JP3111533U - Vacuum carbonization furnace - Google Patents

Vacuum carbonization furnace Download PDF

Info

Publication number
JP3111533U
JP3111533U JP2005001764U JP2005001764U JP3111533U JP 3111533 U JP3111533 U JP 3111533U JP 2005001764 U JP2005001764 U JP 2005001764U JP 2005001764 U JP2005001764 U JP 2005001764U JP 3111533 U JP3111533 U JP 3111533U
Authority
JP
Japan
Prior art keywords
furnace
furnace body
vacuum
carbonization furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005001764U
Other languages
Japanese (ja)
Inventor
金藏 ▲高▼杉
久夫 根岸
中田  肇
Original Assignee
金藏 ▲高▼杉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金藏 ▲高▼杉 filed Critical 金藏 ▲高▼杉
Priority to JP2005001764U priority Critical patent/JP3111533U/en
Application granted granted Critical
Publication of JP3111533U publication Critical patent/JP3111533U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】高純度且つ高品質な炭化物を均質量産可能な真空炭化炉を提供する。
【解決手段】真空炭化炉αは、一端を開閉自在な開口端とし他端を閉塞端として内部を密封雰囲気に作成可能な炉本体αaと、炭化物の原料Bを複数収容する炉本体αa内の真空引き用の排気管3と、炉本体αa内の真空度を検出する真空ゲージ4,5と、炉本体αa内の温度を検出する温度センサ14と、原料Bを炭化物に炭化させるため、温度センサ14の検出値に基づき制御されることで炉本体αa内を一様に加熱するオイルバーナ12と、一方の外口端11aが炉本体αa外の閉塞端側に貫通露出してオイルバーナ12と、また他方の外口端11bが炉本体αa外の閉塞端側に貫通露出して煙突13とそれぞれ繋げられるとともに、炉本体αaの開口端側で円弧状部11cに立ち上げ折り返し曲折する管形状のステンレス・パイプ11と、を具備する。
【選択図】図1
A vacuum carbonization furnace capable of homogeneous mass production of high purity and high quality carbides is provided.
A vacuum carbonization furnace α includes a furnace main body αa capable of creating a sealed atmosphere with one end openable and openable at the other end and a closed end, and a furnace main body αa containing a plurality of carbide raw materials B. The exhaust pipe 3 for evacuation, the vacuum gauges 4 and 5 for detecting the degree of vacuum in the furnace body αa, the temperature sensor 14 for detecting the temperature in the furnace body αa, and the temperature for carbonizing the raw material B to the carbide, The oil burner 12 that uniformly heats the inside of the furnace main body αa by being controlled based on the detection value of the sensor 14 and the one outer port end 11a are exposed through the closed end side outside the furnace main body αa to expose the oil burner 12. And the other outer end 11b is exposed through the closed end outside the furnace main body αa and connected to the chimney 13, and the tube is turned up at the arcuate portion 11c on the open end side of the furnace main body αa. Shaped stainless steel pipe 11; Comprising.
[Selection] Figure 1

Description

本考案は、炭化物生成に利用される真空炭化炉に関し、詳細には、種別に拘わらず高純度且つ高品質な炭化物を均質にて量産可能な真空炭化炉に関する。   The present invention relates to a vacuum carbonization furnace used for carbide production, and in particular, to a vacuum carbonization furnace capable of homogeneously mass-producing high-purity and high-quality carbide regardless of the type.

従来より、木炭(カシ炭を含む。以下、同様とする。)、ヤシガラ炭、竹炭等の炭化物の生成に炭焼き窯が用いられている。   Conventionally, a charcoal kiln has been used to generate charcoal such as charcoal (including oak charcoal, hereinafter the same), coconut shell charcoal, bamboo charcoal, and the like.

しかしながら、炭焼き窯は、その内部の細かな温調が殆ど不可能である故に温度ムラの発生が不可避であるとともに、窯内に塵等の不純物が浮遊等する状態で炭化物の生成が行われるため、純度の悪い低品質な炭化物しか得られず、高純度且つ高品質な炭化物の均質量産に向かない。   However, in a charcoal-fired kiln, since it is almost impossible to finely adjust the temperature inside, temperature unevenness is inevitable, and carbides are generated in a state where impurities such as dust float in the kiln. Only low-quality carbides with poor purity can be obtained, which is not suitable for homogeneous mass production of high-purity and high-quality carbides.

また、炭焼き窯内の細かな温調が殆ど不可能であるために、種類の異なる炭化物を生成する場合には、それぞれに専用の炭焼き窯を必要とすることから、費用が嵩み極めて不経済である。   In addition, since fine temperature control in the charcoal kiln is almost impossible, when producing different types of carbides, each requires a dedicated charcoal kiln, which is expensive and extremely uneconomical. It is.

ここにおいて、本考案の解決すべき主要な目的は、次のとおりである。
即ち、本考案の第1の目的は、高純度な炭化物を生成可能な真空炭化炉を提供せんとするものである。
Here, the main objects to be solved by the present invention are as follows.
That is, the first object of the present invention is to provide a vacuum carbonization furnace capable of producing a high-purity carbide.

本考案の第2の目的は、高品質な炭化物を均質にて量産可能な真空炭化炉を提供せんとするものである。   The second object of the present invention is to provide a vacuum carbonization furnace capable of producing a high-quality carbide in a homogeneous and mass production manner.

本考案の第3の目的は、加熱温度制御が自由で約1,000℃の加熱温度を達成する炭化物の生成に利用可能な真空炭化炉を提供せんとするものである。   The third object of the present invention is to provide a vacuum carbonization furnace which can be used for the production of carbides which can freely control the heating temperature and achieve a heating temperature of about 1,000 ° C.

本考案の他の目的は、明細書、図面、特に実用新案登録請求の範囲の各請求項の記載から、自ずと明らかとなろう。   Other objects of the present invention will become apparent from the specification and drawings, particularly from the description of each claim of the utility model registration claim.

本考案真空炭化炉においては、炭化物の原料を複数収容後、さらに真空引きされた炉本体内を目標温度値まで一様に加熱する、という特徴的構成手段を講じる。   In the vacuum carbonization furnace according to the present invention, characteristic constitution means is adopted in which after the plurality of carbide raw materials are accommodated, the evacuated furnace body is uniformly heated to a target temperature value.

さらに、具体的詳細に述べると、当該課題の解決では、本考案が次に列挙する上位概念から下位概念に亙る新規な特徴的構成手段を採用することにより、前記目的を達成するよう為される。   More specifically, in order to solve the problem, the present invention achieves the above-mentioned object by adopting a new characteristic configuration means ranging from the superordinate concept listed below to the subordinate concept. .

即ち、本考案真空炭化炉の第1の特徴は、一端を開閉自在な開口端とし他端を閉塞端として内部を密封雰囲気に作成可能な炉本体と、炭化物の原料を複数収容する当該炉本体内の真空引き用の排気管と、当該炉本体内の真空度を検出する真空度検出手段と、当該炉本体内の温度を検出する温度検出手段と、前記原料を前記炭化物に炭化させるため、当該温度検出手段の検出値に基づき制御されることで前記炉本体内を一様に加熱する加熱手段と、を具備してなる、真空炭化炉の構成採用にある。   That is, the first feature of the vacuum carbonization furnace of the present invention is that a furnace body that can be created in a sealed atmosphere with one end being an openable end and the other end being a closed end, and the furnace body that contains a plurality of carbide raw materials. In order to carbonize the raw material into the carbide, an exhaust pipe for evacuation inside, a vacuum degree detecting means for detecting the degree of vacuum in the furnace body, a temperature detecting means for detecting the temperature in the furnace body, The vacuum carbonization furnace is configured to include heating means for uniformly heating the inside of the furnace body by being controlled based on the detection value of the temperature detection means.

本考案真空炭化炉の第2の特徴は、上記本考案真空炭化炉の第1の特徴における前記加熱手段が、両端を前記炉本体外の閉塞端側に貫通露出しかつ当該炉本体内の両側長手水平方向に沿って相対並行延架するパイプの、当該炉本体の開口端側で折返し部を当該炉本体内壁に沿って円弧状部として立ち上げ曲折する一方、前記パイプ一端の外口端を介して熱源から供給される熱風を前記炉本体内で循環させつつ周囲に熱放射させ、当該パイプ他端の外口端を介して当該炉本体外に排気する熱風流路を形成してなる、真空炭化炉の構成採用にある。   The second feature of the vacuum carbonization furnace of the present invention is that the heating means in the first feature of the vacuum carbonization furnace of the present invention has both ends exposed through the closed end outside the furnace body and both sides in the furnace body. The pipe extending relatively parallel along the longitudinal horizontal direction is bent up at the opening end side of the furnace body as an arcuate part along the inner wall of the furnace body, and the outer end of the one end of the pipe is bent. The hot air supplied from the heat source is circulated in the furnace body while radiating heat to the surroundings, and a hot air flow path is formed that exhausts outside the furnace body through the outer end of the other end of the pipe. The construction of the vacuum carbonization furnace is adopted.

本考案真空炭化炉の第3の特徴は、上記本考案真空炭化炉の第1又は第2の特徴における前記炉本体が、前記炭化物生成から間もないタイミングで、供給された冷却ガスを前記炉本体内にて均等に噴射する冷却ガス噴射手段を、さらに具備してなる、真空炭化炉の構成採用にある。   A third feature of the vacuum carbonization furnace of the present invention is that the furnace body in the first or second feature of the present invention vacuum carbonization furnace supplies the supplied cooling gas to the furnace at a timing shortly after the carbide generation. The configuration of the vacuum carbonization furnace further includes cooling gas injection means for uniformly injecting the inside of the main body.

本考案真空炭化炉の第4の特徴は、上記本考案真空炭化炉の第3の特徴における前記冷却ガスが、冷却された窒素ガスである、真空炭化炉の構成採用にある。   A fourth feature of the vacuum carbonization furnace according to the present invention resides in a configuration of a vacuum carbonization furnace in which the cooling gas in the third feature of the vacuum carbonization furnace of the present invention is a cooled nitrogen gas.

本考案真空炭化炉の第5の特徴は、上記本考案真空炭化炉の第3又は第4の特徴における前記炉本体が、前記冷却ガス噴射手段による前記冷却ガスの噴射前に、外気から取入れた空気を前記炉本体内にて均等に噴射する空気噴射手段を、さらに具備してなる、真空炭化炉の構成採用にある。   The fifth feature of the vacuum carbonization furnace according to the present invention is that the furnace body in the third or fourth feature of the present invention vacuum carbonization furnace is introduced from outside air before the cooling gas is injected by the cooling gas injection means. The present invention employs a vacuum carbonization furnace having air injection means for uniformly injecting air into the furnace body.

本考案真空炭化炉の第6の特徴は、上記本考案真空炭化炉の第5の特徴における前記冷却ガス噴射手段と前記空気噴射手段が、両方廉用である、真空炭化炉の構成採用にある。   A sixth feature of the vacuum carbonization furnace according to the present invention resides in a configuration of a vacuum carbonization furnace in which the cooling gas injection means and the air injection means in the fifth feature of the vacuum carbonization furnace of the present invention are both inexpensive. .

本考案によれば、炭化物の原料を複数収容した炉本体内を真空度検出手段の検出値に基づいて真空引きすることにより、そこから塵等の不純物を除去するため、不純物の含有率が極めて低い高純度な炭化物の生成が可能である。   According to the present invention, since the inside of the furnace body containing a plurality of carbide raw materials is evacuated based on the detection value of the vacuum degree detection means, impurities such as dust are removed therefrom, so that the impurity content is extremely high. Low-purity carbides can be produced.

また、本考案によれば、炭化物の原料を複数収容した炉本体内を温度検出手段の検出値に基づいて一様に加熱するため、温度ムラが発生することなく炉本体内の隅々まで、炭化物生成に必要な熱が充分に行き渡ることから、奥部まで充分且つ確実に炭化された高品質な炭化物の均質量産が可能である。   Further, according to the present invention, in order to uniformly heat the inside of the furnace body containing a plurality of carbide raw materials based on the detection value of the temperature detection means, to the corners in the furnace body without causing temperature unevenness, Since the heat necessary for carbide generation is sufficiently distributed, it is possible to produce a high-quality carbide that is sufficiently and surely carbonized to the depth and mass production.

さらに、本考案によれば、温度検出手段の検出値に基づいて炉本体内を様々な目標温度値まで一様に加熱可能であるため、本考案に係る真空炭化炉1つだけで同一原料から品質の異なる炭化物の生成が可能であり、極めて経済的である。   Furthermore, according to the present invention, the inside of the furnace body can be uniformly heated to various target temperature values based on the detected value of the temperature detecting means, so that only one vacuum carbonization furnace according to the present invention can be used from the same raw material. It is possible to produce carbides of different quality and is very economical.

ここで、本考案に係る真空炭化炉に、炭化物生成から間もないタイミングで、供給された冷却ガスを炉本体内にて均等に噴射する冷却ガス噴射手段をさらに具備させることとすれば、炭焼き窯を用いる場合におけるよりも、生成から間もない炭化物の温度を室温程度まで下げるのに要する時間を遥かに短縮することが可能となる。例えば特に竹白炭生成に利用すると、かかる利点に加えて、既に生成された竹白炭を賦活(活性化)させて、活性竹炭とすることも可能となる。   Here, if the vacuum carbonization furnace according to the present invention is further provided with cooling gas injection means for uniformly injecting the supplied cooling gas in the furnace body at a timing shortly after the generation of carbide, Compared with the case where a kiln is used, the time required to lower the temperature of the carbide soon after generation to room temperature can be greatly reduced. For example, in particular, when used for the production of bamboo white charcoal, in addition to such advantages, it is also possible to activate (activate) the bamboo white coal that has already been produced to obtain activated bamboo charcoal.

また、本考案に係る真空炭化炉に、冷却ガス噴射手段による冷却ガスの噴射前に、外気から取入れた空気を炉本体内にて均等に噴射する空気噴射手段をも具備させることとすれば、炉本体内にて加熱手段の最高加熱限界値まで真空下で加熱された原料が空気噴射手段から均等に噴射された空気に曝されることで発火するため、炉本体内温度を加熱手段の最高加熱限界値以上の温度値にまで昇温させることが可能となり、炭化温度の極めて高い炭化物(例えば、竹白炭)の生成に有効であると期待される。   Moreover, if the vacuum carbonization furnace according to the present invention is provided with air injection means for evenly injecting air taken from outside air in the furnace body before injection of the cooling gas by the cooling gas injection means, Since the raw material heated under vacuum up to the maximum heating limit value of the heating means in the furnace body is ignited by exposure to air evenly injected from the air injection means, the furnace body temperature is set to the highest temperature of the heating means. It is possible to raise the temperature to a temperature value equal to or higher than the heating limit value, and it is expected to be effective for the production of a carbide having a very high carbonization temperature (for example, bamboo white coal).

以下、本考案の実施の形態につき、添付図面を参照しつつ、真空炭化炉例を挙げて詳細に説明する。
ここで、図1(a)は、本実施形態の一例たる真空炭化炉αの概略構成図、(b)は、同真空炭化炉αのクラッチ炉蓋付近拡大図、(c)は、同真空炭化炉αのI−I線視簡略断面図、及び(d)は、同真空炭化炉αの噴射細管一部拡大図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings with examples of vacuum carbonization furnaces.
Here, FIG. 1A is a schematic configuration diagram of a vacuum carbonization furnace α as an example of the present embodiment, FIG. 1B is an enlarged view of the vicinity of a clutch furnace lid of the vacuum carbonization furnace α, and FIG. A simplified sectional view taken along line II of the carbonization furnace α and (d) are partially enlarged views of the injection thin tube of the vacuum carbonization furnace α.

同図に図示の真空炭化炉(以下、単に「炭化炉」ともいう)αは、その内部に対して搬出入可能な車輪1a付き引出作業車1を備えている。この引出作業車1は、炭化炉αによる炭化物生成開始前には、炉本体αa外に置かれた台車A上に通常載置・固定されており、少なくとも炭化物生成開始直前までに、炭化物の原料Bを複数積載した上で炭化炉α内の所定位置(二点鎖線図示)に搬入・固定される。なお、同図に図示する原料Bの引出作業車1への積載例は簡易な図示例であって、炭化炉α内に対する引出作業車1の搬出入の妨げとならないように複数の原料Bを引出作業車1上に積載するのは言うまでもない。   The vacuum carbonization furnace (hereinafter, also simply referred to as “carbonization furnace”) α shown in FIG. 1 includes a drawing work vehicle 1 with wheels 1 a that can be carried into and out of the interior. This drawing work vehicle 1 is normally placed and fixed on a carriage A placed outside the furnace main body αa before the start of carbide generation by the carbonization furnace α, and at least until just before the start of carbide generation, the raw material of the carbide After loading a plurality of B, they are loaded and fixed at a predetermined position (shown by a two-dot chain line) in the carbonization furnace α. It should be noted that the example of loading the raw material B on the drawing work vehicle 1 shown in the figure is a simple illustrated example, and a plurality of raw materials B are loaded so as not to hinder the loading / unloading of the drawing work vehicle 1 into the carbonization furnace α. Needless to say, the vehicle is loaded on the drawing work vehicle 1.

炭化炉α内の断熱性等を挙げるため、炉壁2には、内底部を除きその内側から、ステンレス層2a、断熱層たるファインセラミックス層2b、及びステンレス層又は鋼鉄層2cをこの順に重層させてなる3層構造が採用されている。なお、炭化炉α内の断熱性等を挙げるために炉壁2に採用される構造は、かかる3層構造に限定されず、ファインセラミックス等の断熱素材からなる断熱層を少なくとも1つ含む複数の層が重層してなる複層構造であれば良い。   In order to raise the heat insulating property in the carbonization furnace α, the stainless steel layer 2a, the fine ceramic layer 2b as a heat insulating layer, and the stainless steel layer or the steel layer 2c are laminated on the furnace wall 2 in this order from the inside except the inner bottom portion. A three-layer structure is adopted. Note that the structure adopted for the furnace wall 2 in order to increase the heat insulating property in the carbonization furnace α is not limited to such a three-layer structure, and includes a plurality of heat insulating layers made of a heat insulating material such as fine ceramics. What is necessary is just a multilayer structure in which layers are stacked.

炭化炉αの炉壁2には、炉本体αa内真空引き用の排気管3が貫設されており、この排気管3の外口端(炉本体αaから紙面右方向に露出)は、炭化炉α外に置かれた真空ポンプCと繋げられている一方、内口端には、所定粒径以上の異物(例えば、炭化物生成後の残滓たる同炭化物の微粉末)が真空ポンプCに吸引されるのを防ぐためのフィルタ部材21が取り付けられている。この真空ポンプCが、真空度検出手段として炭化炉α内に設置された2つの真空ゲージ4,5(1つ以上あれば良い)の各検出値に基づき制御されることで、炉本体αa内が目標圧力値の真空度に減圧・維持される。   An exhaust pipe 3 for evacuating the furnace body αa is provided through the furnace wall 2 of the carbonization furnace α, and the outer end of the exhaust pipe 3 (exposed to the right in the drawing from the furnace body αa) is carbonized. While connected to the vacuum pump C placed outside the furnace α, foreign matter having a predetermined particle size or more (for example, fine powder of the same carbide remaining after the formation of carbide) is sucked into the vacuum pump C at the inner end. The filter member 21 for preventing it from being attached is attached. The vacuum pump C is controlled based on the detected values of two vacuum gauges 4 and 5 (one or more are sufficient) installed in the carbonization furnace α as a vacuum degree detection means, so that the inside of the furnace main body αa Is reduced and maintained at the vacuum level of the target pressure value.

また、炭化炉αは、紙面上下方向に開閉可能なクラッチ炉蓋6を備えており、このクラッチ炉蓋6の開閉動作は、同クラッチ炉蓋6を炉蓋開閉支持機構7で開閉可能に支持しつつ、手動にて制御される。このクラッチ炉蓋6が開かれて初めて、炭化炉α内に対する引出作業車1の搬出入を行うことが可能となる。本実施形態例においては、クラッチ炉蓋6が閉められた炭化炉α内の気密・密封性をさらに高めるとともに、閉められたクラッチ炉蓋6が濫りに開けられないようにするため、炉壁2外に設置された油圧モータ8の駆動力を油圧シリンダ9経由で油圧式回転クラッチ環10に伝達させることにより、この油圧式回転クラッチ環10を所定方向に所定角回転させて炉壁2開口端に密着閉締させる機構が採用されている。   The carbonization furnace α includes a clutch furnace lid 6 that can be opened and closed in the vertical direction on the paper surface. The clutch furnace lid 6 is supported by the furnace lid opening / closing support mechanism 7 so that the clutch furnace lid 6 can be opened and closed. However, it is controlled manually. Only when the clutch furnace lid 6 is opened can the take-out work vehicle 1 be carried into and out of the carbonization furnace α. In this embodiment, in order to further improve the airtightness and sealing performance in the carbonization furnace α in which the clutch furnace lid 6 is closed, and to prevent the closed clutch furnace lid 6 from being opened to the overflow, 2, the driving force of the hydraulic motor 8 installed outside is transmitted to the hydraulic rotary clutch ring 10 via the hydraulic cylinder 9, thereby rotating the hydraulic rotary clutch ring 10 by a predetermined angle in a predetermined direction to open the furnace wall 2 A mechanism that tightly closes the end is adopted.

炭化炉α内には、炉壁2開口端側で円弧状部11cに立ち上げ折り返し曲折する管形状のステンレス・パイプ(素材がステンレス鋼であるため、以下、「SUSパイプ」ともいう)11が紙面左右方向(即ち、炉本体αa内の両側長手水平方向)に沿って相対並行延架するように炉壁2内面に設置されており、その両端とも炭化炉αから紙面右方向に露出する外口端11a,11bとなっている。SUSパイプ11の外口端11aは、熱源たるオイルバーナ12と繋げられている一方、外口端11bは、紙面上方向に延びる煙突13(二点鎖線図示)と繋げられている。このオイルバーナ12が、温度検出手段として炭化炉αの炉壁2(炉本体αa内でも可)に設置された温度センサ14(例えば、熱電対からなる)の検出値に基づき制御されることで、炭化炉α内が目標温度に加熱・維持される。   In the carbonization furnace α, there is a tube-shaped stainless steel pipe (hereinafter also referred to as “SUS pipe”) 11 that is raised to the arcuate portion 11c on the opening end side of the furnace wall 2 and bent back. It is installed on the inner surface of the furnace wall 2 so as to extend in parallel with each other in the left-right direction of the paper surface (that is, the longitudinal horizontal direction on both sides in the furnace main body αa). It is mouth end 11a, 11b. The outer end 11a of the SUS pipe 11 is connected to an oil burner 12 as a heat source, while the outer end 11b is connected to a chimney 13 (shown by a two-dot chain line) extending in the upward direction on the paper surface. This oil burner 12 is controlled based on a detection value of a temperature sensor 14 (for example, composed of a thermocouple) installed on the furnace wall 2 of the carbonization furnace α (or in the furnace main body αa) as temperature detection means. The inside of the carbonization furnace α is heated and maintained at the target temperature.

さらに、炭化炉αは、その外部に設置された窒素ボンベ(図示せず)から冷却済み窒素ガスが供給される窒素ガス導入管15と、炉本体αa周囲の外気から空気を取込可能な空気導入管16とを備えている。   Further, the carbonization furnace α has a nitrogen gas introduction pipe 15 to which cooled nitrogen gas is supplied from a nitrogen cylinder (not shown) installed outside thereof, and air that can take in air from outside air around the furnace body αa. And an introduction pipe 16.

窒素ガス導入管15は、その頂部が炭化炉αから露出する外口端15aに連通し、両側下端が閉塞端15bとなった、炉壁2内面に沿った円弧又は馬蹄形状管である。窒素ガス導入管15の外口端15aには、窒素ガスの導入・停止切替用のバルブ17が取り付けられている。空気導入管16も、その頂部が炭化炉αから露出する外口端16aに連通し、両側下端が閉塞端16bとなった、炉壁2内面に沿った円弧又は馬蹄形状管である。空気導入管16の外口端16aには、空気の導入・停止切替用のバルブ18が取り付けられている。   The nitrogen gas introduction pipe 15 is an arc or horseshoe-shaped pipe along the inner surface of the furnace wall 2, the top portion of which communicates with the outer opening end 15 a exposed from the carbonization furnace α and the lower ends on both sides become the closed ends 15 b. A nitrogen gas introduction / stop switching valve 17 is attached to the outer end 15 a of the nitrogen gas introduction pipe 15. The air introduction pipe 16 is also an arc or horseshoe-shaped pipe along the inner surface of the furnace wall 2, the top portion of which communicates with the outer port end 16 a exposed from the carbonization furnace α and the lower ends on both sides become the closed ends 16 b. A valve 18 for air introduction / stop switching is attached to the outer end 16 a of the air introduction pipe 16.

それら両管15,16の間は、複数の噴射細管19で繋げられて両管15,16は相互に連通しており、この噴射細管19には、窒素ガス及び空気噴射用の噴射口19a,19b,19c,・・・がその長手方向に対して等間隔に開けられている。要するに、本実施形態例においては、冷却ガス噴射手段が、窒素ガス導入管15、バルブ17、及び噴射細管19から構成されているとともに、空気噴射手段が、空気導入管16、バルブ18、及び噴射細管19から構成されて廉用している。なお、窒素ガス噴射の場合と空気噴射の場合とのそれぞれにおいて、噴射細管19を本実施形態例のように廉用とせずに選択使用するように、窒素ガス導入管15、空気導入管16、及び噴射細管19をそれぞれ配置し、組み合わせても良い。   The pipes 15 and 16 are connected to each other by a plurality of injection thin tubes 19, and both the tubes 15 and 16 communicate with each other. The injection thin tubes 19 have injection openings 19 a and 19 for injection of nitrogen gas and air. 19b, 19c,... Are equally spaced with respect to the longitudinal direction. In short, in the present embodiment, the cooling gas injection means is composed of the nitrogen gas introduction pipe 15, the valve 17, and the injection thin tube 19, and the air injection means is the air introduction pipe 16, the valve 18, and the injection. It is composed of a thin tube 19 and is inexpensive. In addition, in each of the case of nitrogen gas injection and the case of air injection, the nitrogen gas introduction pipe 15, the air introduction pipe 16, and the injection thin pipe 19 are selectively used without being inexpensive as in this embodiment. And the injection thin tubes 19 may be arranged and combined.

次に、図2又は図3を参照しつつ、炭化物の一例たる竹炭、とりわけ、竹黒炭及び竹白炭の生成に炭化炉αを用いる場合について、その使用例を説明する。ここで、図2は、この炭化炉αを用いて竹黒炭を生成する場合の処理手順例を示す図である一方、図3は、炭化炉αを用いて竹白炭を生成する場合の処理手順例を示す図である。   Next, with reference to FIG. 2 or FIG. 3, an example of using the carbonization furnace α for producing bamboo charcoal, which is an example of a carbide, particularly bamboo black charcoal and bamboo white charcoal, will be described. Here, FIG. 2 is a diagram showing an example of a processing procedure when bamboo charcoal is generated using the carbonization furnace α, while FIG. 3 is a processing procedure when bamboo white coal is generated using the carbonization furnace α. It is a figure which shows an example.

両図2,3に図示するように、まず、充分に乾燥させた原料(竹)Bを炭化炉α内に詰め込む(ST1)。この詰込は、詳細には次の作業手順で行われる。(1)炭化炉α外の台車A上に載置・固定された引出作業車1上に原料(竹)Bを積載する。(2)引出作業車1の車輪1aが炭化炉αの引出作業車収納床面20と同レベルの高さとなっているので、引出作業車1を台車A上の停車位置から炭化炉α内の所定位置(二点鎖線図示)まで移動・固定させる。   As shown in FIGS. 2 and 3, first, a sufficiently dried raw material (bamboo) B is packed into a carbonizing furnace α (ST1). This clogging is performed in detail by the following work procedure. (1) The raw material (bamboo) B is loaded on the drawing work vehicle 1 placed and fixed on the carriage A outside the carbonization furnace α. (2) Since the wheel 1a of the drawing work vehicle 1 is at the same level as the drawing work vehicle storage floor 20 of the carbonization furnace α, the drawing work vehicle 1 is moved from the stop position on the carriage A into the carbonization furnace α. Move and fix to a predetermined position (two-dot chain line shown).

次に、炭化炉α内を真空ポンプCで真空引きする(ST2)。この真空引きは、詳細には次の作業手順で行われる。即ち、(1)窒素ガス導入管15備付けのバルブ17と、空気導入管16備付けのバルブ18とを手で締める、又は、各バルブ17,18がそれぞれ締まっていることを確認する。(2)炉蓋開閉支持機構7に開閉可能に支持されたクラッチ炉蓋6を手動で閉める。(3)炭化炉α内の真空引きに備えるため、油圧モータ8の駆動力を油圧シリンダ9経由で油圧式回転クラッチ環10に伝達させることにより、この油圧式回転クラッチ環10を所定方向に所定角回転させて炉壁2開口端に密着閉締させる。こうすることで、炉壁2と油圧式回転クラッチ環10との間に僅かに存在する空隙等が解消されて、炭化炉α内の気密・密封性がさらに高まるとともに濫りに開かないようにする。(4)真空ゲージ4,5の各検出値が目標圧力値に下がるまで、真空ポンプCを作動させて炭化炉α内を減圧する。   Next, the inside of the carbonizing furnace α is evacuated by the vacuum pump C (ST2). This evacuation is performed in detail by the following work procedure. That is, (1) The valve 17 equipped with the nitrogen gas introduction pipe 15 and the valve 18 equipped with the air introduction pipe 16 are manually tightened, or it is confirmed that the valves 17 and 18 are respectively tightened. (2) The clutch furnace lid 6 supported by the furnace lid opening / closing support mechanism 7 so as to be opened and closed is manually closed. (3) In order to prepare for evacuation in the carbonizing furnace α, the driving force of the hydraulic motor 8 is transmitted to the hydraulic rotary clutch ring 10 via the hydraulic cylinder 9 so that the hydraulic rotary clutch ring 10 is predetermined in a predetermined direction. Rotate the corner and close tightly to the open end of the furnace wall 2. By doing so, a slight gap or the like existing between the furnace wall 2 and the hydraulic rotary clutch ring 10 is eliminated, so that the airtightness / sealing property in the carbonization furnace α is further increased and it does not open to the flood. To do. (4) The vacuum pump C is operated to depressurize the carbonization furnace α until the detected values of the vacuum gauges 4 and 5 are reduced to the target pressure value.

この真空引き(ST2)により、炭化炉α内から塵等の不純物の殆どが除去されるため、不純物の含有率が極めて低い高純度な竹黒炭や竹白炭を生成することが初めて可能となる。   By this evacuation (ST2), most of impurities such as dust are removed from the inside of the carbonization furnace α, so that it is possible for the first time to produce high-purity bamboo black charcoal or bamboo white charcoal with a very low impurity content.

次に、竹黒炭生成の場合には、図2に示すように、温度センサ14の検出値が炭化炉αの真空下最高加熱限界値約800℃の直前温度値約700℃に達するまで、オイルバーナ12を作動させて炭化炉α内を加熱する(ST3)。この間、オイルバーナ12から外口端11aを介してSUSパイプ11内に送風された熱風が同パイプ11内を外口端11bに向けて流れつつ周囲へ熱放射することにより、原料(竹)Bが黒炭化する温度値約700℃まで炭化炉α内が一様に昇温されて、温度ムラが発生することなく炉本体αa内の隅々まで、竹黒炭生成に必要な熱が充分に行き渡るために均されることから(ST4)、原料(竹)Bがその繊維質まで充分且つ確実に黒炭化されることとなる。   Next, in the case of the production of bamboo black charcoal, as shown in FIG. 2, until the detected value of the temperature sensor 14 reaches a temperature value of about 700 ° C. immediately before the maximum heating limit value of about 800 ° C. under vacuum of the carbonization furnace α, The burner 12 is operated to heat the inside of the carbonizing furnace α (ST3). During this time, the hot air blown into the SUS pipe 11 from the oil burner 12 through the outer port end 11a radiates heat to the surroundings while flowing in the pipe 11 toward the outer port end 11b, so that the raw material (bamboo) B The temperature inside the carbonizing furnace α is uniformly raised to a temperature value of about 700 ° C. at which the black carbonizes, and heat necessary for producing bamboo black coal is sufficiently distributed to every corner of the furnace body αa without causing temperature unevenness. For this reason, the raw material (bamboo) B is sufficiently carbonized up to its fiber quality with certainty (ST4).

次に、炭化炉α内に詰め込まれた原料(竹)Bが全て完全に黒炭化したらその時点でST3の加熱を終了し、その後の適当な時点でバルブ17を緩めて窒素ガス導入管15内に窒素ガスを導入することにより、両管15,16間を繋いで連通する各噴射細管19の噴射口19a,19b,19c,・・・から窒素ガスを均等に噴射させて炭化炉α内を冷却する(ST5)。このようにすることで、炭焼き窯を用いる場合におけるよりも、生成から間もない竹黒炭の温度を室温程度まで下げるのに要する時間が遥かに短縮されることとなる。このことは、次に説明する竹白炭生成の場合についても同様である。   Next, when all of the raw material (bamboo) B packed in the carbonization furnace α is completely black carbonized, the heating of ST3 is terminated at that time, and the valve 17 is loosened at an appropriate time thereafter in the nitrogen gas introduction pipe 15. Is introduced into the carbonization furnace α by uniformly injecting nitrogen gas from the injection ports 19a, 19b, 19c,... Cool (ST5). By doing in this way, the time required for lowering the temperature of bamboo black charcoal shortly after generation to room temperature will be much shorter than when using a charcoal kiln. The same applies to the case of bamboo white charcoal generation described below.

一方、竹白炭生成の場合には、図3に示すように、温度センサ14の検出値が炭化炉αの真空下最高加熱限界値約800℃に達するまで、オイルバーナ12を作動させて炭化炉α内を加熱する(ST3′)。   On the other hand, in the case of bamboo white charcoal generation, as shown in FIG. 3, the oil burner 12 is operated until the detected value of the temperature sensor 14 reaches the maximum heating limit value of about 800 ° C. under vacuum of the carbonizing furnace α. The inside of α is heated (ST3 ′).

ここで、原料(竹)Bを白炭化させるのに必要な加熱温度値は約1,000℃であることから、ST3′の加熱が行われるだけでは、竹白炭を得ることができない。そこで、炭化炉α内に詰め込まれた原料(竹)Bが全て完全に黒炭化したらその時点で、バルブ18を一時的に緩めて空気導入管16内に空気を一時的に導入することにより、各噴射細管19の噴射口19a,19b,19c,・・・から空気を均等に噴射させて炭化炉α内を追い加熱する(ST3″)。このようにすることで、炭化炉α内にて黒炭化した原料(竹)Bが空気に曝されて発火するなどして、原料(竹)Bが白炭化する温度値約1,000℃まで炭化炉α内が一様に昇温されて、温度ムラが発生することなく炉本体αa内の隅々まで、竹白炭生成に必要な熱が充分に行き渡るために均されることから(ST4)、それら全ての黒炭化済み原料(竹)Bがその繊維質まで充分且つ確実に白炭化されることとなり、ST3′の加熱を終了する。   Here, since the heating temperature value required for white carbonization of the raw material (bamboo) B is about 1,000 ° C., bamboo white charcoal cannot be obtained only by heating ST3 ′. Therefore, when all the raw materials (bamboo) B packed in the carbonization furnace α are completely black carbonized, by temporarily loosening the valve 18 and temporarily introducing air into the air introduction pipe 16, The air is uniformly injected from the injection ports 19a, 19b, 19c,... Of each injection thin tube 19 to follow and heat the inside of the carbonization furnace α (ST3 ″). When the carbonized raw material (bamboo) B is exposed to air and ignites, the temperature of the raw material (bamboo) B is white carbonized up to about 1,000 ° C., and the temperature inside the carbonizing furnace α is uniformly increased. Since the heat required for the production of bamboo white coal is sufficiently distributed to every corner of the furnace body αa without causing temperature unevenness (ST4), all of these black carbonized raw materials (bamboo) B are The carbonization is sufficiently and surely white carbonized, and the heating of ST3 ′ is finished. End.

さらに炭化炉α内が充分に均されて、そこに詰め込まれた原料(竹)Bが全て完全に白炭化したら、バルブ18を締めて空気導入管16内への空気の導入を止めた後、適当な時点でバルブ17を緩めて窒素ガス導入管15内に窒素ガスを導入することにより、各噴射細管19の噴射口19a,19b,19c,・・・から窒素ガスを均等に噴射させて炉本体αa内を冷却する(ST5)。このとき、炭化炉α内で既に生成された竹白炭が窒素ガスに曝されることで賦活(活性化)されて、活性竹炭となる。   Further, when the inside of the carbonization furnace α is sufficiently leveled and all the raw material (bamboo) B packed therein is completely white carbonized, after the valve 18 is closed and the introduction of air into the air introduction pipe 16 is stopped, At an appropriate time, the valve 17 is loosened and nitrogen gas is introduced into the nitrogen gas introduction pipe 15, whereby nitrogen gas is evenly injected from the injection ports 19a, 19b, 19c,. The inside of the main body αa is cooled (ST5). At this time, the bamboo white coal already generated in the carbonization furnace α is activated (activated) by being exposed to nitrogen gas to become activated bamboo charcoal.

以上説明したように、竹黒炭生成の場合には、図2に図示の各処理手順を順次実施する一方、竹白炭生成の場合には、図3に図示の各処理手順を順次実施することとすれば、繊維質まで充分且つ確実に黒炭化又は白炭化された高品質な竹黒炭及び竹白炭の生成を単一の装置(炭化炉α)のみで行うことが初めて可能となる。   As described above, in the case of bamboo black charcoal generation, each processing procedure illustrated in FIG. 2 is sequentially performed, whereas in the case of bamboo white charcoal generation, each processing procedure illustrated in FIG. 3 is sequentially performed. This makes it possible for the first time to produce high-quality bamboo black charcoal and bamboo white charcoal that have been sufficiently and reliably carbonized or white carbonized up to the fiber using only a single device (carbonization furnace α).

そして、竹黒炭生成及び竹白炭生成の何れの場合でも、炭化炉α内が充分に冷却されたら、生成された複数の竹黒炭又は竹白炭を引出作業車1ごと炉本体αa内から取り出す。これにて竹黒炭生成や竹白炭生成を終了する場合には、製品検査や安全保管等を行うこととしても良い。一方、新たな竹黒炭生成や竹白炭生成に移行する場合には、図2又は図3に図示の各処理手順を再度順次実施することとなる。このようにすることで、繊維質まで充分且つ確実に黒炭化又は白炭化された高品質な竹黒炭及び竹白炭を均質にて量産することが始めて可能となる。   And in any case of bamboo black charcoal production and bamboo white charcoal production, when the inside of the carbonization furnace α is sufficiently cooled, the plurality of produced bamboo black charcoal or bamboo white charcoal are taken out from the furnace main body αa together with the drawing work vehicle 1. In this case, when the production of bamboo black charcoal or bamboo white charcoal is finished, product inspection, safe storage, or the like may be performed. On the other hand, when shifting to new bamboo black charcoal production or bamboo white charcoal production, each processing procedure illustrated in FIG. 2 or FIG. 3 is sequentially performed again. By doing in this way, it becomes possible for the first time to mass-produce high quality bamboo black charcoal and bamboo white charcoal that have been sufficiently and surely black carbonized or white carbonized up to fiber quality.

なお、上述のような構成である炭化炉αは、既存の炭焼き窯と異なり、その内部に充満した煤煙の殆どが外部に漏れずに竹の黒炭化や白炭化に利用されるため、竹酸液の採集には向かないものの、大気汚染の防止対策を考慮する必要がない。   Since the carbonization furnace α having the above-described configuration is different from the existing charcoal baking kiln, most of the smoke filled in the interior is used for black carbonization or white carbonization of bamboo without leaking to the outside. Although not suitable for liquid collection, it is not necessary to consider measures to prevent air pollution.

以上、本考案の実施の形態について説明してきたが、本考案は、必ずしも上述した手段や使用例にのみ限定されるものではなく、前述した効果を達成する範囲内において、適宜、変更実施することが可能なものである。例えば、原料Bとして竹の代わりに木(カシを含む)やヤシガラ等を用いれば、従来ではあり得ない程に高純度且つ高品質な木炭やヤシガラ炭等を均質にて量産することができるとともに、木炭とヤシガラ炭の両方を量産する場合には、炭化炉α1つで事足りるため、極めて経済的である。また、あらゆる炭化物の焼成に汎用される。   Although the embodiments of the present invention have been described above, the present invention is not necessarily limited to the above-described means and usage examples, and may be appropriately modified within the scope of achieving the above-described effects. Is possible. For example, if wood (including oak), coconut husk, etc. are used as the raw material B instead of bamboo, high-purity and high-quality charcoal, coconut husk charcoal, etc. can be mass-produced in a homogeneous manner, which is not possible conventionally When mass-producing both charcoal and coconut husk charcoal, one carbonization furnace α is sufficient, which is extremely economical. It is also widely used for firing any carbide.

あらゆる種類の炭化物を高純度、高品質、且つ均質にて量産するのに利用される。特に、特異な高機能性のため近年注目されている竹黒炭及び竹白炭の量産に対する利用が最適とされる。   It is used for mass production of all kinds of carbides with high purity, high quality and homogeneous. In particular, the use of bamboo black charcoal and bamboo white charcoal, which has attracted attention in recent years due to their unique high functionality, is optimal.

(a)は、本考案の実施形態の一例たる真空炭化炉の概略構成図、(b)は、同真空炭化炉のクラッチ炉蓋付近拡大図、(c)は、同真空炭化炉のI−I線視簡略断面図、及び(d)は、同真空炭化炉の噴射細管一部拡大図である。(A) is a schematic block diagram of a vacuum carbonization furnace as an example of an embodiment of the present invention, (b) is an enlarged view of the vicinity of a clutch furnace lid of the vacuum carbonization furnace, and (c) is an I- I-line view simplified sectional view and (d) are partially enlarged views of injection thin tubes of the same vacuum carbonization furnace. 図1に図示の真空炭化炉を用いて竹黒炭を生成する場合の処理手順例を示す図である。It is a figure which shows the example of a process sequence in the case of producing | generating bamboo black charcoal using the vacuum carbonization furnace shown in FIG. 図1に図示の真空炭化炉を用いて竹白炭を生成する場合の処理手順例を示す図である。It is a figure which shows the example of a process sequence in the case of producing | generating bamboo white charcoal using the vacuum carbonization furnace shown in FIG.

符号の説明Explanation of symbols

α・・・真空炭化炉
αa・・・炉本体
A・・・台車
B・・・原料
C・・・真空ポンプ
1・・・引出作業車
1a・・・車輪
2・・・炉壁
2a・・・ステンレス層
2b・・・ファインセラミックス層
2c・・・ステンレス層又は鋼鉄層
3・・・排気管
4,5・・・真空ゲージ
6・・・クラッチ炉蓋
7・・・炉蓋開閉支持機構
8・・・油圧モータ
9・・・油圧シリンダ
10・・・油圧式回転クラッチ環
11・・・ステンレス・パイプ
11a,11b,15a,16a・・・外口端
11c・・・円弧状部
12・・・オイルバーナ
13・・・煙突
14・・・温度センサ
15・・・窒素ガス導入管
16・・・空気導入管
15b,16b・・・閉塞端
17,18・・・バルブ
19・・・噴射細管
19a,19b,19c・・・噴射口
20・・・引出作業車収納床面
21・・・フィルタ部材
α ... vacuum carbonization furnace αa ... furnace body A ... cart B ... raw material C ... vacuum pump 1 ... drawing work vehicle 1a ... wheel 2 ... furnace wall 2a ... Stainless steel layer 2b ... Fine ceramics layer 2c ... Stainless steel layer or steel layer 3 ... Exhaust pipe 4, 5 ... Vacuum gauge 6 ... Clutch furnace lid 7 ... Furnace lid opening / closing support mechanism 8 ... Hydraulic motor 9 ... Hydraulic cylinder 10 ... Hydraulic rotary clutch ring 11 ... Stainless steel pipe 11a, 11b, 15a, 16a ... Outlet end 11c ... Arc portion 12 ... Oil burner 13 ... Chimney 14 ... Temperature sensor 15 ... Nitrogen gas introduction pipe 16 ... Air introduction pipe 15b, 16b ... Closed end 17, 18 ... Valve 19 ... Injection capillary 19a, 19b, 19c ... injection port 20 ... Drawer work vehicle storage floor 21 ... Filter member

Claims (6)

一端を開閉自在な開口端とし他端を閉塞端として内部を密封雰囲気に作成可能な炉本体と、
炭化物の原料を複数収容する当該炉本体内の真空引き用の排気管と、
当該炉本体内の真空度を検出する真空度検出手段と、
当該炉本体内の温度を検出する温度検出手段と、
前記原料を前記炭化物に炭化させるため、当該温度検出手段の検出値に基づき制御されることで前記炉本体内を一様に加熱する加熱手段と、
を具備する、
ことを特徴とする真空炭化炉。
A furnace body capable of creating an internal sealed atmosphere with one end as an openable open end and the other as a closed end;
An exhaust pipe for evacuation in the furnace body containing a plurality of carbide raw materials;
A degree of vacuum detection means for detecting the degree of vacuum in the furnace body;
Temperature detecting means for detecting the temperature in the furnace body;
In order to carbonize the raw material into the carbide, heating means for uniformly heating the inside of the furnace body by being controlled based on the detection value of the temperature detection means,
Comprising
A vacuum carbonization furnace characterized by that.
前記加熱手段は、
両端を前記炉本体外の閉塞端側に貫通露出しかつ当該炉本体内の両側長手水平方向に沿って相対並行延架するパイプの、当該炉本体の開口端側で折返し部を当該炉本体内壁に沿って円弧状部として立ち上げ曲折する一方、
前記パイプ一端の外口端を介して熱源から供給される熱風を前記炉本体内で循環させつつ周囲に熱放射させ、当該パイプ他端の外口端を介して当該炉本体外に排気する熱風流路を形成する、
ことを特徴とする請求項1に記載の真空炭化炉。
The heating means includes
Both ends of the pipe that is exposed through the closed end outside the furnace body and extends in parallel with each other along the longitudinal horizontal direction on both sides of the furnace body, the folded portion on the opening end side of the furnace body is the inner wall of the furnace body. While turning up as an arcuate part along
Hot air supplied from a heat source through the outer end of one end of the pipe is radiated to the surroundings while circulating in the furnace body, and is exhausted out of the furnace body through the outer end of the other end of the pipe Forming a flow path,
The vacuum carbonization furnace according to claim 1.
前記炉本体は、
前記炭化物生成から間もないタイミングで、供給された冷却ガスを前記炉本体内にて均等に噴射する冷却ガス噴射手段を、
さらに具備する、
ことを特徴とする請求項1又は2に記載の真空炭化炉。
The furnace body is
Cooling gas injection means for evenly injecting the supplied cooling gas in the furnace body at a timing shortly after the carbide generation,
In addition,
The vacuum carbonization furnace according to claim 1 or 2, characterized in that.
前記冷却ガスは、
冷却された窒素ガスである、
ことを特徴とする請求項3に記載の真空炭化炉。
The cooling gas is
Cooled nitrogen gas,
The vacuum carbonization furnace according to claim 3.
前記炉本体は、
前記冷却ガス噴射手段による前記冷却ガスの噴射前に、外気から取入れた空気を前記炉本体内にて均等に噴射する空気噴射手段を、
さらに具備する、
ことを特徴とする請求項3又は4に記載の真空炭化炉。
The furnace body is
An air injection means for evenly injecting air taken from outside air in the furnace body before the cooling gas injection by the cooling gas injection means;
In addition,
The vacuum carbonization furnace according to claim 3 or 4, characterized in that.
前記冷却ガス噴射手段と前記空気噴射手段は、
両方廉用である、
ことを特徴とする請求項5に記載の真空炭化炉。
The cooling gas injection means and the air injection means are
Both are inexpensive,
The vacuum carbonization furnace according to claim 5.
JP2005001764U 2005-04-01 2005-04-01 Vacuum carbonization furnace Expired - Fee Related JP3111533U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001764U JP3111533U (en) 2005-04-01 2005-04-01 Vacuum carbonization furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001764U JP3111533U (en) 2005-04-01 2005-04-01 Vacuum carbonization furnace

Publications (1)

Publication Number Publication Date
JP3111533U true JP3111533U (en) 2005-07-28

Family

ID=43274014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001764U Expired - Fee Related JP3111533U (en) 2005-04-01 2005-04-01 Vacuum carbonization furnace

Country Status (1)

Country Link
JP (1) JP3111533U (en)

Similar Documents

Publication Publication Date Title
US20220008991A1 (en) Sealed furnace
JP3111533U (en) Vacuum carbonization furnace
CN205616932U (en) Vacuum heat treatment equipment
CN107326156B (en) A kind of Nd-Fe-B permanent magnetic vacuum-sintering heat treatment method and vacuum heat treatment equipment
CN211601529U (en) Vacuum sintering furnace is used in silicon nitride production
JP2000154012A (en) Process and equipment for producing active carbon
JP2010248362A (en) Carbonization furnace
KR200335225Y1 (en) dry distillation furnace for dry distillation gas generator of scrapped material, scrapped tire, scrapped resin
CN111795574A (en) Firebrick fritting furnace
JP4982726B2 (en) Heat treatment furnace
JP2013010808A (en) Apparatus and method for carbonization
JPH0247679B2 (en)
CN207862404U (en) A kind of quenching system of building materials special steel test technology section
JPH0345117Y2 (en)
RU2665860C2 (en) Method of metalation of bulky blanks in the reactor of the plant for volumetric metalation, the design of the reactor and the method of its manufacturing
JPH05311177A (en) Method for producing charcoal or the like from bamboo material or the same and its apparatus
SU1578424A1 (en) Electric furnace for roasting carbon-containing materials
JPH10338882A (en) Carbonization oven
KR100538342B1 (en) dry distillation furnace for dry distillation gas generator of scrapped material, scrapped tire, scrapped resin
CN212806241U (en) Vacuum drying device of continuous casting crystallizer covering slag for steelmaking
CN105442050B (en) A kind of material container suitable for ingot furnace
JPH0542359A (en) Method for heat-drying ladle
JP3120661U (en) Pipe sintering furnace
KR100641648B1 (en) Seal blackening furnace and its method
JP2023035761A (en) Heat treatment apparatus and heat treatment method

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees