitudinal support For the dome end spacing, an internal support structure compatible with the ultra-vacuum multilayer insulation structure can be obtained simply by satisfying the assembly requirements. In the present invention, the distance between the dome end of the inner container and the dome end of the outer shell at which the longitudinal force is transmitted at the end where the longitudinal support structure is provided is the distance of the pipe delivering liquid or gas. It depends on the liquid sealing and the spacing required to compensate for the effects of thermal expansion and cold shrinkage, for example, this spacing can be around 300 mm. In addition, a reinforcing structure can be provided on the support tube in order to increase the strength of the support tube.

第1の半径方向の支持構造物210は、第2の半径方向の支持構造物220とともに、内部容器120および積載物によって発生する半径方向の力に耐える。支持板2103,2203の外周部は、内部容器120の中に延びている部分でドーム端122,123と接している。これは、長手方向の支持体を配置し、長手方向の支持体による熱漏れを減らすことに関して有利である。支持板2103,2203の内周部は、外殻110のドーム端112,113に装着された支持管2301,1132に連結されている。このようにして、半径方向の力のバランスが取れ、支持構造物の信頼性が向上する。同時に、良好な断熱性能が得られる。これは、内部容器と外殻の間の長手方向の伝熱面が内部支持構造物の応力面のみであり、熱は内部容器の他の部分への放射によって伝わる。これにより、関連技術での長手方向の支持体の熱漏れの問題をうまく克服できる。さらに、内部ドーム端と外部ドーム端の間の距離が小さいので、積載率も同時に高まる。本考案の支持板は、適切なガラス繊維プラスチック材料で形成される。有限要素解析および実験的検証を行うことにより、内側リングと外側リングの間隙を自己調整させ、常温状態から極低温状態に移行してもほとんど変化しないようにすることが可能である。このことは、半径方向の構造物の耐衝撃性能を高め、常温での組み立ておよび間隙制御にも有利である。   The first radial support structure 210, together with the second radial support structure 220, withstands the radial forces generated by the inner container 120 and the load. The outer peripheral portions of the support plates 2103 and 2203 are in contact with the dome ends 122 and 123 at portions extending into the inner container 120. This is advantageous with respect to placing a longitudinal support and reducing heat leakage due to the longitudinal support. The inner peripheral portions of the support plates 2103 and 2203 are connected to support tubes 2301 and 1132 attached to the dome ends 112 and 113 of the outer shell 110. In this way, the radial force is balanced and the reliability of the support structure is improved. At the same time, good heat insulation performance can be obtained. This is because the longitudinal heat transfer surface between the inner container and the outer shell is only the stress surface of the inner support structure, and heat is transferred by radiation to other parts of the inner container. This successfully overcomes the problem of heat leakage of the longitudinal support in the related art. Furthermore, since the distance between the inner dome end and the outer dome end is small, the loading rate is also increased. The support plate of the present invention is formed of a suitable glass fiber plastic material. By performing finite element analysis and experimental verification, the gap between the inner ring and the outer ring can be self-adjusted so that it hardly changes even when the normal temperature state is changed to the cryogenic state. This increases the impact resistance of the structure in the radial direction and is advantageous for assembly and clearance control at room temperature.

さらに本考案は、熱伝導係数に対する圧縮強度の比率が接触熱抵抗より高いというガラス繊維プラスチック材料の特徴を十分に活用して、支持構造物の、半径方向の力に耐え、熱漏れを減らす能力を高める。これによって、低温時に間隙が拡大して耐衝撃性が低下するという、関連技術における深刻な問題を解決する。内部容器のドーム端が内部容器の中に延びている部分がある分、ガラス繊維プラスチック充填ブロックの長手方向の長さが長くなり、それによって、長手方向の支持体の熱漏れが減り、長手方向の支持構造物による熱漏れの抑制が不可能であるという、関連技術における問題が解決される。同時に、全体寸法の制限内で液体を収容する最大容量を確保し、内部応力と断熱の間の矛盾を解決する。   In addition, the present invention makes full use of the characteristic of glass fiber plastic material that the ratio of compressive strength to thermal conductivity coefficient is higher than contact thermal resistance, the ability to withstand the radial force of the support structure and reduce heat leakage To increase. This solves a serious problem in the related art that the gap is enlarged at a low temperature and the impact resistance is lowered. The length of the glass fiber plastic filling block in the longitudinal direction is increased by the length of the dome end of the inner container extending into the inner container, thereby reducing the heat leakage of the longitudinal support and the longitudinal direction. This solves the problem in the related art that it is impossible to suppress heat leakage by the support structure. At the same time, it ensures the maximum capacity to accommodate the liquid within the limits of overall dimensions and resolves the contradiction between internal stress and thermal insulation.

本考案のタンクは、組み立てが非常にしやすい。まず、第2のドーム端113を円筒111に溶接して結合部分を形成する。次に、第1のドーム端122、第2のドーム端123、および円筒121を合わせて溶接して内部容器120を形成する。次に、複数層の断熱材料を内部容器120の外側表面に巻き付ける。組み立てでは、まず、第2の半径方向の支持板2203とその内側にある固定リング2201を内部容器120の中に配置し、外側固定リング2202を中に配置して外側固定リング2202の内周部を特殊工具で強く押さえつけ、外側固定リング2202をT継手状に内部容器120の第2の拡張ネック1233に溶接する。これによって、都合よく、外殻の結合部分を取り付けて、第2の半径方向の支持板2203を水平方向の組み立てプロセス管のガイドに従って封入できる。次に、第1の半径方向の支持板2103とその内側にある固定リング2101を内部容器120の中に配置し、外側固定リング2102を中に配置して外側固定リング2102の内周部を特殊フロックで強く押さえつけ、外側固定リング2102をT継手状に第1の拡張ネック1223に溶接し、第2の充填ブロック2306を支持軸2303に装着し、外殻110の第1のドーム端122を取り付けて第1の半径方向の支持板2103を封入し、第1のドーム端112を外殻の結合部分に溶接する。続く工程では、第1の充填ブロック2305を支持管2301の中に配置し、固定部品2304で支持軸2303に固定して第1の充填ブロック2305および第2の充填ブロック2306を押さえつけ、固定部品2304を支持軸2303に溶接して複合支持構造物の組み立てを達成する。最後に、第1のシーリング板1125を重ね継手状に第1の補強板1122に溶接し、第2の補強板1133を重ね継手状に第2のシーリング板1137に溶接する。これでタンクが形成される。超真空ポンピングを行い、外殻110と内部容器120の間に超真空断熱層104を形成する。次に、外殻110の補強リング103を外殻110の外側表面に溶接する。   The tank of the present invention is very easy to assemble. First, the second dome end 113 is welded to the cylinder 111 to form a coupling portion. Next, the first dome end 122, the second dome end 123, and the cylinder 121 are welded together to form the inner container 120. Next, multiple layers of heat insulating material are wrapped around the outer surface of the inner container 120. In the assembly, first, the second radial support plate 2203 and the fixing ring 2201 inside thereof are arranged in the inner container 120, and the outer fixing ring 2202 is arranged in the inner peripheral portion of the outer fixing ring 2202. Is strongly pressed with a special tool, and the outer fixing ring 2202 is welded to the second expansion neck 1233 of the inner container 120 in a T-joint shape. This conveniently allows the outer shell coupling portion to be attached and the second radial support plate 2203 to be encapsulated according to the horizontal assembly process tube guide. Next, the first radial support plate 2103 and the inner fixing ring 2101 are arranged in the inner container 120, and the outer fixing ring 2102 is arranged in the inner peripheral portion of the outer fixing ring 2102. The outer fixing ring 2102 is welded to the first extension neck 1223 in a T-joint shape, the second filling block 2306 is attached to the support shaft 2303, and the first dome end 122 of the outer shell 110 is attached. The first radial support plate 2103 is sealed and the first dome end 112 is welded to the joint portion of the outer shell. In the subsequent step, the first filling block 2305 is disposed in the support tube 2301, and fixed to the support shaft 2303 by the fixing component 2304 to press the first filling block 2305 and the second filling block 2306, and the fixing component 2304. Are welded to the support shaft 2303 to achieve assembly of the composite support structure. Finally, the first sealing plate 1125 is welded to the first reinforcing plate 1122 in a lap joint shape, and the second reinforcing plate 1133 is welded to the second sealing plate 1137 in a lap joint shape. This forms a tank. Ultra vacuum pumping is performed to form the ultra vacuum heat insulating layer 104 between the outer shell 110 and the inner container 120. Next, the reinforcing ring 103 of the outer shell 110 is welded to the outer surface of the outer shell 110.

当業者であれば、本考案において様々な修正および変更が可能であることは明らかであろう。したがって、本考案の修正および変更が添付の請求項ならびにその均等物の範囲内にあれば、それらの修正および変更は本考案に包含される。   It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention include modifications and variations of the present invention provided they come within the scope of the appended claims and their equivalents.

関連技術による極低温液化ガス用タンクの概略断面図である。It is a schematic sectional drawing of the tank for cryogenic liquefied gas by related technology. 関連技術による極低温コンテナに適用された耐衝撃支持構造物の概略図である。1 is a schematic view of an impact resistant support structure applied to a cryogenic container according to the related art. 本考案による極低温液化ガス用超真空多層断熱タンクの斜視図である。It is a perspective view of the ultra vacuum multilayer insulation tank for cryogenic liquefied gas by this device. 図3に示したタンクの概略垂直断面図である。FIG. 4 is a schematic vertical sectional view of the tank shown in FIG. 3. 図3に示したタンクの第1のドーム端の斜視断面図である。FIG. 4 is a perspective sectional view of a first dome end of the tank shown in FIG. 3. 図3に示したタンクの第2のドーム端の斜視断面図である。FIG. 4 is a perspective sectional view of a second dome end of the tank shown in FIG. 3.

符号の説明Explanation of symbols

120 本体(内部容器)
122 逆向きの小さなドーム端(第1のドーム端)
123 逆向きの小さなドーム端(第2のドーム端)
101 フレーム構造
102 タンク本体
110 外殻
111 円筒
112 第1のドーム端
113 第2のドーム端
120 body (inner container)
122 Small dome end opposite (first dome end)
123 Reverse dome end (second dome end)
101 Frame structure 102 Tank body 110 Outer shell 111 Cylinder 112 First dome end 113 Second dome end

Claims (12)

湾曲した表面を有する本体と、該本体に連結された逆向きの小さなドーム端と、を備える極低温液化ガス用超真空断熱タンクのドーム端。   A dome end of an ultra-vacuum insulated tank for cryogenic liquefied gas comprising a main body having a curved surface and a small dome end facing away from the main body. 前記逆向きの小さなドーム端が、前記本体の湾曲した表面とは逆向きの湾曲した表面によって形成される、請求項1記載の極低温液化ガス用超真空断熱タンクのドーム端。   The dome end of an ultra-vacuum insulated tank for cryogenic liquefied gas according to claim 1, wherein the small dome end in the opposite direction is formed by a curved surface facing away from the curved surface of the main body. 前記逆向きの小さなドーム端が、拡張ネックによって前記本体に連結される、請求項2記載の極低温液化ガス用超真空断熱タンクのドーム端。   The dome end of an ultra-vacuum insulated tank for cryogenic liquefied gas according to claim 2, wherein the opposite small dome end is connected to the body by an expansion neck. 前記拡張ネックが、前記逆向きの小さなドーム端と前記本体とに、それぞれ丸み付け形状により連結される、請求項3記載の極低温液化ガス用超真空断熱タンクのドーム端。   The dome end of the ultra-vacuum insulation tank for cryogenic liquefied gas according to claim 3, wherein the expansion neck is connected to the small dome end in the opposite direction and the main body by a rounded shape. 前記拡張ネックに補強構造物が設けられた、請求項4記載の極低温液化ガス用超真空断熱タンクのドーム端。   The dome end of the ultra-vacuum insulation tank for cryogenic liquefied gas according to claim 4, wherein a reinforcement structure is provided on the expansion neck. 前記内部容器のドーム端の内側表面に補強板が設けられた、請求項5記載の極低温液化ガス用超真空断熱タンクのドーム端。   The dome end of an ultra-vacuum insulating tank for cryogenic liquefied gas according to claim 5, wherein a reinforcing plate is provided on the inner surface of the dome end of the inner container. フレーム構造と、タンク本体と、を含み、
該タンク本体が、
円筒と2つのドーム端とを含む外殻と;
円筒と2つのドーム端とを含む内部容器と;
前記外殻と前記内部容器との間にある超真空断熱層と;
前記外殻と前記内部容器とを連結する支持構造物と;
を含み、
前記内部容器のドーム端が、湾曲した表面を有する本体と、該本体に連結された逆向きの小さなドーム端とを含む、極低温液化ガス用超真空断熱タンク。
Including a frame structure and a tank body,
The tank body is
An outer shell including a cylinder and two dome ends;
An inner container including a cylinder and two dome ends;
An ultra-vacuum insulation layer between the outer shell and the inner container;
A support structure connecting the outer shell and the inner container;
Including
The ultra-vacuum insulated tank for cryogenic liquefied gas, wherein the dome end of the inner container includes a main body having a curved surface and a small dome end facing in reverse direction.
前記逆向きの小さなドーム端が、前記本体の湾曲した表面とは逆向きの湾曲した表面によって形成される、請求項7記載の極低温液化ガス用超真空断熱タンク。   The ultra-vacuum insulated tank for cryogenic liquefied gas according to claim 7, wherein the small dome end in the opposite direction is formed by a curved surface opposite to the curved surface of the main body. 前記逆向きの小さなドーム端が、拡張ネックによって前記本体に連結される、請求項8記載の極低温液化ガス用超真空断熱タンク。   9. The ultra-vacuum insulated tank for cryogenic liquefied gas according to claim 8, wherein the opposite small dome end is connected to the body by an expansion neck. 前記拡張ネックが、前記本体と前記逆向きの小さなドーム端とに、丸み付け形状により連結される、請求項9記載の極低温液化ガス用超真空断熱タンク。   The ultra-vacuum insulated tank for cryogenic liquefied gas according to claim 9, wherein the expansion neck is connected to the main body and the opposite small dome end in a rounded shape. 前記拡張ネックに補強構造物が設けられた、請求項10記載の極低温液化ガス用超真空断熱タンク。   The ultra-vacuum heat insulation tank for cryogenic liquefied gas according to claim 10, wherein a reinforcement structure is provided on the expansion neck. 前記内部容器のドーム端の内側表面に補強板が設けられた、請求項11記載の極低温液化ガス用超真空断熱タンク。   The ultra-vacuum heat insulation tank for cryogenic liquefied gas according to claim 11, wherein a reinforcing plate is provided on an inner surface of a dome end of the inner container.
JP2005002375U 2004-04-15 2005-04-15 Dome end of ultra vacuum insulation tank for cryogenic liquefied gas Expired - Lifetime JP3111657U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2004200039677U CN2702154Y (en) 2004-04-15 2004-04-15 Internal bladder head sealing structure of liquid gas storage tank and storage tank adopting the structure

Publications (1)

Publication Number Publication Date
JP3111657U true JP3111657U (en) 2005-07-28

Family

ID=34744519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005002375U Expired - Lifetime JP3111657U (en) 2004-04-15 2005-04-15 Dome end of ultra vacuum insulation tank for cryogenic liquefied gas

Country Status (3)

Country Link
JP (1) JP3111657U (en)
CN (1) CN2702154Y (en)
DE (1) DE202005006034U1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260147A (en) * 2019-06-19 2019-09-20 江苏韦兰德特种装备科技有限公司 A kind of Vehicular liquefied natural gas cylinder of big volume

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023891A1 (en) * 2007-08-22 2009-02-26 Werner Hermeling Device for storing and transporting cryogenic liquefied gases
CN101614319B (en) * 2008-06-23 2013-03-27 南通中集罐式储运设备制造有限公司 Combined supporting and absorbing device and low-temperature multilayer heat insulating vessel having same
JP7013857B2 (en) * 2017-12-27 2022-02-01 トヨタ自動車株式会社 tank
CN110207001B (en) * 2019-06-23 2024-01-30 大连东建风电设备制造有限公司 Low-temperature liquid storage tank with bearing structure
CN113468694B (en) * 2021-07-21 2023-12-15 上海外高桥造船有限公司 Processing method, processing system, processing equipment and processing medium for designing liquefied gas tank compartment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260147A (en) * 2019-06-19 2019-09-20 江苏韦兰德特种装备科技有限公司 A kind of Vehicular liquefied natural gas cylinder of big volume

Also Published As

Publication number Publication date
DE202005006034U1 (en) 2005-07-07
CN2702154Y (en) 2005-05-25

Similar Documents

Publication Publication Date Title
JP3111660U (en) Ultra vacuum insulation tank for cryogenic liquefied gas
JP3111656U (en) Ultra vacuum insulation tank for cryogenic liquefied gas
JP3111658U (en) Ultra vacuum insulation tank for cryogenic liquefied gas and its outer shell
JP3111659U (en) Support structure between outer shell and inner vessel of ultra vacuum insulation tank for cryogenic liquefied gas
WO2005100210A1 (en) Super-vacuum insulation tank for cryogenic liquefied gas
JP3111657U (en) Dome end of ultra vacuum insulation tank for cryogenic liquefied gas
CA1187820A (en) Cyrogenic liquid storage container having an improved access conduit
US7165698B2 (en) Construction for multi-layered vacuum super insulated cryogenic tank
CN202912201U (en) Storage and transportation vessel
CN204693029U (en) With the low-temperature storage tank residual oil in tank of light-duty adiabatic furred ceiling
JP2005249195A (en) Double wall container
KR20100090036A (en) Heat insulation structure and cryogenic liquid storage tank having the same
CN104456060A (en) Low-temperature storage and transportation container for railway transportation
KR101108630B1 (en) Heat insulation structure for cryogenic liquid storage tank
CN105114803A (en) Vertical low-temperature storage tank having slide lantern ring support mechanism
CN1963283A (en) Internal bladder supporting structure for low temperature thermal-insulating gas cylinder
KR101639189B1 (en) Joint structure of vacuum insulate pipe
CN110285316A (en) A kind of inner pressurd vessel outer surface has the high vacuum multiple layer heat insulation container of protrusion
CN103803208A (en) Storage and transportation container
CN113551147A (en) Interlayer low-heat-conduction supporting structure for ultralow-temperature medium and ultralow-temperature medium container
JP4734043B2 (en) Thermal insulation support structure for liquefied gas tank
JP4822699B2 (en) Storage container
CN108061243B (en) Low temperature pressure vessel
CN205504469U (en) Novel low -temperature liquid storage tank inner tube supports device
CN216556463U (en) High-performance heat-insulating welding heat-insulating gas cylinder device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term