JP4734043B2 - Thermal insulation support structure for liquefied gas tank - Google Patents

Thermal insulation support structure for liquefied gas tank Download PDF

Info

Publication number
JP4734043B2
JP4734043B2 JP2005179236A JP2005179236A JP4734043B2 JP 4734043 B2 JP4734043 B2 JP 4734043B2 JP 2005179236 A JP2005179236 A JP 2005179236A JP 2005179236 A JP2005179236 A JP 2005179236A JP 4734043 B2 JP4734043 B2 JP 4734043B2
Authority
JP
Japan
Prior art keywords
heat
liquefied gas
heat insulating
tank
gas tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005179236A
Other languages
Japanese (ja)
Other versions
JP2006349134A (en
Inventor
勉 多井
優 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Industrial Gases Corp
Original Assignee
Iwatani Industrial Gases Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Industrial Gases Corp filed Critical Iwatani Industrial Gases Corp
Priority to JP2005179236A priority Critical patent/JP4734043B2/en
Publication of JP2006349134A publication Critical patent/JP2006349134A/en
Application granted granted Critical
Publication of JP4734043B2 publication Critical patent/JP4734043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、液化ガスタンクの断熱支持構造体の改善に係り、より詳しくは、燃料電池自動車に装備され、燃料電池の燃料となる液化水素を収納する液化ガスタンク内への大気からの入熱を効果的に抑制することを可能ならしめる液化ガスタンクの断熱支持構造体に関するものである。   The present invention relates to an improvement in a heat insulating support structure of a liquefied gas tank, and more particularly, is effective in heat input from the atmosphere into a liquefied gas tank that is installed in a fuel cell vehicle and stores liquefied hydrogen as fuel for the fuel cell. The present invention relates to a heat-insulating support structure for a liquefied gas tank that can be suppressed automatically.

水素を燃料とする燃料電池自動車の場合には、走行中は水素が消費されるため、液化ガスタンク内の圧力が上昇することがない。ところが、長時間走行しないと、水素が消費されないため、液化ガスタンク内への入熱により液体水素が蒸発し、この蒸発したガス(以下単に「BOG」と略記する)により液化ガスタンク内の圧力が上昇する。そして、液化ガスタンク内の圧力が予め設定された圧力を超えると、安全弁からのBOGの放出により液化ガスタンク内の圧力が低下する。BOGの無駄な放出をできるだけ少なくするために、液化ガスタンク内への入熱量をできる限り少なくする必要がある。   In the case of a fuel cell vehicle using hydrogen as fuel, since hydrogen is consumed during traveling, the pressure in the liquefied gas tank does not increase. However, since hydrogen is not consumed unless the vehicle is run for a long time, liquid hydrogen evaporates due to heat input into the liquefied gas tank, and the pressure in the liquefied gas tank rises due to this evaporated gas (hereinafter simply referred to as “BOG”). To do. And if the pressure in a liquefied gas tank exceeds the preset pressure, the pressure in a liquefied gas tank will fall by discharge | release of BOG from a safety valve. In order to minimize the wasteful release of BOG, it is necessary to reduce the amount of heat input into the liquefied gas tank as much as possible.

液化酸素、液化窒素、液化水素、液化ヘリウム等の極低温の液化ガスの蒸発潜熱は小さいため、これらの液化ガスを収納する液化ガスタンクは、何れも共通の手段により断熱されるように構成されている。一般に液化ガスタンクへの熱侵入は、いわゆる対流、輻射、伝導によっている。従って液化ガスタンクでは、気体の対流による熱伝達量をゼロにするために、内槽と外槽とからなる二重構成にし、これら内槽と外槽との間を真空にしている。また、輻射による熱伝達量を少なくするために、内槽の外周部を輻射率の小さい材料からなる薄シートと熱絶縁性の高い材料からなる薄シートを交互に積層してなる積層断熱材により囲繞するようにしている。さらに、外の内部に内槽を支持するため断熱支持構造体を用いている。断熱支持構造体を介しての固体熱伝導量を小さくするために、断熱支持構造体は、例えば機械的強度が優れ、熱伝導率が小さなガラス繊維強化プラスチックが用いられている。
Since the latent heat of vaporization of cryogenic liquefied gases such as liquefied oxygen, liquefied nitrogen, liquefied hydrogen, and liquefied helium is small, the liquefied gas tanks for storing these liquefied gases are all insulated by a common means. Yes. Generally, heat penetration into a liquefied gas tank is based on so-called convection, radiation, and conduction. Therefore, in the liquefied gas tank, in order to make the amount of heat transfer due to gas convection zero, a double structure including an inner tank and an outer tank is used, and a vacuum is formed between the inner tank and the outer tank. In addition, in order to reduce the amount of heat transfer due to radiation, the outer peripheral part of the inner tub is formed by a laminated heat insulating material obtained by alternately laminating thin sheets made of a material having a low emissivity and thin sheets made of a material having high heat insulation. I try to go. Furthermore, a heat insulating support structure is used to support the inner tank inside the outer tank . In order to reduce the amount of solid heat conduction through the heat insulating support structure, the heat insulating support structure is made of, for example, glass fiber reinforced plastic having excellent mechanical strength and low thermal conductivity.

液化ガスを収納する液化ガスタンクの内槽を支持する断熱支持構造体としては、例えば下記のような従来例1乃至3の構成によるものが公知である。以下、これら従来例に係る従来技術の断熱支持構造体の概要を説明する。   As the heat insulating support structure for supporting the inner tank of the liquefied gas tank for storing the liquefied gas, for example, the structures according to the following conventional examples 1 to 3 are known. Hereinafter, the outline | summary of the heat insulation support structure of the prior art which concerns on these prior art examples is demonstrated.

従来例1は、「超伝導磁石を収納する内槽を、矢ばね断熱支持構造により外槽に支持するようにしたものである。より詳しくは、高剛性の中間支持体の外側に一端部が結合され、その他端側が外槽の内周面部に設けられた支持受け座に結合されて、放射状に配置された複数枚の常温側支持板を備えている。また、前記中間支持体の内面側に一端部が結合され、その他端側が内槽の端面外周部に設けられた支持受け座に結合されて、放射状に配置された複数枚の低温側支持板を備えている。常温側支持板および低温側支持板は機械的強度が高く、かつ熱伝導率が小さい繊維強化プラスチックからなる帯状板から製造されている。また、常温側支持板、低温側支持板と中間支持体、常温側支持板と外槽の支持受け座、低温側支持板と内槽の支持受け座間の結合には、押さえ座を介したボルト・ナットが使用されている(例えば、特許文献1参照。)。   The conventional example 1 is such that the inner tub containing the superconducting magnet is supported on the outer tub by the arrow spring heat insulating support structure. More specifically, one end portion is provided on the outer side of the highly rigid intermediate support. The other end side is coupled to a support receiving seat provided on the inner peripheral surface portion of the outer tub, and includes a plurality of room temperature side support plates arranged radially, and an inner surface side of the intermediate support body And a plurality of low-temperature side support plates arranged radially, the other end side being connected to a support receiving seat provided on the outer peripheral portion of the end face of the inner tank. The low-temperature side support plate is manufactured from a belt-like plate made of fiber-reinforced plastic with high mechanical strength and low thermal conductivity, and also includes a normal temperature side support plate, a low temperature side support plate and an intermediate support, and a normal temperature side support plate. And outer tank support receiving seat, low temperature side support plate and inner tank support receiver The binding of Zama, the bolts and nuts through the retainer seat is being used (e.g., see Patent Document 1.).

従来例2に係る「低温容器(液化ガスタンク)の断熱支持装置」は、超伝導磁石を収納する内槽の長手方向の中間部を貫通する状態で、内槽を外槽の内部中心位置に断熱固定支持する中間固定支持機構を備えている。また、内槽の長手方向の端部のそれぞれに突設された支持筒の先端を摺動可能に支持し、先端が外槽の内周面に設けられた取付座に連結された放射状の支持板の中心部に支持されてなる両端スライド支持機構とから構成されている(例えば、特許文献2参照。)。   The “thermal insulation support device for a cryogenic container (liquefied gas tank)” according to Conventional Example 2 insulates the inner tub from the inner central position of the outer tub in a state of penetrating the intermediate portion in the longitudinal direction of the inner tub containing the superconducting magnet. An intermediate fixing support mechanism for fixing and supporting is provided. In addition, the tip of the support cylinder projecting from each end in the longitudinal direction of the inner tub is slidably supported, and the tip is connected to a mounting seat provided on the inner peripheral surface of the outer tub. It is comprised from the both-ends slide support mechanism supported by the center part of a board (for example, refer patent document 2).

従来例3に係る「超伝導磁石用クライオスタット」の断熱支持装置は、超伝導磁石を収納する内槽を外槽の内部中心位置に懸架する懸架ロッドを備えている。また、超伝導磁石を収納する内槽の下部に、内槽を水平方向から支持する水平サポート機構を備えている。熱伝導による内槽への入熱量を少なくするために、前記懸架ロッドは長さが長く、かつ断面積は小さく設定され、また水平サポート機構は熱伝導距離を大きく採り、かつ内槽を水平に保持するコイルスプリング力をボールの曲面を介して押圧するように設定されている(例えば、特許文献3参照。)。
特開昭58−21305号公報 特開昭62−200708号公報 特開平6−267740号公報
The heat insulation support device for the “cryostat for superconducting magnet” according to Conventional Example 3 includes a suspension rod that suspends the inner tank that houses the superconducting magnet at the inner center position of the outer tank. Moreover, the horizontal support mechanism which supports an inner tank from a horizontal direction is provided in the lower part of the inner tank which accommodates a superconducting magnet. In order to reduce the amount of heat input to the inner tank due to heat conduction, the suspension rod is set to be long and the cross-sectional area is set small, the horizontal support mechanism takes a large heat conduction distance, and the inner tank is set horizontally. The coil spring force to be held is set so as to be pressed through the curved surface of the ball (see, for example, Patent Document 3).
JP 58-21305 A JP-A-62-200708 JP-A-6-267740

燃料電池自動車の場合、燃料となる液化水素を収納する液化ガスタンクには、ガソリン自動車のガソリンタンクと同等以下の大きさが要求される。また、長時間走行しない場合におけるBOGによる内槽の内圧の上昇を少なくするために、上記のとおり内槽内への入熱量を少なくする必要がある。このような観点から上記従来例1乃至3を検討すると、これら従来例には以下のような難点がある。   In the case of a fuel cell vehicle, a liquefied gas tank that stores liquefied hydrogen serving as fuel is required to have a size equal to or smaller than that of a gasoline tank of a gasoline vehicle. Moreover, in order to reduce the increase in the internal pressure of the inner tank due to BOG when not traveling for a long time, it is necessary to reduce the amount of heat input into the inner tank as described above. Considering the conventional examples 1 to 3 from such a viewpoint, these conventional examples have the following drawbacks.

上記従来例1に係る矢ばね断熱支持構造は、上記のとおり、常温側支持板、低温側支持板と中間支持体、常温側支持板と外槽の支持受け座、低温側支持板と内槽の支持受け座間の結合には、押さえ座を介したボルト・ナットで結合されている。そのため、常温側支持板、低温側支持板の幅を10mm以上にする必要がある。従って、この従来例1に係る技術を、燃料電池自動車の液化水素を収納する液化ガスタンクに適用すると、内槽への入熱量が多くなり、断熱支持構造としては好ましくない。   As described above, the arrow spring heat insulating support structure according to the conventional example 1 includes a normal temperature side support plate, a low temperature side support plate and an intermediate support, a normal temperature side support plate and a support receiving seat for an outer tank, a low temperature side support plate and an inner tank. The support receiving seats are connected by bolts and nuts via a presser seat. Therefore, it is necessary to make the width of the normal temperature side support plate and the low temperature side support plate 10 mm or more. Therefore, when the technology according to the conventional example 1 is applied to a liquefied gas tank that stores liquefied hydrogen of a fuel cell vehicle, the amount of heat input to the inner tank increases, which is not preferable as a heat insulating support structure.

上記従来例2に係る技術を、燃料電池自動車の液化水素を収納する液化ガスタンクに適用すると、中間固定支持機構と両端スライド支持機構が液化ガスタンクの外槽を大きくし、液化ガスタンクが大容量となるため乗用車の乗車スペースが犠牲になり居住性が損なわれる。   When the technology according to the above-described conventional example 2 is applied to a liquefied gas tank for storing liquefied hydrogen of a fuel cell vehicle, the intermediate fixed support mechanism and the both-end slide support mechanism enlarge the outer tank of the liquefied gas tank, and the liquefied gas tank has a large capacity. Therefore, the riding space for the passenger car is sacrificed and the comfort is impaired.

上記従来例3に係る技術を燃料電池自動車の液化水素を収納する液化ガスタンクに適用すると、懸架ロッドと水平サポート機構が液化ガスタンクの外槽を大きくし、液化ガスタンクが大容量となるため、記従来例2に係る技術の場合と同様に、乗用車の乗車スペースが犠牲になり居住性が損なわれる。   When the technology according to the above conventional example 3 is applied to a liquefied gas tank for storing liquefied hydrogen of a fuel cell vehicle, the suspension rod and the horizontal support mechanism enlarge the outer tank of the liquefied gas tank, and the liquefied gas tank has a large capacity. As in the case of the technology according to Example 2, the riding space of the passenger car is sacrificed and the comfortability is impaired.

従って、本発明の目的は、ガソリン自動車のガソリンタンクと同等以下の大きさの液化ガスタンクの実現を可能ならしめ、断熱性能が優れた液化ガスタンクの断熱支持構造体を提供することにある。   Accordingly, an object of the present invention is to provide a heat insulating support structure for a liquefied gas tank that can realize a liquefied gas tank having a size equal to or smaller than that of a gasoline tank of a gasoline automobile and has excellent heat insulating performance.

本発明は上記難点を解決するために、液化ガスタンクの断熱支持構造体を下記のように構成したものである。即ち、請求項1に記載の発明は、外槽2内の断熱空間に極低温の液化ガスが充填される内槽3を支持する液化ガスタンクの断熱支持構造体10であって、上記断熱支持構造体10は、前記内槽3の長手方向の一端側から他端側に気密に貫通する貫通管3aと、上記貫通管3a内の長手方向中央部に対峙して固定される一対の内部ボス3b・3bと、前記外槽2の内壁に固設され上記内部ボス3b・3bに対向する一対の外部ボス2a・2aと、上記外部ボス2a・2aと上記内部ボス3b・3bとに亘って架設された一対の低熱伝導支持部材11・11とから成り、上記各低熱伝導支持部材11は、上記内部ボス3bと上記外部ボス2aとに亘って架設された断熱支持筒11aと、この断熱支持筒11a内挿通して当該断熱支持筒11aの撓みを補強するとともに、当該断熱支持筒11a内に侵入する輻射熱を遮断する輻射熱遮断ユニット13とから成ることを特徴とするものである。
In order to solve the above-described problems, the present invention comprises a heat insulating support structure for a liquefied gas tank as described below. That is, the invention according to claim 1 is a heat insulating support structure 10 of a liquefied gas tank that supports an inner tank 3 in which a heat insulating space in the outer tank 2 is filled with a cryogenic liquefied gas, the heat insulating support structure. The body 10 has a through-tube 3a penetrating airtightly from one end side to the other end side in the longitudinal direction of the inner tub 3, and a pair of internal bosses 3b fixed facing the central portion in the longitudinal direction in the through-tube 3a. 3b, a pair of external bosses 2a and 2a fixed to the inner wall of the outer tub 2 and facing the internal bosses 3b and 3b, and spanning the external bosses 2a and 2a and the internal bosses 3b and 3b It consists by a pair of low thermal conductivity support members 11 and 11 Prefecture, each low thermal conductive support member 11, and the heat insulating support cylinder 11a which is laid across and the internal boss 3b and the external boss 2a, the heat insulating support cylinder Deflection of the insulation support cylinder 11a is inserted inside 11a It reinforces the and is characterized in that it consists of radiant heat blocking unit 13 for blocking radiant heat from entering the said thermal insulating support cylinder 11a.

請求項2に係る発明は、請求項1に記載の液化ガスタンクの断熱支持構造体において、前記各輻射熱遮断ユニット13は、前記断熱支持筒11a内に挿入され低熱伝導部材からなるロッド13aと、このロッド13aに所定の間隔を隔てて外嵌され、外周面が前記断熱支持筒11aの内周面に接触するとともに、径方向の中心に前記ロッド13aが貫通する貫通穴を有する複数の低輻射率の金属板13bとから成り、前記金属板13bのそれぞれは、前記ロッド13aに螺刻されたネジに螺着されたナット13cにより挟圧固定されて成ることを特徴とするものである。
The invention according to claim 2 is the heat insulating support structure of the liquefied gas tank according to claim 1, wherein each of the radiant heat blocking units 13 is inserted into the heat insulating support cylinder 11 a and a rod 13 a made of a low heat conducting member, is fitted at a predetermined interval in the rod 13a, the together the outer peripheral surface contacts the inner peripheral surface of the insulation support cylinder 11a, a plurality of low radiation having a through hole in which the rod 13a penetrates the center of the radial direction Each of the metal plates 13b is clamped and fixed by a nut 13c screwed on a screw threaded on the rod 13a.

本発明の請求項1または2に係る液化ガスタンクの断熱支持構造体では、上記のとおり、液化ガスタンクの内槽を、この内槽の長手方向の一端側から他端側に気密可能に貫通する貫通管内の長手方向の中央部を支持する断熱支持構造体の断熱支持筒により支持する。そして、この断熱支持筒に嵌合されている輻射熱遮断ユニットは、外周面が断熱支持筒の内周面に接触する複数の低輻射率の金属板を備えている。   In the heat-insulating support structure for a liquefied gas tank according to claim 1 or 2 of the present invention, as described above, the penetration penetrates the inner tank of the liquefied gas tank from one end side to the other end side in the longitudinal direction of the inner tank in an airtight manner. It supports by the heat insulation support cylinder of the heat insulation support structure which supports the center part of the longitudinal direction in a pipe | tube. The radiant heat blocking unit fitted to the heat insulating support cylinder includes a plurality of low emissivity metal plates whose outer peripheral surfaces are in contact with the inner peripheral surface of the heat insulating support cylinder.

そのため、断熱支持構造体に理想的な積層断熱材に近い輻射熱に対する断熱性能を付与することができ、そしてこの断熱支持構造体の長さを長くしても、この断熱支持構造体の内槽からの突出長さを短くすることができる。従って、本発明の請求項1または2に係る液化ガスタンクの断熱支持構造体によれば、液化ガスタンクの外槽の大型化を防止することができ、液化ガスタンクをコンパクにすることができるから、従来例2または3のように、乗用車の乗車スペースが犠牲になり居住性が損なわれるという不具合が生じることがない。   Therefore, the heat insulating support structure can be provided with heat insulating performance against radiant heat that is close to the ideal laminated heat insulating material, and even if the length of the heat insulating support structure is increased, The protruding length of can be shortened. Therefore, according to the heat insulating support structure for a liquefied gas tank according to claim 1 or 2 of the present invention, it is possible to prevent an increase in the size of the outer tank of the liquefied gas tank and to make the liquefied gas tank compact. As in Example 2 or 3, there is no problem that the riding space of the passenger car is sacrificed and the comfortability is impaired.

また、本発明の請求項2に係る液化ガスタンクの断熱支持構造体では、断熱支持筒に挿通される輻射熱遮断ユニットが、ロッドと、このロッドに外嵌され、外周面が断熱支持筒の内周面に接触する複数の低輻射率の金属板とから構成されているので、ロッドと金属板とが耐曲げ補強部材となり、断熱支持構造体の曲げ強度を向上させるから、断熱支持構造体をそれほど太くする必要がない。これによって、断熱支持構造体を介しての熱伝導による入熱量も少なくすることができる。   Moreover, in the heat insulation support structure of the liquefied gas tank according to claim 2 of the present invention, the radiant heat block unit inserted into the heat insulation support cylinder is externally fitted to the rod, and the outer peripheral surface is the inner circumference of the heat insulation support cylinder. Because it is composed of multiple low emissivity metal plates in contact with the surface, the rod and the metal plate serve as bending-resistant reinforcing members and improve the bending strength of the heat-insulating support structure. There is no need to be thick. Thereby, the heat input by heat conduction through the heat insulating support structure can also be reduced.

以下、本発明の形態に係る液化ガスタンクの断熱支持構造体を、燃料電池自動車に装備され、燃料電池の燃料となる、60〜100リットルの液化水素を収納する容量の液化ガスタンクである場合を例として、添付図面を参照しながら説明する。図1は断熱支持構造体で支持した液化ガスタンクの模式的断面図、図2は図1中の要部詳細図である。   Hereinafter, an example in which the heat insulating support structure for a liquefied gas tank according to the embodiment of the present invention is a liquefied gas tank having a capacity of 60 to 100 liters of liquefied hydrogen that is installed in a fuel cell vehicle and serves as fuel for the fuel cell. As will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a liquefied gas tank supported by a heat-insulating support structure, and FIG. 2 is a detailed view of essential parts in FIG.

図1に示す符号1は、液化水素を収納する液化ガスタンクであって、この液化ガスタンク1は外槽2を備え、この外槽2内の断熱空間内には内槽3が本発明に係る断熱支持構造体10で支持されている。上記内槽3は輻射率の小さい材料からなる薄シートと熱絶縁性の高い材料からなる薄シートを交互に積層してなる積層断熱材4で囲繞されている。   Reference numeral 1 shown in FIG. 1 denotes a liquefied gas tank that stores liquefied hydrogen. The liquefied gas tank 1 includes an outer tub 2, and the inner tub 3 is insulated in the heat insulating space in the outer tub 2 according to the present invention. It is supported by the support structure 10. The inner tub 3 is surrounded by a laminated heat insulating material 4 formed by alternately laminating thin sheets made of a material having a low emissivity and thin sheets made of a material having high heat insulation.

上記断熱支持構造体10は、上記内槽3の長手方向の一端側から他端側に気密可能に貫通する金属製円管からなる貫通管3aと、この貫通管3aの長手方向の中央部の対峙する位置に溶接されている金属管製の一対の内部ボス3b・3bと、前記外槽2の鏡面に形成された内壁に固設され上記内部ボス3b・3bに対向する位置に設けられた一対の外部ボス2a・2aと、上記外部ボス2a・2aと上記内部ボス3b・3bとに亘って架設された一対の低熱伝導支持部材11・11とから構成されている。   The heat insulating support structure 10 includes a penetrating pipe 3a made of a metal circular pipe penetrating from one end side to the other end side in the longitudinal direction of the inner tub 3, and a central portion in the longitudinal direction of the penetrating pipe 3a. A pair of metal tube-made internal bosses 3b and 3b welded to the facing positions, and an inner wall formed on the mirror surface of the outer tub 2 are provided at positions facing the internal bosses 3b and 3b. It comprises a pair of external bosses 2a and 2a, and a pair of low heat conduction support members 11 and 11 that span the external bosses 2a and 2a and the internal bosses 3b and 3b.

この実施形態においては、液化ガスタンク1が高圧であるため、貫通管3aとして断面形状が円形の金属製円管を使用している。なお、外槽2の内周面と、内槽3の外周面との間に形成される断熱空間内は、従来と同様に、気体の対流による熱伝達量をゼロにするために真空引きされる。   In this embodiment, since the liquefied gas tank 1 has a high pressure, a metal circular tube having a circular cross section is used as the through tube 3a. Note that the heat insulating space formed between the inner peripheral surface of the outer tub 2 and the outer peripheral surface of the inner tub 3 is evacuated in order to reduce the amount of heat transfer due to gas convection, as in the prior art. The

図2に示すように、断熱支持構造体10を構成する各低熱伝導支持部材11は、上記内部ボス3bと上記外部ボス2aとに亘って架設された断熱支持筒11aと、上記断熱支持筒11a内に挿通されて当該断熱支持筒11aの撓みを補強するとともに、当該断熱支持筒11a内に侵入する輻射熱を遮断する輻射熱遮断ユニット13とから構成されている。上記各断熱支持筒11aは、その一端部が前記貫通管3a内の内部ボス3bに固着され、前記貫通管3aから突出する他端部が外槽2の鏡面に設けられた外部ボス2aに軸芯方向へ遊動可能に支持されている。これは液化ガスによる内槽3の収縮を吸収できるように意図したものであり、各断熱支持筒11aの端部のいずれか一方を固定し、他方を軸芯方向へ遊動可能に支持すれば良い。また、この断熱支持筒11aは低熱伝導部材である繊維強化プラスチックから構成されている。   As shown in FIG. 2, each low thermal conductive support member 11 constituting the heat insulating support structure 10 includes a heat insulating support cylinder 11a constructed over the inner boss 3b and the outer boss 2a, and the heat insulating support cylinder 11a. The heat insulating support cylinder 11a is inserted into the heat insulating support cylinder 11a to reinforce the bending of the heat insulating support cylinder 11a, and includes a radiant heat blocking unit 13 that blocks radiant heat entering the heat insulating support cylinder 11a. Each of the heat insulating support cylinders 11a has one end fixed to the internal boss 3b in the through pipe 3a and the other end protruding from the through pipe 3a is pivoted to the external boss 2a provided on the mirror surface of the outer tub 2. It is supported so as to be movable in the core direction. This is intended to absorb the shrinkage of the inner tank 3 due to the liquefied gas, and it is only necessary to fix one end of each heat insulating support cylinder 11a and to support the other so as to be freely movable in the axial direction. . Moreover, this heat insulation support cylinder 11a is comprised from the fiber reinforced plastic which is a low heat conductive member.

前記断熱支持筒11aの内部には、輻射熱遮断ユニット13が挿通されている。前記断熱支持筒11aを構成する繊維強化プラスチックは、ガラス繊維、カーボン繊維、アルミナ繊維、シリカ繊維、アラミド繊維等とエポキシ系樹脂の複合材料が使用される。繊維の含有率は60%程度である。なお、前記外部ボス2aの外部開口を閉塞してなるものはキャップ2bであって、この外部ボス2aの外部開口を気密可能に閉塞するものである。このような断熱支持筒11aを用いることにより、燃料電池自動車の急発進、急ブレーキ、および凹凸路走行時等における加振力により発生する曲げモーメントに耐えることができ、しかも内槽3への入熱量を少なくすることができる。   A radiant heat blocking unit 13 is inserted into the heat insulating support cylinder 11a. As the fiber reinforced plastic constituting the heat insulating support cylinder 11a, a composite material of glass fiber, carbon fiber, alumina fiber, silica fiber, aramid fiber and the like and an epoxy resin is used. The fiber content is about 60%. A cap 2b is formed by closing the external opening of the external boss 2a, and the external opening of the external boss 2a is closed in an airtight manner. By using such a heat insulating support cylinder 11a, it is possible to withstand a bending moment generated by an excitation force when the fuel cell vehicle is suddenly started, suddenly braked, or traveling on an uneven road, and further enters the inner tank 3. The amount of heat can be reduced.

前記輻射熱遮断ユニット13は、前記断熱支持筒11a内に挿入され低熱伝導部材からなるロッド13aと、このロッド13aに所定の間隔を隔てて外嵌される複数の金属板13bとから構成されている。上記ロッド13aは、その先端が固定金具12の雌ネジに螺着され、その外周部に雄ネジが螺刻されている。上記金属板13bは、外周面が断熱支持筒11aの内周面に接触すると共に、径方向の中心位置に前記ロッド13aが貫通する貫通穴を有し、輻射率が小さく、所定の間隔を隔ててこのロッド13aに対して直角に外嵌されている。また、このロッド13aには、前記複数の金属板13bのそれぞれを挟む両側にナット13cが螺着されており、これらナット13cによって金属板13bのそれぞれが挟圧されてロッド13aに固定されている。
The radiant heat blocking unit 13 is composed of a rod 13a made of a low heat conductive member inserted into the heat insulating support cylinder 11a, and a plurality of metal plates 13b fitted on the rod 13a at a predetermined interval. Yes. The rod 13a has its tip is screwed into the female screw of the solid Teikanagu 12, the male screw on its outer circumferential portion is threaded. The metal plate 13b has an outer peripheral surface that is in contact with the inner peripheral surface of the heat-insulating support cylinder 11a, and has a through-hole through which the rod 13a penetrates at the radial center position, and has a low emissivity and a predetermined interval. The lever 13a is externally fitted at a right angle. Further, nuts 13c are screwed on both sides of each of the plurality of metal plates 13b to the rod 13a, and each of the metal plates 13b is clamped and fixed to the rod 13a by these nuts 13c. .

例えば、断熱支持筒11a内に輻射熱遮断ユニット13が内設されていない場合には、断熱支持筒11aの内側を通じて大気から直接内槽3に輻射熱が侵入する。概算によると、燃料電池の燃料となる液化水素を収納する液化ガスタンクの場合には、輻射熱の入熱量は全入熱量の30%程度であって、到底無視することのできない量である。   For example, when the radiation heat blocking unit 13 is not installed in the heat insulating support cylinder 11a, radiant heat enters the inner tank 3 directly from the atmosphere through the inside of the heat insulating support cylinder 11a. According to the rough estimate, in the case of a liquefied gas tank that stores liquefied hydrogen serving as fuel for the fuel cell, the amount of heat input of radiant heat is about 30% of the total amount of heat input, and cannot be ignored.

断熱支持筒11aからの輻射熱の入熱量を少なくするために、例えば前記内槽3を囲繞する積層断熱材4のように、断熱支持筒11a内の全長にわたって、輻射率の小さい材料からなる薄シートと熱絶縁性の高い材料からなる薄シートを交互に積層して充填する構成にすることが可能である。しかしながら、薄シートを円形に切断して交互に整然と充填する作業は煩雑で、工業的な見地から好ましくない。そこで、上記のような構成の輻射熱遮断ユニット13を挿入することにより、輻射熱を遮断することとしたものである。   In order to reduce the amount of radiant heat input from the heat insulating support cylinder 11a, a thin sheet made of a material having a low emissivity over the entire length of the heat insulating support cylinder 11a, such as the laminated heat insulating material 4 surrounding the inner tub 3. And thin sheets made of a material having high thermal insulation can be alternately stacked and filled. However, the work of cutting thin sheets into a circular shape and filling them alternately in an orderly manner is cumbersome and is not preferable from an industrial standpoint. Therefore, the radiant heat is blocked by inserting the radiant heat blocking unit 13 having the above-described configuration.

輻射率が小さい前記金属板13bは、例えばアルミニウム、アルミニウム合金、銅、銅合金等から構成される。これらの金属板13bは輻射率を小さくするために、バフ研磨、化学研磨、電解研磨等によって表面の汚れ、酸化物が除去される。なお、金属板13bの材質としてステンレス鋼板を用いることができる。但し、ステンレス鋼板を用いる場合には、ステンレス鋼板の表面に輻射率の小さな金属めっき、例えば金、銀等でめっきするのが好ましい。   The metal plate 13b having a low emissivity is made of, for example, aluminum, aluminum alloy, copper, copper alloy, or the like. In order to reduce the emissivity of these metal plates 13b, surface contamination and oxides are removed by buffing, chemical polishing, electrolytic polishing or the like. A stainless steel plate can be used as the material of the metal plate 13b. However, when a stainless steel plate is used, the surface of the stainless steel plate is preferably plated with a metal plate having a low emissivity, such as gold or silver.

前記ロッド13aの材質としては、例えばナイロン、四フッ化エチレン樹脂等の合成樹脂、繊維強化プラスチック等が使用される。繊維強化プラスチックとしては、例えばガラス繊維、カーボン繊維、アルミナ繊維、シリカ繊維、アラミド繊維等のエポキシ系樹脂の複合材料が使用される。このようなエポキシ系樹脂の複合材料の繊維の含有率は60%程度である。また、ナット13cの材質としては、ステンレス鋼、黄銅、繊維強化プラスチック等が一般的である。   As the material for the rod 13a, for example, synthetic resin such as nylon or tetrafluoroethylene resin, fiber reinforced plastic, or the like is used. As the fiber reinforced plastic, for example, a composite material of epoxy resin such as glass fiber, carbon fiber, alumina fiber, silica fiber, and aramid fiber is used. The fiber content of such an epoxy resin composite material is about 60%. The material of the nut 13c is generally stainless steel, brass, fiber reinforced plastic, or the like.

ところで、この実施形態の場合にあっては、上記のとおり、金属板13bのそれぞれは一対ずつのナット13cによりロッド13aに固定されている。しかしながら、このような構成に限らず、内部ボス3b側の金属板13bの外側と、外部ボス2a側の金属板13bの外側にナットを配し、各金属板13bの間に筒状の低熱伝導率材料からなる間隔管(カラー)を介装し、前記外側に配したナットを締付けて各金属板13bを固定することができる。また、前記ロッド13aが、接着不可能な四フッ化エチレン樹脂、ナイロンでなく、例えば繊維強化プラスチックから製造されている場合には、金属板13bをエポキシ系接着剤によりロッド13aに固定することもできる。   Incidentally, in the case of this embodiment, as described above, each of the metal plates 13b is fixed to the rod 13a by a pair of nuts 13c. However, the present invention is not limited to this configuration, and nuts are arranged on the outer side of the metal plate 13b on the inner boss 3b side and on the outer side of the metal plate 13b on the outer boss 2a side, and a cylindrical low thermal conductivity is provided between the metal plates 13b. Each metal plate 13b can be fixed by interposing a spacing tube (collar) made of a rate material and tightening the nut arranged on the outside. Further, when the rod 13a is made of, for example, fiber reinforced plastic instead of non-bondable tetrafluoroethylene resin or nylon, the metal plate 13b may be fixed to the rod 13a with an epoxy adhesive. it can.

因みに、このような構成になる断熱支持構造体10を備えた液化水素用の液化ガスタンク1は、下記のような手順で組み立てられる。
(1)貫通管3aの長手方向の中央部の対峙する位置に、金属製の一対の内部ボス3bを溶接する。
(2)断熱支持筒11aの一端側に螺刻されてなる雄ネジにエポキシ系接着剤を塗布し、貫通管3aの端部開口のそれぞれから挿入すると共に、それぞれの断熱支持筒11aの先端の雄ネジを前記左右の内部ボス3bの雌ねじに着する。
(3)断熱支持筒11aが取付けられた貫通管3aを、内槽3の鏡板の径方向の中心に設けられた抜き穴に挿通して、抜き穴と貫通管3aの端部を気密可能に溶接して、この貫通管3aを内槽3と一体構成にする。
(4)内槽3を積層断熱材で囲繞する。
(5)内槽3の外部に外槽2を取付け、断熱支持筒11aの貫通管3aからの突出端を外部ボス2aに架着する。
(6)断熱支持筒11aに輻射熱遮断ユニット13を挿通し、ロッド13aの先端の雄ネジを断熱支持筒11a内に設けられている固定金具12の雌ネジに螺着して組付ける。
(7)外部ボス2aにキャップ2bを溶接して、開口を気密可能に閉塞する。
Incidentally, the liquefied hydrogen liquefied gas tank 1 provided with the heat insulating support structure 10 having such a configuration is assembled in the following procedure.
(1) A pair of metal internal bosses 3b are welded to the opposite positions of the central portion in the longitudinal direction of the through pipe 3a.
(2) An epoxy adhesive is applied to a male screw threaded on one end of the heat insulating support cylinder 11a, inserted from each of the end openings of the through pipe 3a, and at the tip of each heat insulating support cylinder 11a. screw Chakusuru a male screw into the female screw of the left and right inner boss 3b.
(3) The through pipe 3a to which the heat insulating support cylinder 11a is attached is inserted into a through hole provided in the center in the radial direction of the end plate of the inner tank 3, so that the through hole and the end of the through pipe 3a can be hermetically sealed. This through pipe 3a is integrated with the inner tank 3 by welding.
(4) The inner tub 3 is surrounded by a laminated heat insulating material.
(5) The outer tub 2 is attached to the outside of the inner tub 3, and the projecting end of the heat insulating support cylinder 11a from the through pipe 3a is attached to the outer boss 2a.
(6) The radiant heat blocking unit 13 is inserted into the heat insulating support cylinder 11a, and the male screw at the tip of the rod 13a is screwed onto the female screw of the fixing bracket 12 provided in the heat insulating support cylinder 11a.
(7) The cap 2b is welded to the external boss 2a to close the opening in an airtight manner.

以下、本発明の上記実施形態に係る液化ガスタンクの断熱支持構造体10の作用態様を説明する。本発明では、液化ガスタンクの内槽3を本発明に係る断熱支持構造体10で支持する。この断熱支持構造体10は、内槽3の長手方向の一端側から他端側に気密可能に貫通する貫通管3aと、貫通管3a内に挿通されてその長手方向の中央部を支持する断熱支持部材11とから構成し、断熱支持部材11を構成する断熱支持筒11aによって支持する。そして、この断熱支持筒11aに挿通されている輻射熱遮断ユニット13は、外周面が断熱支持筒11aの内周面に接触する複数の輻射率が小さい金属板13bを備えている。   Hereinafter, the operation mode of the heat insulating support structure 10 of the liquefied gas tank according to the embodiment of the present invention will be described. In the present invention, the inner tank 3 of the liquefied gas tank is supported by the heat insulating support structure 10 according to the present invention. The heat insulating support structure 10 includes a through pipe 3a that penetrates from one end side to the other end side in the longitudinal direction of the inner tub 3 in an airtight manner, and a heat insulation that is inserted into the through pipe 3a and supports a central portion in the longitudinal direction. The support member 11 is supported by a heat insulating support cylinder 11 a that constitutes the heat insulating support member 11. And the radiant heat interruption | blocking unit 13 penetrated by this heat insulation support cylinder 11a is provided with the several metal plate 13b with a small emissivity in which an outer peripheral surface contacts the inner peripheral surface of the heat insulation support cylinder 11a.

上記構成により断熱支持構造体10として理想的な積層断熱材に近い断熱性能を付与することができ、そしてこの断熱支持構造体10の全長を長くしつつも、この断熱支持構造体10の内槽3からの突出長さを短くすることができる。従って、本発明の実施形態によれば、液化ガスタンク1の外槽2の大型化を防止することができ、液化ガスタンク1をコンパクトにすることができる。これにより従来例2又は従来例3のように乗用車の乗車スペースが犠牲になり居住性が損なわれることがない。   With the above structure, the heat insulating performance close to the ideal laminated heat insulating material can be imparted as the heat insulating support structure 10, and the inner tank of the heat insulating support structure 10 can be extended while increasing the overall length of the heat insulating support structure 10. The protrusion length from 3 can be shortened. Therefore, according to the embodiment of the present invention, the outer tank 2 of the liquefied gas tank 1 can be prevented from being enlarged, and the liquefied gas tank 1 can be made compact. Thereby, the boarding space of a passenger car is not sacrificed like the prior art example 2 or the prior art example 3, and habitability is not impaired.

また、上記実施形態によれば、断熱支持筒11aに嵌合される輻射熱遮断ユニット13は、ロッド13aと、このロッド13aに外嵌され、外周面が断熱支持筒11aの内周面に接触する複数の低輻射率の金属板13bとから構成されているので、ロッド13aと金属板13bとが耐曲げ補強部材となり、断熱支持部材11、ひいては断熱支持構造体10の曲げ強度を向上させるから、断熱支持構造体をそれほど太くする必要がない。   Moreover, according to the said embodiment, the radiation heat interruption | blocking unit 13 fitted by the heat insulation support cylinder 11a is fitted by the rod 13a and this rod 13a, and an outer peripheral surface contacts the inner peripheral surface of the heat insulation support cylinder 11a. Since it is composed of a plurality of low emissivity metal plates 13b, the rod 13a and the metal plate 13b serve as bending-resistant reinforcing members, and improve the bending strength of the heat insulating support member 11, and consequently the heat insulating support structure 10. It is not necessary to make the insulating support structure thick.

以上では、本発明の液化ガスタンクの断熱支持構造体に係る技術的思想を、液化水素を収納する燃料電池自動車に装備される液化ガスタンクに適用した場合を例として説明したが、本発明はこれに限らず、例えば液化酸素、液化窒素、液化炭酸ガス等を収納する液化ガスタンクに対しても適用することができる。従って、本発明は上記実施形態に係る液化ガスタンクの用途に限定されるものではない。   In the above description, the technical idea related to the heat insulating support structure for a liquefied gas tank according to the present invention has been described as an example applied to a liquefied gas tank equipped in a fuel cell vehicle storing liquefied hydrogen. For example, the present invention can also be applied to a liquefied gas tank that stores liquefied oxygen, liquefied nitrogen, liquefied carbon dioxide gas, or the like. Therefore, the present invention is not limited to the use of the liquefied gas tank according to the above embodiment.

本発明の実施形態に係る断熱支持構造体を備えた液化ガスタンクの模式的断面図である。It is a typical sectional view of a liquefied gas tank provided with a heat insulation support structure concerning an embodiment of the present invention. 図1中の要部詳細図である。It is a principal part detail drawing in FIG.

符号の説明Explanation of symbols

1…液化ガスタンク、
2…外槽、2a…外部ボス、2b…キャップ、
3…内槽、3a…貫通管、3b…内部ボス、
4…積層断熱材、
10…断熱支持構造体、
11…低熱伝導支持部材、
11a…断熱支持筒、
12…固定金具、
13…輻射熱遮断ユニット、13a…ネジロッド、13b…金属板、13c…ナット。
1 ... liquefied gas tank,
2 ... Outer tank, 2a ... External boss, 2b ... Cap,
3 ... inner tank, 3a ... through pipe, 3b ... internal boss,
4 ... Laminated insulation,
10 ... heat insulating support structure,
11 ... Low heat conduction support member,
11a ... heat insulating support cylinder,
12 ... Fixing bracket,
13 ... Radiation heat blocking unit, 13a ... Screw rod, 13b ... Metal plate, 13c ... Nut.

Claims (2)

外槽(2)内の断熱空間に極低温の液化ガスが充填される内槽(3)を支持する液化ガスタンクの断熱支持構造体(10)であって、
上記断熱支持構造体(10)は、前記内槽(3)の長手方向の一端側から他端側に気密に貫通する貫通管(3a)と、上記貫通管(3a)内の長手方向中央部に対峙して固定される一対の内部ボス(3b・3b)と、前記外槽(2)の内壁に固設され上記内部ボス(3b・3b)に対向する一対の外部ボス(2a・2a)と、上記外部ボス(2a・2a)と上記内部ボス(3b・3b)とに亘って架設された一対の低熱伝導支持部材(11・11)とから成り、
上記各低熱伝導支持部材(11)は、上記内部ボス(3b)と上記外部ボス(2a)とに亘って架設された断熱支持筒(11a)と、この断熱支持筒(11a)内挿通して当該断熱支持筒(11a)の撓みを補強するとともに、当該断熱支持筒(11a)内に侵入する輻射熱を遮断する輻射熱遮断ユニット(13)と
から成ることを特徴とする液化ガスタンクの断熱支持構造体。
A heat insulating support structure (10) for a liquefied gas tank that supports an inner tank (3) in which a cryogenic liquefied gas is filled in a heat insulating space in the outer tank (2),
The heat insulating support structure (10) includes a through pipe (3a) penetrating airtightly from one end side to the other end side in the longitudinal direction of the inner tank (3), and a longitudinal central portion in the through pipe (3a). A pair of internal bosses (3b, 3b) fixed opposite to each other, and a pair of external bosses (2a, 2a) fixed to the inner wall of the outer tub (2) and facing the internal bosses (3b, 3b) And a pair of low heat conduction support members (11, 11) installed across the outer boss (2a, 2a) and the inner boss (3b, 3b),
Each low thermal conductive support member (11), said internal boss (3b) and the external boss (2a) and bridged over the thermal insulation support cylinder and (11a), inserted within the insulation support cylinder (11a) the insulation support cylinder (11a) bending reinforces the, the radiant heat blocking unit (13) for blocking radiant heat from entering into the insulation support cylinder (11a) Te,
A heat-insulating support structure for a liquefied gas tank, comprising:
前記各輻射熱遮断ユニット(13)は、前記断熱支持筒(11a)内に挿入され低熱伝導部材からなるロッド(13a)と、このロッド(13a)に所定の間隔を隔てて外嵌され、その外周面が前記断熱支持筒(11a)の内周面に接触するとともに、径方向の中心に前記ロッド(13a)が貫通する貫通穴を有する複数の低輻射率の金属板(13b)とから成り、前記金属板(13b)のそれぞれは、前記ロッド(13a)に螺刻されたネジに螺着されたナット(13c)により挟圧固定されて成ることを特徴とする請求項1に記載の液化ガスタンクの断熱支持構造体。 Each radiant heat blocking unit (13), said thermal insulation support cylinder and rod consisting inserted into (11a) low thermal conductive member (13a), is fitted at a predetermined interval in the rod (13a), the outer periphery thereof to together the surfaces in contact with the inner peripheral surface of the insulation support cylinder (11a), made from a plurality of low emissivity of the metal plate having a through hole in which the rod in the center of the radial direction (13a) penetrates the (13b) 2. The liquefaction according to claim 1, wherein each of the metal plates (13 b) is clamped and fixed by a nut (13 c) screwed to a screw threaded on the rod (13 a). Gas tank insulation support structure.
JP2005179236A 2005-06-20 2005-06-20 Thermal insulation support structure for liquefied gas tank Active JP4734043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005179236A JP4734043B2 (en) 2005-06-20 2005-06-20 Thermal insulation support structure for liquefied gas tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005179236A JP4734043B2 (en) 2005-06-20 2005-06-20 Thermal insulation support structure for liquefied gas tank

Publications (2)

Publication Number Publication Date
JP2006349134A JP2006349134A (en) 2006-12-28
JP4734043B2 true JP4734043B2 (en) 2011-07-27

Family

ID=37645200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005179236A Active JP4734043B2 (en) 2005-06-20 2005-06-20 Thermal insulation support structure for liquefied gas tank

Country Status (1)

Country Link
JP (1) JP4734043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140692A1 (en) * 2008-05-16 2009-11-19 Lawrence Livermore National Security, Llc Cryogenic capable high pressure containers for compact storage of hydrogen onboard vehicles
KR20190098221A (en) * 2017-02-03 2019-08-21 이글 고오교 가부시키가이샤 Insulation Structure and Liquid Supply System
KR102545599B1 (en) * 2021-09-23 2023-06-21 주식회사 티엠씨 A compression type fuel tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726007Y1 (en) * 1967-05-31 1972-08-11
JPS5821305A (en) * 1981-07-28 1983-02-08 Toshiba Corp Liquid helium reservoir inner vessel supporting structure for superconductive magnet
JPS62200708A (en) * 1986-02-28 1987-09-04 Toshiba Corp Heat insulating support device for low-temperature container
JPH0539895A (en) * 1991-08-02 1993-02-19 Kobe Steel Ltd Low temperature container
JPH06267740A (en) * 1993-03-12 1994-09-22 Ishikawajima Harima Heavy Ind Co Ltd Cryostat for superconductive magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726007Y1 (en) * 1967-05-31 1972-08-11
JPS5821305A (en) * 1981-07-28 1983-02-08 Toshiba Corp Liquid helium reservoir inner vessel supporting structure for superconductive magnet
JPS62200708A (en) * 1986-02-28 1987-09-04 Toshiba Corp Heat insulating support device for low-temperature container
JPH0539895A (en) * 1991-08-02 1993-02-19 Kobe Steel Ltd Low temperature container
JPH06267740A (en) * 1993-03-12 1994-09-22 Ishikawajima Harima Heavy Ind Co Ltd Cryostat for superconductive magnet

Also Published As

Publication number Publication date
JP2006349134A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP6740211B2 (en) Steam-cooled shield liner for cryogenic storage in composite pressure vessels
JP3111660U (en) Ultra vacuum insulation tank for cryogenic liquefied gas
US4394929A (en) Cryogenic liquid storage container having an improved access conduit
EP1546601B1 (en) Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
JP3111656U (en) Ultra vacuum insulation tank for cryogenic liquefied gas
JP2001254894A (en) Storage vessel
US20140166662A1 (en) Suspension System for a Cryogenic Vessel
JP4734043B2 (en) Thermal insulation support structure for liquefied gas tank
JP3111659U (en) Support structure between outer shell and inner vessel of ultra vacuum insulation tank for cryogenic liquefied gas
KR102295582B1 (en) double shell tanks and ships
JP3111658U (en) Ultra vacuum insulation tank for cryogenic liquefied gas and its outer shell
US20200355325A1 (en) Liquid methane storage and fuel delivery system
US6354321B1 (en) Storage container for cryogenic liquids
JP3111657U (en) Dome end of ultra vacuum insulation tank for cryogenic liquefied gas
JP4051365B2 (en) Liquefied gas tank inner tank support device
US20230272881A1 (en) Device for storing cryogenic fluid and vehicle comprising such a device
KR101422594B1 (en) Container For Storing Liquefied Gas
CN114514398A (en) Pressure vessel and motor vehicle
KR102568305B1 (en) Cryogenic fluid storage tank
JP7407903B2 (en) Storage container for automotive liquefied hydrogen, including a thermally insulating support and a thermally insulating support
KR102568292B1 (en) Cryogenic fluid storage tank
JP2006112483A (en) Pressure vessel
KR102537523B1 (en) Hydrogen storage tank using absorption material as storage media
CN220647848U (en) Horizontal storage tank
WO2022145384A1 (en) Pipework structure for extremely low-temperature liquid, and watercraft provided therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4734043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250