JP3111407B1 - Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same - Google Patents

Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same

Info

Publication number
JP3111407B1
JP3111407B1 JP11174640A JP17464099A JP3111407B1 JP 3111407 B1 JP3111407 B1 JP 3111407B1 JP 11174640 A JP11174640 A JP 11174640A JP 17464099 A JP17464099 A JP 17464099A JP 3111407 B1 JP3111407 B1 JP 3111407B1
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte membrane
solid polymer
noble metal
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11174640A
Other languages
Japanese (ja)
Other versions
JP2001006701A (en
Inventor
薫 福田
一秀 寺田
信広 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11174640A priority Critical patent/JP3111407B1/en
Priority to CA002312446A priority patent/CA2312446C/en
Priority to US09/598,266 priority patent/US6485855B1/en
Priority to DE10030450A priority patent/DE10030450B4/en
Application granted granted Critical
Publication of JP3111407B1 publication Critical patent/JP3111407B1/en
Publication of JP2001006701A publication Critical patent/JP2001006701A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【要約】 【課題】 発電性能を向上させることのできる活性固体
高分子電解質膜を提供する。 【解決手段】 固体高分子型燃料電池における活性固体
高分子電解質膜2は,固体高分子電解質膜7と,それの
表層部8内にイオン交換により担持され,且つその表層
部8内全体に亘り均一に分散する複数の貴金属触媒粒子
9とより構成される。
An active solid polymer electrolyte membrane capable of improving power generation performance is provided. SOLUTION: An active solid polymer electrolyte membrane 2 in a polymer electrolyte fuel cell is supported on a solid polymer electrolyte membrane 7 and a surface layer 8 thereof by ion exchange, and covers the entire surface layer 8. It comprises a plurality of noble metal catalyst particles 9 that are uniformly dispersed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,固体高分子型燃料
電池における活性固体高分子電解質膜およびその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active polymer electrolyte membrane for a polymer electrolyte fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】従来,この種の活性固体高分子電解質膜
としては,固体高分子電解質膜の表面にスパッタ法によ
って貴金属触媒を担持させたものが知られている。
2. Description of the Related Art Heretofore, as this type of active solid polymer electrolyte membrane, there has been known an active solid polymer electrolyte membrane in which a noble metal catalyst is supported on the surface of a solid polymer electrolyte membrane by a sputtering method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の貴
金属触媒は層状に形成されているため,生成された水素
イオンの固体高分子電解質膜への伝導性およびその電解
質膜から空気極側への伝導性がそれぞれ比較的低く,ま
た貴金属触媒−固体高分子電解質膜−燃料ガス(水素お
よび空気)の三者が接触する界面,つまり三相界面が少
ない,ということもあって,その電解質膜における貴金
属担持量が多いにも拘らず燃料電池の発電性能が低い,
という問題があった。
However, since the conventional noble metal catalyst is formed in layers, the conductivity of the generated hydrogen ions to the solid polymer electrolyte membrane and the conductivity from the electrolyte membrane to the air electrode side are reduced. Is relatively low, and the interface between the noble metal catalyst, the solid polymer electrolyte membrane, and the fuel gas (hydrogen and air) in contact with each other, that is, the three-phase interface is small. Despite the large amount, the power generation performance of the fuel cell is low.
There was a problem.

【0004】[0004]

【課題を解決するための手段】本発明は,少ない貴金属
担持量にて燃料電池の発電性能を向上させることが可能
な前記活性固体高分子電解質膜を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide an active solid polymer electrolyte membrane capable of improving the power generation performance of a fuel cell with a small amount of noble metal carried.

【0005】前記目的を達成するため本発明によれば,
固体高分子電解質膜と,それの表面の内側に在る表層部
内にイオン交換により担持され,且つその表層部内全体
に亘り均一に分散する複数の貴金属触媒粒子とより構成
され,前記表層部の厚さt 2 はt 2 ≦10μmである
固体高分子型燃料電池における活性固体高分子電解質膜
が提供される。
[0005] To achieve the above object, according to the present invention,
A solid polymer electrolyte membrane; and a plurality of noble metal catalyst particles supported by ion exchange in a surface layer inside the surface of the solid polymer electrolyte membrane and uniformly dispersed throughout the surface layer. T 2 is t 2 ≦ 10 μm ,
An active solid polymer electrolyte membrane in a polymer electrolyte fuel cell is provided.

【0006】前記のように構成すると,貴金属触媒粒子
は前記電解質膜の表層部内に点在することになるので,
生成された水素イオンの前記電解質膜への伝導性および
その電解質膜から空気極側への伝導性がそれぞれ高く,
また水素イオンと酸素との会合性も良好となる。その
上,貴金属触媒粒子−固体高分子電解質膜−燃料ガスの
三者が接触する三相界面も多く存在する。これにより前
記電解質膜における貴金属担持量を少なくし,しかも燃
料電池の発電性能を向上させることが可能となる。
With the above-mentioned structure, the noble metal catalyst particles are scattered in the surface layer of the electrolyte membrane.
The conductivity of the generated hydrogen ions to the electrolyte membrane and the conductivity from the electrolyte membrane to the air electrode side are high, respectively.
Also, the association between hydrogen ions and oxygen is improved. In addition, there are many three-phase interfaces where the three members of the noble metal catalyst particles, the solid polymer electrolyte membrane, and the fuel gas come into contact. This makes it possible to reduce the amount of noble metal carried in the electrolyte membrane and to improve the power generation performance of the fuel cell.

【0007】また本発明は前記活性固体高分子電解質膜
を量産することが可能な前記製造方法を提供することを
目的とする。
Another object of the present invention is to provide the above-mentioned production method capable of mass-producing the active solid polymer electrolyte membrane.

【0008】前記目的を達成するため本発明によれば,
金属錯体溶液中に前記固体高分子電解質膜を浸漬して
イオン交換を行わせる工程と,前記固体高分子電解質膜
を洗浄する工程と,前記固体高分子電解質膜に還元処理
を施す工程と,前記固体高分子電解質膜を洗浄する工程
と,前記固体高分子電解質膜を乾燥する工程と,を順次
う活性固体高分子電解質膜の製造方法において,前記
イオン交換を行うに当り,前記貴金属錯体溶液に水溶性
有機溶剤,非イオン界面活性剤および非金属性塩基から
選択される少なくとも一種の添加剤を混合した混合液を
用いる,活性固体高分子電解質膜の製造方法が提供され
る。
[0008] To achieve the above object, according to the present invention,
A step of causing the ion exchange by immersing the solid polymer electrolyte membrane noble metal complex soluble liquid, the solid polymer electrolyte membrane
A step of washing, a step of performing reduction processing on the solid polymer electrolyte membrane, a step of washing the solid polymer electrolyte membrane, and drying the solid polymer electrolyte membrane, successively <br /> in the manufacturing method of the row inadvertent solid polymer electrolyte membrane, wherein
In performing the ion exchange, a mixed solution obtained by mixing at least one additive selected from a water-soluble organic solvent, a nonionic surfactant and a nonmetallic base with the noble metal complex solution is used.
A method for producing an active solid polymer electrolyte membrane is provided.

【0009】現在知られている固体高分子電解質膜は高
分子イオン交換膜である。そこで,前記のような添加剤
の作用下でイオン交換を行うと,前記電解質膜の表層部
内に在って,その全体に亘り均一に分散する複数のイオ
ン交換点に貴金属錯イオンが吸着する。1回目の洗浄工
程では,前記電解質膜内に存在するフリーの貴金属錯イ
オンおよび添加剤が除去される。還元工程では,貴金属
錯イオンの貴金属原子に結合していた原子団が除去され
る。2回目の洗浄工程では前記電解質膜より還元性成分
が除去され,次の乾燥工程を経て活性固体高分子電解質
膜が得られる。
[0009] Currently known solid polymer electrolyte membranes are polymer ion exchange membranes. Therefore, when ion exchange is performed under the action of the above-described additive, noble metal complex ions are adsorbed at a plurality of ion exchange points in the surface layer of the electrolyte membrane, which are uniformly dispersed throughout the entire surface. In the first cleaning step, free noble metal complex ions and additives existing in the electrolyte membrane are removed. In the reduction step, the atomic group bonded to the noble metal atom of the noble metal complex ion is removed. In the second washing step, the reducing components are removed from the electrolyte membrane, and the active solid polymer electrolyte membrane is obtained through the subsequent drying step.

【0010】[0010]

【0011】[0011]

【発明の実施の形態】図1,2において,固体高分子型
燃料電池を構成するセル1は,活性固体高分子電解質膜
(以下,本欄において活性電解質膜と言う)2と,その
両側の表面にそれぞれ密着する空気極3および燃料極4
と,それら両極3,4にそれぞれ密着する一対のセパレ
ータ5,6とよりなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIGS. 1 and 2, a cell 1 constituting a polymer electrolyte fuel cell comprises an active polymer electrolyte membrane (hereinafter referred to as an active electrolyte membrane in this section) 2 and both sides thereof. Air electrode 3 and fuel electrode 4 that are in close contact with the surface
And a pair of separators 5 and 6 that are in close contact with the electrodes 3 and 4 respectively.

【0012】活性電解質膜2は,厚さt1 が5μm≦t
1 ≦200μmの固体高分子電解質膜(以下,本欄にお
いて電解質膜と言う)7と,それの表面の内側に在る
層部8内にイオン交換により担持され,且つその表層部
8内全体に亘り均一に分散する複数の貴金属触媒粒子9
とより構成される。貴金属触媒粒子の担持量CAは0.
14mg/cm 2 ≦CA≦0.35mg/cm 2 である。また
層部8の厚さt2 はt2 ≦10μmである。各貴金属触
媒粒子9は,X線回折による結晶子径d1 がd1 ≦5nm
である1次粒子が結合凝集した2次粒子であり,その粒
径d2 は10nm≦d2 ≦200nmである。
The active electrolyte membrane 2 has a thickness t 1 of 5 μm ≦ t.
1 ≦ 200 μm solid polymer electrolyte membrane (hereinafter referred to as electrolyte membrane in this section) 7 and a surface layer 8 inside the surface thereof supported by ion exchange, and the surface layer A plurality of noble metal catalyst particles 9 uniformly dispersed throughout the entire part 8
It is composed of The supported amount CA of the noble metal catalyst particles is 0.
14 mg / cm 2 ≦ CA ≦ 0.35 mg / cm 2 . The thickness t 2 of Table <br/> layer portion 8 is t 2 ≦ 10 [mu] m. Each noble metal catalyst particle 9 has a crystallite diameter d 1 by X-ray diffraction d 1 ≦ 5 nm.
Are secondary particles in which the primary particles are bonded and aggregated, and the particle diameter d 2 is 10 nm ≦ d 2 ≦ 200 nm.

【0013】電解質膜7としてはフッ素樹脂系イオン交
換膜,例えば旭硝子社製,商標名フレミオン(Flemio
n);デュポン社製,商標名ナフイオン(Nafion) 等が用
いられる。また貴金属触媒粒子9には例えばPt粒子が
該当する。
As the electrolyte membrane 7, a fluororesin-based ion exchange membrane, for example, Flemio (trade name) manufactured by Asahi Glass Co., Ltd.
n); Nafion (trade name, manufactured by DuPont) or the like is used. The noble metal catalyst particles 9 correspond to, for example, Pt particles.

【0014】空気極3および燃料極4は,それぞれ多孔
質炭素板10と,それの一面に塗布形成された補助触媒
層11とよりなり,その補助触媒層11が電解質膜7の
両側の表面にそれぞれ密着する。各補助触媒層11は,
カーボンブラック粒子の表面にPt粒子を担持させたも
のと,高分子電解質であるフッ素樹脂系イオン交換体
(商標名フレミオン)とよりなる。両極3,4の多孔質
炭素板10は負荷12,例えば車両用直流電動装置に接
続される。
The air electrode 3 and the fuel electrode 4 each comprise a porous carbon plate 10 and an auxiliary catalyst layer 11 formed on one surface of the porous carbon plate 10, and the auxiliary catalyst layer 11 is provided on both surfaces of the electrolyte membrane 7. Adhere each other. Each auxiliary catalyst layer 11
It is composed of carbon black particles having Pt particles supported on the surface thereof, and a fluororesin-based ion exchanger (trade name Flemion) which is a polymer electrolyte. The porous carbon plates 10 of the poles 3 and 4 are connected to a load 12, for example, a DC motor for a vehicle.

【0015】各セパレータ5,6は,同一の形態を有す
るように黒鉛化炭素より構成され,空気極3側のセパレ
ータ5に存する複数の溝13に空気が,また燃料極4側
のセパレータ6に在って前記溝13と交差する関係の複
数の溝14に水素がそれぞれ供給される。
Each of the separators 5 and 6 is made of graphitized carbon so as to have the same form, and air is supplied to a plurality of grooves 13 in the separator 5 on the cathode 3 side, and air is supplied to the separator 6 on the fuel electrode 4 side. Hydrogen is supplied to the plurality of grooves 14 which intersect with the grooves 13.

【0016】前記活性電解質膜2の製造に当っては,貴
金属錯体溶液と,水溶性有機溶剤,非イオン界面活性剤
および非金属性塩基から選択される少なくとも一種の添
加剤との混合液中に電解質膜7を浸漬してイオン交換を
行わせる工程と,その電解質膜7を純水により洗浄する
工程と,電解質膜7に還元処理を施す工程と,電解質膜
7を純水により洗浄する工程と,電解質膜7を乾燥する
工程と,を順次行う。
In producing the active electrolyte membrane 2, a mixture of a noble metal complex solution and at least one additive selected from a water-soluble organic solvent, a nonionic surfactant and a nonmetallic base is used. A step of immersing the electrolyte membrane 7 to perform ion exchange, a step of cleaning the electrolyte membrane 7 with pure water, a step of performing a reduction treatment on the electrolyte membrane 7, and a step of cleaning the electrolyte membrane 7 with pure water. And a step of drying the electrolyte membrane 7 are sequentially performed.

【0017】貴金属錯体溶液としては,例えばPt錯イ
オンである[Pt(NH3 4 2+を含むカチオン性P
t錯体溶液が用いられる。添加剤において,水溶性有機
溶剤としては,メタノール,エタノール,エチレングリ
コール等が用いられ,また非イオン界面活性剤として
は,ポリオキシエチレンドデシルエーテル(例えば,商
品名 Briji 35),ポリオキシエチレンオクチルフェ
ニルエーテル等が用いられ,さらに非金属性塩基として
はアンモニア等が用いられる。
As the noble metal complex solution, for example, a cationic P containing Pt complex ion [Pt (NH 3 ) 4 ] 2+ is used.
A t-complex solution is used. In the additives, methanol, ethanol, ethylene glycol and the like are used as water-soluble organic solvents, and polyoxyethylene dodecyl ether (for example, trade name Briji 35) and polyoxyethylene octylphenyl are used as nonionic surfactants. Ether and the like are used, and ammonia and the like are used as the nonmetallic base.

【0018】前記のような添加剤の作用下でイオン交換
を行うと,電解質膜7の表層部8内に在って,その全体
に亘り均一に分散する複数のイオン交換点にPt錯イオ
ンが吸着する。1回目の洗浄工程では,電解質膜7内に
存在するフリーのPt錯イオンおよび添加剤が除去され
る。還元工程では,Pt錯イオンのPt原子に結合して
いた原子団が除去される。2回目の洗浄工程では電解質
膜7より還元性成分が除去され,次の乾燥工程を経て活
性電解質膜2が得られる。
When ion exchange is performed under the action of the above-mentioned additives, Pt complex ions are present at a plurality of ion exchange points in the surface layer portion 8 of the electrolyte membrane 7 and uniformly dispersed throughout the entire surface. Adsorb. In the first cleaning step, free Pt complex ions and additives existing in the electrolyte membrane 7 are removed. In the reduction step, the atomic group bonded to the Pt atom of the Pt complex ion is removed. In the second washing step, the reducing components are removed from the electrolyte membrane 7, and the active electrolyte membrane 2 is obtained through the next drying step.

【0019】なお,1回目の洗浄を行わずに還元処理を
行うと,電解質膜7内にPt原子がフリー状態で残存す
ことになるが,そのPt原子は,概して水素イオンの
発生には寄与しないので,高価なPtを無駄にすること
になる。また2回目の洗浄を行わないと,還元性成分の
残存によって水素のイオン化が妨げられるので発電性能
が低下する。
If the reduction treatment is performed without performing the first cleaning, Pt atoms will remain in the electrolyte membrane 7 in a free state .
Wastes expensive Pt because it does not contribute to generation
become. If the second cleaning is not performed,
Power generation performance as hydrogen ionization is hindered by residuals
Decrease.

【0020】以下,具体例について説明する。Hereinafter, a specific example will be described.

【0021】次のような諸工程を経て活性電解質膜2の
実施例1を得た。
Example 1 of the active electrolyte membrane 2 was obtained through the following steps.

【0022】(a) 狙いとするPt担持量(0.15
mg/cm2 )に対して3倍量のPtを含むカチオン性Pt
錯体溶液に,100ccの25%アンモニア水(添加剤)
を加えて混合液を調製した。
(A) The target amount of supported Pt (0.15
mg / cm 2 ) cationic Pt containing 3 times the amount of Pt
100 cc of 25% aqueous ammonia (additive) in the complex solution
Was added to prepare a mixed solution.

【0023】(b) イオン交換を行うべく,混合液中
に縦,横70mmの電解質膜(商標名フレミオン)7を浸
漬し,次いで混合液を60℃に加熱して,その温度下で
12時間攪拌した。
(B) In order to perform ion exchange, an electrolyte membrane (trade name: Flemion) 7 having a length of 70 mm and a width of 70 mm is immersed in the mixed solution, and then the mixed solution is heated to 60 ° C. and kept at the temperature for 12 hours Stirred.

【0024】(c) 洗浄を行うべく,電解質膜7を純
水中に浸漬し,次いで純水を50℃に加熱して,その温
度下で2時間攪拌した。
(C) For cleaning, the electrolyte membrane 7 was immersed in pure water, then heated to 50 ° C. and stirred at that temperature for 2 hours.

【0025】(d) 還元処理を行うべく,電解質膜7
を入れた容器から前記洗浄後の水を捨て,その容器に新
たな純水を加えてその純水に電解質膜7を浸漬した。ま
た狙いとするPt担持量の10倍モルの還元性混合液,
即ち,水素化ホウ素ナトリウムと炭酸ナトリウムとを含
む混合液を調製した。次いで,電解質膜7を浸漬した純
水を50℃に加熱して,その温度下にある純水に,前記
還元性混合液の全量を30分間に亘って滴下した。その
後,約1.5時間放置し,溶液中からガス(主として水
素)が発生しなくなったときを反応終了と見做した。
(D) In order to perform the reduction treatment, the electrolyte membrane 7
The water after the washing was discarded from the container in which was stored, new pure water was added to the container, and the electrolyte membrane 7 was immersed in the pure water. In addition, a reducing mixed solution having a molar amount of 10 times the target amount of Pt supported,
That is, a mixed solution containing sodium borohydride and sodium carbonate was prepared. Next, the pure water in which the electrolyte membrane 7 was immersed was heated to 50 ° C., and the entire amount of the reducing mixture was dropped into the pure water at that temperature over 30 minutes. Thereafter, the reaction was left for about 1.5 hours, and when the gas (mainly hydrogen) was not generated from the solution, the reaction was regarded as completed.

【0026】(e) Na成分除去の洗浄を行うべく,
電解質膜7を純水中に浸漬し,次いで純水を50℃に加
熱して,その温度下で2時間攪拌した。
(E) In order to perform the washing for removing the Na component,
The electrolyte membrane 7 was immersed in pure water, and then heated to 50 ° C. and stirred at that temperature for 2 hours.

【0027】(f) 電解質膜7を,60℃の乾燥器内
に4時間保持して乾燥した。
(F) The electrolyte membrane 7 was dried in a dryer at 60 ° C. for 4 hours.

【0028】25%アンモニア水(添加剤)の添加量を
200ccにした,ということ以外は実施例1の場合と同
一条件で活性電解質膜2の実施例2を得た。
Example 2 of the active electrolyte membrane 2 was obtained under the same conditions as in Example 1 except that the addition amount of 25% aqueous ammonia (additive) was 200 cc.

【0029】添加剤として100ccのエタノールを用い
た,ということ以外は実施例1の場合と同一条件で活性
電解質膜2の実施例3を得た。
Example 3 of the active electrolyte membrane 2 was obtained under the same conditions as in Example 1 except that 100 cc of ethanol was used as an additive.

【0030】添加剤として,5%ポリオキシエチレンド
デシルエーテル(商品名Briji 35)を用いた,という
こと以外は実施例1の場合と同一条件で活性電解質膜2
の実施例4を得た。
The active electrolyte membrane 2 was prepared under the same conditions as in Example 1 except that 5% polyoxyethylene dodecyl ether (trade name: Briji 35) was used as an additive.
Example 4 was obtained.

【0031】狙いとするPt担持量(0.15mg/c
m2 )に対して1.5倍量のPtを含む前記同様のカチ
オン性Pt錯体溶液を用いた,ということ以外は実施例
1の場合と同一条件で活性電解質膜2の実施例5を得
た。
The target amount of supported Pt (0.15 mg / c
Example 5 of the active electrolyte membrane 2 was obtained under the same conditions as in Example 1 except that the same cationic Pt complex solution containing 1.5 times the amount of Pt with respect to m 2 ) was used. Was.

【0032】狙いとするPt担持量(0.15mg/c
m2 )に対して6倍量のPtを含む前記同様のカチオン
性Pt錯体溶液を用いた,ということ以外は実施例1の
場合と同一条件で活性電解質膜2の実施例6を得た。
The target amount of supported Pt (0.15 mg / c
Example 6 of the active electrolyte membrane 2 was obtained under the same conditions as in Example 1 except that the same cationic Pt complex solution containing 6 times the amount of Pt with respect to m 2 ) was used.

【0033】実施例1と同様の電解質膜(商標名 フレ
ミオン)の表面にスパッタ法によりPt触媒層を形成し
た。この活性電解質膜2を比較例1とする。
A Pt catalyst layer was formed on the surface of the same electrolyte membrane (Flemion, trade name) as in Example 1 by a sputtering method. This active electrolyte membrane 2 is referred to as Comparative Example 1.

【0034】またカーボンブラック粒子表面にPt粒子
を担持させたものと,高分子電解質であるフッ素樹脂系
イオン交換体(商標名フレミオン)との混合物を多孔質
炭素板10の一面に塗布して補助触媒層11を形成す
る,といった方法で空気極3と燃料極4とを製作した。
この場合,カーボンブラック粒子とPt粒子との重量比
は1対1である。
A mixture of carbon black particles having Pt particles supported thereon and a fluororesin ion exchanger (trade name Flemion) which is a polymer electrolyte is applied to one surface of the porous carbon plate 10 to assist. The air electrode 3 and the fuel electrode 4 were manufactured by a method such as forming the catalyst layer 11.
In this case, the weight ratio between the carbon black particles and the Pt particles is 1: 1.

【0035】表1は補助触媒層11の例1〜3の構成を
示す。表中,Cはカーボンブラック粒子,PEは高分子
電解質を意味する。
Table 1 shows the structures of Examples 1 to 3 of the auxiliary catalyst layer 11. In the table, C means carbon black particles, and PE means a polymer electrolyte.

【0036】[0036]

【表1】 [Table 1]

【0037】例3はカーボンブラックのみからなる層で
あって,補助触媒層11ではないが便宜上,掲載したも
のであり,また高分子電解質の代りにPTFE(ポリテ
トラフルオロエチレン)が用いられている。
Example 3 is a layer made of only carbon black, not the auxiliary catalyst layer 11, but is described for convenience, and PTFE (polytetrafluoroethylene) is used instead of the polymer electrolyte. .

【0038】表2は,活性電解質膜2の実施例1〜7お
よび比較例1,2の構成と,燃料電池における補助触媒
層11との組合せを示す。
Table 2 shows combinations of the active electrolyte membranes 2 in Examples 1 to 7 and Comparative Examples 1 and 2 with the auxiliary catalyst layer 11 in the fuel cell.

【0039】[0039]

【表2】 [Table 2]

【0040】実施例7の活性電解質膜2は実施例1と同
じであり,また比較例1におけるPt触媒は層状をな
し,さらに比較例2の電解質膜7は,前記のようなイオ
ン交換を施されていない膜そのものである。
The active electrolyte membrane 2 of Example 7 is the same as that of Example 1, the Pt catalyst of Comparative Example 1 has a laminar shape, and the electrolyte membrane 7 of Comparative Example 2 is subjected to the ion exchange as described above. The film itself has not been done.

【0041】次に各燃料電池を運転して,その電流密度
と端子電圧との関係を調べたところ,表3の結果を得
た。表3において,実施例1〜7および比較例1,2と
は,表2の活性電解質膜2等の実施例1〜7および比較
例1,2をそれぞれ用いた燃料電池を意味する。
Next, each fuel cell was operated, and the relationship between the current density and the terminal voltage was examined. The results shown in Table 3 were obtained. In Table 3, Examples 1 to 7 and Comparative Examples 1 and 2 mean fuel cells using Examples 1 to 7 and Comparative Examples 1 and 2 such as the active electrolyte membrane 2 in Table 2.

【0042】[0042]

【表3】 [Table 3]

【0043】図3は,表3における実施例1〜4および
比較例1,2を用いた各燃料電池について端子電圧と電
流密度との関係をグラフ化したものである。図4は表
2,3に基づいて,実施例1〜4を用いた燃料電池およ
び比較例1を用いた燃料電池に関し,表層部8の厚さt
2 と,電流密度0.6A/cm2 の時の端子電圧との関係
をグラフ化したものである。図3,4から,Pt粒子9
が分散する表層部8を持つ実施例1〜4を用いた場合,
そのような表層部を持たない比較例1,2を用いた場合
に比べて発電性能が向上していることが判る。実施例
5,6を用いた各燃料電池の発電性能は実施例2を用い
た燃料電池のそれに近く,また実施例7を用いた燃料電
池の発電性能は実施例4を用いた燃料電池のそれに近
い。
FIG. 3 is a graph showing the relationship between the terminal voltage and the current density for each fuel cell using Examples 1 to 4 and Comparative Examples 1 and 2 in Table 3. FIG. 4 shows a fuel cell using Examples 1 to 4 and a fuel cell using Comparative Example 1 based on Tables 2 and 3, and shows the thickness t of the surface layer portion 8.
2 is a graph showing the relationship between the terminal voltage and the terminal voltage when the current density is 0.6 A / cm 2 . 3 and 4, the Pt particles 9
In the case of using Examples 1 to 4 having the surface layer 8 in which
It can be seen that the power generation performance is improved as compared with the case of using Comparative Examples 1 and 2 having no such surface layer. The power generation performance of each fuel cell using Examples 5 and 6 was close to that of the fuel cell using Example 2, and the power generation performance of the fuel cell using Example 7 was that of the fuel cell using Example 4. near.

【0044】添加剤による表層部8の厚さt2 は,25
%アンモニア水100cc(実施例1),25%アンモニ
ア水200cc(実施例2),エタノール100cc(実施
例3),5%ポリオキシエチレンドデシルエーテル(実
施例4)の順に増加するが,その反面,発電性能は減少
している。これは,表層部8内に存するPt粒子9への
水素ガスの透過性に起因する。
The thickness t 2 of the surface layer 8 due to the additive is 25
% Ammonia water 100cc (Example 1), 25% ammonia water 200cc (Example 2), ethanol 100cc (Example 3), 5% polyoxyethylene dodecyl ether (Example 4). Power generation performance is decreasing. This is due to the permeability of hydrogen gas to the Pt particles 9 existing in the surface layer portion 8.

【0045】図5は,表3における実施例1,5〜7お
よび比較例1,2を用いた各燃料電池について電流密度
と端子電圧との関係をグラフ化したものである。
FIG. 5 is a graph showing the relationship between the current density and the terminal voltage for each of the fuel cells using Examples 1, 5 to 7 and Comparative Examples 1 and 2 in Table 3.

【0046】活性電解質膜2を持っているが補助触媒層
11を持たない実施例7を用いた燃料電池と,補助触媒
層11を持っているが活性電解質膜2を持たない比較例
2を用いた燃料電池とを比較すると,Pt粒子の担持量
に関し比較例2は実施例7の約3.1倍であるにも拘ら
ず両燃料電池の発電性能は略同じである。この事実か
ら,電解質膜7の表層部8にPt粒子9を分散担持させ
ることの有意性が明らかである。
A fuel cell using the embodiment 7 having the active electrolyte membrane 2 but not having the auxiliary catalyst layer 11 and a comparative example 2 having the auxiliary catalyst layer 11 but not having the active electrolyte membrane 2 were used. When compared with the conventional fuel cell, the power generation performance of both fuel cells is substantially the same, although the amount of Pt particles carried in Comparative Example 2 is about 3.1 times that of Example 7. From this fact, it is clear that the Pt particles 9 are dispersed and supported on the surface layer 8 of the electrolyte membrane 7.

【0047】[0047]

【発明の効果】請求項1,2記載の発明によれば,前記
のように構成することによって固体高分子型燃料電池の
発電性能を向上させることが可能な活性固体高分子電解
質膜を提供することができる。
According to the first and second aspects of the present invention, there is provided an active polymer electrolyte membrane capable of improving the power generation performance of a polymer electrolyte fuel cell by having the above-described structure. be able to.

【0048】また請求項3,4記載の発明によれば,前
記活性固体高分子電解質膜を量産することが可能な製造
方法を提供することができる。
According to the third and fourth aspects of the present invention, it is possible to provide a production method capable of mass-producing the active solid polymer electrolyte membrane.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体高分子型燃料電池を構成するセルの概略側
面図である。
FIG. 1 is a schematic side view of a cell constituting a polymer electrolyte fuel cell.

【図2】活性固体高分子電解質膜の概略断面図で,図1
の2−2線断面図に相当する。
FIG. 2 is a schematic sectional view of an active solid polymer electrolyte membrane, and FIG.
Corresponds to a sectional view taken along line 2-2 of FIG.

【図3】各種固体高分子型燃料電池における端子電圧と
電流密度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between terminal voltage and current density in various polymer electrolyte fuel cells.

【図4】各種固体高分子型燃料電池における表層部の厚
さと端子電圧との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the surface layer thickness and the terminal voltage in various polymer electrolyte fuel cells.

【図5】各種固体高分子型燃料電池における電流密度と
端子電圧との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between current density and terminal voltage in various polymer electrolyte fuel cells.

【符号の説明】[Explanation of symbols]

1………セル 2………活性固体高分子電解質膜 7………固体高分子電解質膜 8………表層部 9………貴金属触媒粒子 DESCRIPTION OF SYMBOLS 1 ... Cell 2 ... Active solid polymer electrolyte membrane 7 ... Solid polymer electrolyte membrane 8 ... Surface layer part 9 ... Noble metal catalyst particles

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−87882(JP,A) 特開 平10−8285(JP,A) 特開 平10−330979(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-87882 (JP, A) JP-A-10-8285 (JP, A) JP-A-10-330979 (JP, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 固体高分子電解質膜(7)と,それの
面の内側に在る表層部(8)内にイオン交換により担持
され,且つその表層部(8)内全体に亘り均一に分散す
る複数の貴金属触媒粒子(9)とより構成され,前記表
層部(8)の厚さt 2 はt 2 ≦10μmであることを特
徴とする,固体高分子型燃料電池における活性固体高分
子電解質膜。
1. A solid polymer electrolyte membrane (7) and a table thereof.
Carried by ion exchange on the surface portion (8) in located on the inner surface, are and further configured its surface portion and a plurality of noble metal catalyst particles uniformly dispersed throughout the (8) (9), the table
An active solid polymer electrolyte membrane in a polymer electrolyte fuel cell, wherein the thickness (t 2 ) of the layer (8) is t 2 ≦ 10 μm .
【請求項2】 前記貴金属触媒粒子の担持量CAが0.
14mg/cm 2 〜0.35mg/cm 2 である,請求項1記載
の固体高分子型燃料電池における活性固体高分子電解質
膜。
2. The method according to claim 1, wherein the carried amount CA of the noble metal catalyst particles is 0.1.
A 14mg / cm 2 ~0.35mg / cm 2 , the active solid polymer electrolyte membrane in a polymer electrolyte fuel cell according to claim 1, wherein.
【請求項3】 金属錯体溶液中に前記固体高分子電解
質膜(7)を浸漬してイオン交換を行わせる工程と,前
記固体高分子電解質膜(7)を洗浄する工程と,前記固
体高分子電解質膜(7)に還元処理を施す工程と,前記
固体高分子電解質膜(7)を洗浄する工程と,前記固体
高分子電解質膜(7)を乾燥する工程と,を順次行う活
性固体高分子電解質膜の製造方法において,前記イオン
交換を行うに当り,前記貴金属錯体溶液に水溶性有機溶
剤,非イオン界面活性剤および非金属性塩基から選択さ
れる少なくとも一種の添加剤を混合した混合液を用いる
ことを特徴とする活性固体高分子電解質膜の製造方法。
Wherein said solid polymer electrolyte membrane (7) immersed in a noble metal complex soluble liquid comprising the steps of causing the ion exchange, a step of washing the solid polymer electrolyte membrane (7), wherein a step of performing a reduction treatment to the solid polymer electrolyte membrane (7), the solid polymer electrolyte membrane (7) a step of washing, the solid and drying the polymer electrolyte membrane (7), successively rows A method for producing a solid polymer electrolyte membrane , comprising:
When performing the exchange, add a water-soluble organic solvent to the noble metal complex solution.
Selected from detergents, nonionic surfactants and nonmetallic bases
Use a mixture of at least one additive
A method for producing an active solid polymer electrolyte membrane, comprising:
【請求項4】 前記添加剤において,水溶性有機溶剤に
は,メタノール,エタノール,エチレングリコールが該
当し,また非イオン界面活性剤には,ポリオキシエチレ
ンドデシルエーテル,ポリオキシエチレンオクチルフェ
ニルエーテルが該当し,さらに非金属性塩基にはアンモ
ニアが該当する,請求項3記載の活性固体高分子電解質
膜の製造方法。
4. The method as claimed in claim 1, wherein the additive comprises a water-soluble organic solvent.
Is methanol, ethanol, ethylene glycol
And non-ionic surfactants include polyoxyethylene
N-decyl ether, polyoxyethylene octylfe
Nyl ethers and non-metallic bases
4. The active solid polymer electrolyte according to claim 3, wherein the near corresponds to
Manufacturing method of membrane.
JP11174640A 1999-06-21 1999-06-21 Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same Expired - Fee Related JP3111407B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11174640A JP3111407B1 (en) 1999-06-21 1999-06-21 Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same
CA002312446A CA2312446C (en) 1999-06-21 2000-06-20 Active solid polymer electrolyte membrane in solid polymer type fuel cell and process for the production thereof
US09/598,266 US6485855B1 (en) 1999-06-21 2000-06-21 Active solid polymer electrolyte membrane in solid polymer type fuel cell and process for the production thereof
DE10030450A DE10030450B4 (en) 1999-06-21 2000-06-21 Active solid polymer electrolyte membrane in a solid polymer type fuel cell and process for producing the same, and their use in a solid polymer type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11174640A JP3111407B1 (en) 1999-06-21 1999-06-21 Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP3111407B1 true JP3111407B1 (en) 2000-11-20
JP2001006701A JP2001006701A (en) 2001-01-12

Family

ID=15982138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11174640A Expired - Fee Related JP3111407B1 (en) 1999-06-21 1999-06-21 Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3111407B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779278B2 (en) * 2001-09-28 2011-09-28 旭硝子株式会社 Membrane / electrode assembly for polymer electrolyte fuel cells
JP4514718B2 (en) 2006-01-20 2010-07-28 株式会社豊田中央研究所 Membrane electrode assembly and polymer electrolyte fuel cell
JP5244148B2 (en) * 2010-04-14 2013-07-24 株式会社豊田中央研究所 Membrane electrode assembly and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2001006701A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP3411897B2 (en) Active polymer electrolyte membrane for polymer electrolyte fuel cells
US6238534B1 (en) Hybrid membrane electrode assembly
JP7190171B2 (en) FUEL CELL CATALYST, METHOD FOR MANUFACTURING THE SAME, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, AND FUEL CELL INCLUDING THE SAME
US7763374B2 (en) Membrane fuel cell electrodes incorporated with carbon nanomaterial-supported electrocatalysts and methods of making the same
US20090087549A1 (en) Selective coating of fuel cell electrocatalyst
US6485855B1 (en) Active solid polymer electrolyte membrane in solid polymer type fuel cell and process for the production thereof
JP3111407B1 (en) Active solid polymer electrolyte membrane in polymer electrolyte fuel cell and method for producing the same
KR20160039375A (en) Electrolyte membrane for fuel cell and preparation method thereof
JP4858658B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell having the same
JP3649686B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JP3111408B1 (en) Active solid polymer electrolyte membrane in polymer electrolyte fuel cells
JP2005174835A (en) Electrode
JP2006209999A (en) Electrode for polymer electrolyte fuel cell and its manufacturing method
JP4649094B2 (en) Manufacturing method of membrane electrode assembly for fuel cell
JP7287347B2 (en) Laminates for fuel cells
JP7359077B2 (en) Laminate for fuel cells
JP2007141623A (en) Electrode catalyst for polymer electrolyte fuel cell and fuel cell using it
JP2013114901A (en) Manufacturing method for catalyst layer for fuel cell and catalyst layer for fuel cell
JP6862792B2 (en) Method of manufacturing electrode catalyst
KR20210085300A (en) Fuel Cell Electrode Having High Durability, Method for Manufacturing The Same, and Membrane-Electrode Assembly Comprising The Same
JP2016534226A (en) Active layer / membrane arrangement for hydrogen production apparatus, joined body including the arrangement suitable for porous current collector, and method for producing the arrangement
WO2018069979A1 (en) Catalyst layer production method, catalyst layer, catalyst precursor, and catalyst precursor production method
JP5458774B2 (en) Electrolyte membrane-electrode assembly
JP7272318B2 (en) Laminates for fuel cells
JP4815651B2 (en) Gas diffusion electrode for polymer electrolyte fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees