JP3109633B2 - Insulation degradation detector - Google Patents

Insulation degradation detector

Info

Publication number
JP3109633B2
JP3109633B2 JP05122956A JP12295693A JP3109633B2 JP 3109633 B2 JP3109633 B2 JP 3109633B2 JP 05122956 A JP05122956 A JP 05122956A JP 12295693 A JP12295693 A JP 12295693A JP 3109633 B2 JP3109633 B2 JP 3109633B2
Authority
JP
Japan
Prior art keywords
phase
zero
line
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05122956A
Other languages
Japanese (ja)
Other versions
JPH06339218A (en
Inventor
明雄 猿田
康信 藤田
寛延 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP05122956A priority Critical patent/JP3109633B2/en
Priority to FR9405982A priority patent/FR2709385B1/en
Priority to DE4418124A priority patent/DE4418124C2/en
Publication of JPH06339218A publication Critical patent/JPH06339218A/en
Application granted granted Critical
Publication of JP3109633B2 publication Critical patent/JP3109633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/38Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current
    • H02H3/385Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current using at least one homopolar quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/58Testing of lines, cables or conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/38Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current
    • H02H3/382Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current involving phase comparison between current and voltage or between values derived from current and voltage

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電源に接続された母線
に、それぞれ負荷電気機器を有する複数の配電線を接続
した系統の絶縁劣化を劣化初期の段階で検出する絶縁劣
化検出装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a bus connected to a power supply.
Connected to multiple distribution lines each having a load electrical device
The present invention relates to an insulation deterioration detection device for detecting insulation deterioration of a system at an early stage of deterioration.

【0002】[0002]

【従来の技術】一般に、図1に示すように電源変圧器1
に接続された母線3に複数の配電線を接続して成る系統
においては、母線3に接地形計器用変圧器GPTを接続
し、この接地形計器用変圧器GPTの三次の零相電圧E
0と、各配電線に設けた零相変流器ZCTの二次の零相
電流I0との位相を比較することによって地絡回線と健
全回路とを判別して地絡事故を検出していた。また特開
平4−42726号公報に記載のように、線間電圧と、
各配電線に設けた零相変流器ZCTの二次の零相電流と
の位相を比較することによって、同一配電線の中での地
絡相とその地絡点とを特定するようにしたものが知られ
ている。
2. Description of the Related Art In general, as shown in FIG.
In a system in which a plurality of distribution lines are connected to a bus 3 connected to the power supply, a grounded-type instrument transformer GPT is connected to the bus 3, and the third-order zero-phase voltage E of the grounded-type instrument transformer GPT is connected.
0, has been detected ground fault to determine the earth絡回line and sound circuit by comparing the phases of the secondary of the zero-phase current I 0 of the zero-phase current transformer ZCT provided in each distribution line Was. Further, as described in JP-A-4-42726, the line voltage and
By comparing the phase with the secondary zero-phase current of the zero-phase current transformer ZCT provided in each distribution line, the ground fault phase and the ground fault point in the same distribution line are specified. Things are known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上述した
従来の地絡検出装置は、例えば、絶縁物の劣化が進展し
て地絡事故に至った場合を検出するものであり、負荷電
気機器における絶縁物の劣化の初期状態を検出するには
更に高感度の検出装置が必要である。すなわち、このよ
うな高感度の検出をするためには、接地形計器用変圧器
GPTの三次で常時発生している零相電圧E0の残留値
以下の微小レベル領域の電圧を検出して、位相比較する
必要があるため、接地形計器用変圧器GPTの三次の零
相電圧E0を用いることができない。また図1に示すよ
うに、複数の配電線を有する電源系統で、一線地絡が発
生した場合、負荷電気機器であるケーブル8および電動
機9等の対地静電容量が大きな健全回線では、この対地
静電容量の不平衡分によって零相電流が流れてしまい、
特開平4−42726号公報に記載のように、線間電圧
と、零相変流器ZCTの二次の零相電流との位相を比較
すると、この健全回線も地絡事故のようになってしま
い、事故回線を特定化することができない。
However, the above-mentioned conventional ground fault detecting device is for detecting, for example, a case in which the deterioration of the insulator progresses and leads to a ground fault. In order to detect the initial state of deterioration of the device, a detection device with higher sensitivity is required. That is, in order to perform such high-sensitivity detection, a voltage in a minute level region equal to or smaller than the residual value of the zero-phase voltage E 0 constantly generated in the tertiary of the ground-type instrument transformer GPT is detected. Since it is necessary to perform phase comparison, the third-order zero-phase voltage E 0 of the ground-type instrument transformer GPT cannot be used. As shown in FIG. 1, when a single-line ground fault occurs in a power supply system having a plurality of distribution lines, a healthy line having a large capacitance to ground such as a cable 8 and a motor 9 serving as load electric devices is connected to the ground. Zero-phase current flows due to the unbalance of the capacitance,
As described in Japanese Patent Application Laid-Open No. 4-42726, comparing the phase of the line voltage with the phase of the secondary zero-phase current of the zero-phase current transformer ZCT, this healthy line also looks like a ground fault. As a result, the accident line cannot be specified.

【0004】本発明の目的は、母線側における絶縁劣化
の初期段階を正確に検出することができる絶縁劣化検出
装置を提供するにある。
It is an object of the present invention to provide an insulation deterioration detecting device capable of accurately detecting an initial stage of insulation deterioration on the bus side .

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の1つは、電源に接続された母線に、それ
ぞれ負荷電気機器を有する複数の配電線を接続し、各配
電線にそれぞれ零相変流器を設けて成る絶縁劣化検出装
置において、上記母線の線間電圧から基準相電圧を作る
相電圧変換回路と、各相毎に、この基準相電圧と上記零
相変流器の二次の零相電流との位相差が所定の範囲に入
ると共に、上記零相変流器の二次の零相電流が所定の設
定値を越えたことを検出する第1の検出手段と、各配電
線の各相毎の上記第1の検出手段のうち少なくとも2つ
の配電線の同一相の第1の検出手段から検出信号が同時
に得られたことを検出する第2の検出手段と、この第2
の検出手段から検出信号が得られたときに上記母線側の
絶縁破壊と判定する判定手段とを設けたことを特徴とす
る。
According to one aspect of the present invention, a plurality of distribution lines each having a load electric device are connected to a bus connected to a power supply. A phase voltage conversion circuit for generating a reference phase voltage from the line voltage of the bus, and a reference voltage and the zero phase current for each phase. Detecting means for detecting that the phase difference between the secondary zero-phase current of the current transformer and the secondary zero-phase current of the current transformer falls within a predetermined range and that the secondary zero-phase current of the zero-phase current transformer exceeds a predetermined set value. And each distribution
At least two of the first detection means for each phase of the line
Detection signals from the first detection means of the same phase
Second detecting means for detecting that the
When a detection signal is obtained from the detection means of
A determination means for determining insulation breakdown is provided.

【0006】[0006]

【作用】本発明による絶縁劣化検出装置は、接地形計器
用変圧器の中性点電位が変化した場合、これに伴って接
地形計器用変圧器の二次の相電圧も変動してしまうこと
に注目し、上述のように母線の変動しない線間電圧を用
いて絶対値で1/√3、位相で30度遅れの基準相電圧
E1を作り、更に基準相電圧E1に対して120度位相差
の各基準相電圧E2,E3を作り、一方、負荷電気機器の
絶縁物を流れる対地漏洩電流は、絶縁耐力が正常な場
合、表面漏洩電流は小さくて殆んどが対地充電電流であ
り、従って、零相変流器の二次の零相電流は各基準相電
圧より90度に近い進み位相となるが、絶縁耐力が低下
すると表面漏洩電流が増大した対地漏洩電流となり、零
相変流器の二次の零相電流は各基準相電圧と同位相に近
づいてくることに着目し、この位相差が所定の範囲に
入り、かつ零相変流器の二次の零相電流が所定の設定値
を越えたことを第1の検出手段によって検出するように
したため、負荷電気機器や母線側電気機器の絶縁物の劣
化が進展したことを絶縁劣化の初期段階で正確に検出す
ることができ、さらに、母線側で地絡事故が発生した場
合、各配電線に流れる対地漏洩電流の位相が全て同相と
なることに着目して、少なくとも2つの配電線の同一相
の第1の検出手段から検出信号が同時に得られたことを
第2の検出手段で検出するようにしたため、上記絶縁物
の劣化の進展が母線側で発生したと判定することができ
る。
According to the insulation deterioration detecting device of the present invention, when the neutral point potential of the grounded type transformer changes, the secondary phase voltage of the grounded type transformer also fluctuates. Note that the reference phase voltage E1 with an absolute value of 1 / √3 and a phase delay of 30 degrees is created using the line voltage that does not fluctuate as described above. Each of the reference phase voltages E2 and E3 of the phase difference is generated. On the other hand, when the dielectric strength is normal, the surface leakage current flowing through the insulator of the load electric device is small and almost the ground charging current. Therefore, the secondary zero-phase current of the zero-phase current transformer has a leading phase closer to 90 degrees than each reference phase voltage, but when the dielectric strength decreases, the surface leakage current increases to the ground leakage current, and the zero-phase current Note that the secondary zero-phase current of the detector approaches the same phase as each reference phase voltage And, since the phase difference as detected by the first detecting means that enters the predetermined range, and the secondary of the zero-phase current of the zero-phase current transformer exceeds a predetermined value, the load electric it can be accurately detected in the early stages of the insulation degradation of degradation of equipment and busbar-side electrical equipment of the insulator has progressed further, the field ground fault accident occurs at bus side
The phase of the ground leakage current flowing through each distribution line is the same
Notice that the same phase of at least two distribution lines
That the detection signals were simultaneously obtained from the first detection means
Since the detection is performed by the second detection means, the insulation
It can be determined that the progress of deterioration has occurred on the bus side
You.

【0007】[0007]

【実施例】以下本発明の実施例を図面によって説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1は本発明の一実施例による絶縁劣化検
出装置を採用した系統の回路図である。
FIG. 1 is a circuit diagram of a system employing an insulation deterioration detecting device according to one embodiment of the present invention.

【0009】電源である電源変圧器1には受電遮断器2
を介して母線3が接続され、この母線3に、それぞれ配
電用遮断器5を介して接続した複数の配電線が設けられ
ている。各配電線は、配電用遮断器5、変流器CT、零
相変流器ZCTを有し、またケーブル8を介して接続し
た電動機9等で成る負荷電気機器を有して構成されてい
る。母線3には電圧測定用の接地形計器用変圧器GPT
が接続されており、この接地形計器用変圧器GPTの線
間電圧E12を絶縁劣化検出装置6に取り込んでいる。
A power supply transformer 1 as a power supply has a power receiving breaker 2
The bus 3 is connected via a power distribution circuit breaker 5 to the bus 3. Each distribution line includes a distribution circuit breaker 5, a current transformer CT, a zero-phase current transformer ZCT, and a load electric device including a motor 9 and the like connected via a cable 8. . A bus 3 has a ground-type instrument transformer GPT for voltage measurement.
Are connected, and the line voltage E 12 of the ground-type instrument transformer GPT is taken into the insulation deterioration detecting device 6.

【0010】この絶縁劣化検出装置6は、相電圧変換回
路11によって線間電圧E12から各基準相電圧E1
2,E3から成る基準相電圧Eを作り、位相比較回路1
3に入力している。また各配電線の零相変流器ZCTの
二次の零相電流I0を取り込んで商用周波数帯域フィル
タ12を通した商用周波零相電流を、位相比較回路13
と実効値演算回路14に入力し、位相比較回路13で各
相毎に基準相電圧Eと商用周波零相電流の位相を比較す
ると共に、実効値演算回路14で商用周波零相電流の実
効値とその値が所定の設定値Iorを越えたかどうかを演
算している。そして各相において、その位相差が所定の
範囲θ内に入ると、それを示す信号が各相毎に劣化判定
回路15に入力される。一方、商用周波零相電流の実効
値が設定値Iorを越えると、その値が劣化判定回路15
と最大値比較回路16に入力される。劣化判定回路15
では、位相比較回路13および実効値演算回路14から
それぞれ入力があると、すなわち、各相のうちのいずれ
か1つの相において、基準相電圧Eと商用周波零相電流
の位相差が所定の範囲θ内に入り、かつ商用周波零相電
流の実効値が設定値Iorを越えると、その回線を劣化回
線と判定し、その判定信号を最大値比較回路16へ送
る。最大値比較回路16では、各回線毎に内蔵するスイ
ッチを上記判定信号によりオンして商用周波零相電流の
実効値を取り込み、劣化回線と判定された各回線の実効
値のうち最大値を示す回線を最終的に劣化回線として表
示器19に表示する。
[0010] The insulation deterioration detection device 6, the phase voltage conversion circuit line voltage E 12 each reference phase voltage E 1 from the 11,
A reference phase voltage E composed of E 2 and E 3 is generated, and a phase comparison circuit 1
3 has been entered. Further, the secondary zero-phase current I 0 of the zero-phase current transformer ZCT of each distribution line is taken, and the commercial frequency zero-phase current passed through the commercial frequency bandpass filter 12 is converted into a phase comparison circuit 13.
And an effective value calculating circuit 14. The phase comparing circuit 13 compares the phase of the reference phase voltage E with the phase of the commercial frequency zero-phase current for each phase, and the effective value calculating circuit 14 calculates the effective value of the commercial frequency zero-phase current. And whether the value has exceeded a predetermined set value Ior . When the phase difference falls within the predetermined range θ in each phase, a signal indicating the phase difference is input to the deterioration determination circuit 15 for each phase. On the other hand, when the effective value of the commercial frequency zero-phase current exceeds the set value Ior , the value becomes
Is input to the maximum value comparison circuit 16. Deterioration determination circuit 15
When there is an input from each of the phase comparison circuit 13 and the effective value calculation circuit 14, that is, in any one of the phases, the phase difference between the reference phase voltage E and the commercial frequency zero-phase current is within a predetermined range. enters the theta, and the effective value of the commercial frequency zero-phase current exceeds the set value I or, to determine that line degradation line, and sends the determination signal to the maximum value comparator circuit 16. The maximum value comparison circuit 16 turns on a built-in switch for each line according to the determination signal to capture the effective value of the commercial frequency zero-phase current, and indicates the maximum value among the effective values of the lines determined to be deteriorated lines. The line is finally displayed on the display 19 as a deteriorated line.

【0011】さらに、劣化判定回路15では、回線の各
相毎に、上記位相差が所定の範囲θ内に入り、かつ上記
実効値が設定値Iorを越えたかどうかを見て、各相毎に
その劣化を判定している。したがって、この各相毎の判
定信号と、最大値比較回路16で劣化回線と判定された
回線を示す信号を全回線劣化相共通出力回路17にそれ
ぞれ入力することにより、劣化回線のうちどの相が劣化
しているかを判定することができ、これを表示器19に
表示する。
Furthermore, the deterioration determination circuit 15, for each phase of the line, the phase difference is entered within a predetermined range theta, and to see if the effective value exceeds the set value I or, for each phase The deterioration is determined. Therefore, by inputting the determination signal for each phase and the signal indicating the line determined to be the deteriorated line by the maximum value comparing circuit 16 to the all line deteriorated phase common output circuit 17, which phase of the deteriorated line is It can be determined whether or not it has deteriorated, and this is displayed on the display 19.

【0012】このような絶縁劣化検出装置6の詳細ブロ
ック図を図2に示している。
FIG. 2 shows a detailed block diagram of such an insulation deterioration detecting device 6.

【0013】相電圧変換回路11は、接地形計器用変圧
器GPTを用いて取り出された母線3の線間電圧E12
取り込み、この線間電圧E12を用いて絶対値で1/√
3、位相で30度遅れの基準相電圧E1と、これに対し
てそれぞれ120度位相差の基準相電圧E2,E3とから
成る基準相電圧Eを作り、各相毎に位相比較回路13に
入力している。また各配電線の零相変流器ZCTの二次
の零相電流I0を取り込んで商用周波数帯域フィルタ1
2を通した商用周波零相電流を、各相の位相比較回路1
3に入力し、基準相電圧Eと商用周波零相電流の位相を
比較している。この比較回路13は、その詳細を後述す
るように位相差が所定の範囲θ内に入った場合、それを
示す信号を劣化判定回路15の各相のアンド回路15a
の一方の入力端にそれぞれ入力している。実効値演算回
路14は、帯域フィルタ12を通した商用周波零相電流
を入力してその実効値を演算し、その値が所定の設定値
orを越えたとき、その実効値を各相のアンド回路15
aの他方の入力端にそれぞれ入力している。したがっ
て、各相のいずれかにおいて、上記位相差が所定の範囲
θ内に入り、かつ上記実効値が設定値Iorを越えた場
合、その相のアンド回路15aからそれを示す信号が出
力され、オア回路15bを介して最大値比較回路16に
入力する。最大値比較回路16は、各回線から上記実効
値とオア回路15bの出力を入力し、各回線毎に内蔵す
るスイッチをオア回路15bの出力でオンして上記実効
値を取り込み、これらを互に比較して各回線の実効値の
うち最大値を示す回線を選択し、最終的にこれを劣化回
線として表示器19に表示する。
The phase voltage conversion circuit 11 takes in the line voltage E 12 of the bus 3 taken out by using the grounding type transformer GPT, and uses this line voltage E 12 to obtain 1 / √ in absolute value.
3. A reference phase voltage E composed of a reference phase voltage E 1 delayed by 30 degrees in phase and reference phase voltages E 2 and E 3 having a phase difference of 120 degrees with respect to each other, and a phase comparison circuit is provided for each phase. 13 has been entered. Further, the secondary frequency zero-phase current I 0 of the zero-phase current transformer ZCT of each distribution line is taken in and the commercial frequency bandpass filter 1
The commercial frequency zero-phase current passing through the phase comparison circuit 2
3, the phase of the reference phase voltage E and the phase of the commercial frequency zero-phase current are compared. When the phase difference falls within a predetermined range θ, the comparison circuit 13 outputs a signal indicating the phase difference to the AND circuit 15a of each phase of the deterioration determination circuit 15 as described later in detail.
Is input to one of the input terminals. The effective value calculating circuit 14 inputs the commercial frequency zero-phase current through the bandpass filter 12 and calculates the effective value. When the effective value exceeds a predetermined set value Ior , the effective value is calculated for each phase. AND circuit 15
a is input to the other input terminal. Thus, in any of the phases, the phase difference is entered within a predetermined range theta, and when the effective value exceeds the set value I or, a signal indicative thereof from the AND circuit 15a of the phase is output, It is input to the maximum value comparison circuit 16 via the OR circuit 15b. The maximum value comparison circuit 16 inputs the effective value and the output of the OR circuit 15b from each line, turns on a built-in switch for each line at the output of the OR circuit 15b, captures the effective value, and compares these with each other. By comparison, the line indicating the maximum value among the effective values of the respective lines is selected, and this is finally displayed on the display 19 as a deteriorated line.

【0014】また、各相のアンド回路15aの出力はオ
ア回路15bを介さずに直接、全回線劣化相共通出力回
路17のアンド回路17aの一方の入力端に入力し、他
方の入力端には最大値比較回路16の出力が入力してい
る。したがって、最大値比較回路16で選択された劣化
回線において、上記位相差が所定の範囲θ内に入り、か
つ上記実効値が設定値Iorを超えた相のアンド回路17
aから劣化相を示す信号がオア回路17bを介して表示
器19に入力し、その劣化相を表示する。オア回路17
bには各回線からの劣化相を示す信号が入力しているの
で、各回線の劣化相を表示器19に共通に表示すること
ができる。
The output of the AND circuit 15a of each phase is directly input to one input terminal of the AND circuit 17a of the common output circuit 17 for all lines, without passing through the OR circuit 15b, and is input to the other input terminal. The output of the maximum value comparison circuit 16 is input. Therefore, in the deteriorated line selected by the maximum value comparing circuit 16, the AND circuit 17 of the phase in which the phase difference falls within the predetermined range θ and the effective value exceeds the set value I or
The signal indicating the deteriorated phase is input to the display 19 via the OR circuit 17b, and the deteriorated phase is displayed. OR circuit 17
Since the signal indicating the degraded phase from each line is input to b, the degraded phase of each line can be displayed on the display 19 in common.

【0015】なお、最大値比較回路16とアンド回路1
7aを省略し、劣化判定回路15のオア回路15bの出
力のみ、すなわち当該回線のいずれかの相において、上
記位相差が所定の範囲θ内に入り、かつ上記実効値が設
定値Iorを超えた条件のみで、劣化回線と判定したり、
各相のアンド回路15aの劣化相を示す信号をアンド回
路17aを介さずに直接、オア回路17bに入力したり
することもできるが、場合によっては複数の回線から同
時に劣化回線を示す信号や劣化相を示す信号が出力され
る虞れがあるので、最大値比較回路16とアンド回路1
7aを設けて、判定の信頼性を高めている。
The maximum value comparing circuit 16 and the AND circuit 1
7a is omitted, and only in the output of the OR circuit 15b of the deterioration determination circuit 15, that is, in any phase of the line, the phase difference falls within a predetermined range θ, and the effective value exceeds the set value Ior . The line is judged to be degraded only under the conditions
A signal indicating the degraded phase of the AND circuit 15a of each phase can be directly input to the OR circuit 17b without passing through the AND circuit 17a. Since the signal indicating the phase may be output, the maximum value comparing circuit 16 and the AND circuit 1
7a is provided to improve the reliability of the determination.

【0016】次に、絶縁劣化検出装置6の機能を理解す
るために、図3に示す負荷電気機器の構成を説明する。
Next, in order to understand the function of the insulation deterioration detecting device 6, the configuration of the load electric equipment shown in FIG. 3 will be described.

【0017】電源変圧器1から配電用遮断器5および零
相変流器ZCTを介してケーブル8および電動機9等か
ら成る負荷電気機器へ電力が供給されている。負荷電気
機器であるケーブル8は、中心導体7と外被接地層との
間の絶縁物に対地静電容量Ccを有しており、また負荷
電気機器である電動機9は、各相固定子巻線10と接地
層との間の絶縁物に対地静電容量Cmを有している。
Power is supplied from the power transformer 1 to the load electric equipment including the cable 8 and the motor 9 via the distribution circuit breaker 5 and the zero-phase current transformer ZCT. Cable 8 is a load electric device, the electric motor 9 has the ground electrostatic capacitance C c to the insulation between the center conductor 7 and the cover fabric ground layer, also a load electric equipment, each phase stator and a ground electrostatic capacitance C m in insulation between the winding 10 and the ground layer.

【0018】上述した負荷電気機器の対地静電容量Cc
と、対地静電容量Cmとによって対地漏洩電流I0fが図
4に示すように流れる。つまり、零相変流器ZCTを流
れる対地漏洩電流I0fはケーブル8と電動機9へ供給さ
れ、ケーブル8における対地漏洩電流Iocは、対地充電
電流Iccと、表面漏洩電流Iscとの合成電流となり、一
方、電動機9の対地漏洩電流Iomは、固定子巻線の対地
充電電流Icmと、表面漏洩電流Ismとの合成電流とな
り、この配電線に流れる対地漏洩電流I0fはケーブル8
の対地漏洩電流Iocと電動機9の対地漏洩電流Iomの合
成電流となり、零相変流器ZCTで検出される商用周波
零相電流に対応する。なお、以下の説明においては対地
漏洩電流I0fと商用周波零相電流が等しいものとする。
The ground capacitance C c of the above-described load electric device
And ground capacitance C m , a ground leakage current I 0f flows as shown in FIG. That is, the ground leakage current I 0f flowing through the zero-phase current transformer ZCT is supplied to the cable 8 and the electric motor 9, and the ground leakage current I oc in the cable 8 is a combination of the ground charging current I cc and the surface leakage current I sc. On the other hand, the ground leakage current I om of the motor 9 is a composite current of the stator winding charging current I cm of the stator winding and the surface leakage current I sm, and the ground leakage current I 0f flowing through this distribution line is a cable. 8
Of becomes ground leakage current I oc and the resultant current of ground leakage current I om the motor 9, corresponding to the commercial frequency zero-phase current detected by the zero-phase current transformer ZCT. In the following description, it is assumed that the ground leakage current I 0f is equal to the commercial frequency zero-phase current.

【0019】図5(a),(b)は絶縁物の正常時にお
ける対地漏洩電流の電流ベクトルおよび各相の位相関係
を示している。
FIGS. 5A and 5B show the current vector of the leakage current to the ground and the phase relationship of each phase when the insulator is normal.

【0020】絶縁物の対地静電容量による対地充電電流
cc(Icm)は基準相電圧Eに対し90度進み位相であ
り、絶縁体の表面漏洩電流Isc(Ism)は基準相電圧と
同位相である。しかし、それらの大きさは正常時の表面
漏洩電流Isc(Ism)がほぼ零であり、従って、各配電
線の対地漏洩電流I0f1,I0f2,I0f3は各相基準電圧
1,E2,E3に対してそれぞれ90度に近い進み位相
となり、しかも、常時はその電流ベクトルの三相和は零
となる。これに対して負荷電気機器であるケーブル8や
電動機9の絶縁物が劣化すると、表面漏洩電流Isc(I
sm)が増大し、対地充電電流Icc(Icm)との合成電流
である対地漏洩電流Ioc(Iom)は、図6(a)に示す
ように基準相電圧Eの位相に近づく。従って配電線の対
地漏洩電流I0fは、図6(b)に示すように当該劣化相
の対地漏洩電流I0f1と、他の健全相の対地漏洩電流I
0f2,I0f3の合成電流となり、劣化に伴う表面漏洩電流
は増加分αだけ増加する。
The ground charging current I cc (I cm ) due to the ground capacitance of the insulator is 90 degrees ahead of the reference phase voltage E, and the surface leakage current Is c (I sm ) of the insulator is the reference phase voltage. And the same phase. However, their size is a surface leakage current I sc (I sm) is substantially zero in the normal state, therefore, the ground leakage current I 0F1 of the distribution line, I 0f2, I 0f3 each phase reference voltages E 1, The leading phases of each of E 2 and E 3 are close to 90 degrees, and the three-phase sum of the current vectors is always zero. On the other hand, if the insulation of the cable 8 or the motor 9 as the load electric equipment deteriorates, the surface leakage current Isc (I
sm ) increases, and the ground leakage current I oc (I om ), which is a combined current with the ground charging current I cc (I cm ), approaches the phase of the reference phase voltage E as shown in FIG. Therefore, the ground leakage current I 0f of the distribution line is, as shown in FIG. 6B, the ground leakage current I 0f1 of the deteriorated phase and the ground leakage current I 0f of the other healthy phases.
0F2, becomes a combined current of I 0f3, surface leakage current due to the deterioration is increased by increment alpha.

【0021】図7(a)〜(c)は、各配電線の零相変
流器ZCTの一次に流れる対地漏洩電流I0f1,I0f2
0f3と基準相電圧E1,E2,E3との位相関係を示して
いる。図7(a)は当該劣化回線であり、図7(b)お
よび(c)は健全回線を示している。
FIGS. 7A to 7C show ground leakage currents I 0f1 , I 0f2 , and primary current flowing through the primary of the zero-phase current transformer ZCT of each distribution line.
The phase relationship between I 0f3 and the reference phase voltages E 1 , E 2 , E 3 is shown. FIG. 7A shows the deteriorated line, and FIGS. 7B and 7C show healthy lines.

【0022】同図から分かるように、当該劣化回線の第
一相に接続されている絶縁物の劣化による対地漏洩電流
0f1は、健全回線に影響を与えて、その第二相の近傍
の位相の対地漏洩電流I0f2,I0f3として現れる。しか
し、その対地漏洩電流I0f2,I0f3の電流値自体は小さ
い。
As can be seen from the figure, the ground leakage current I 0f1 due to the deterioration of the insulator connected to the first phase of the deteriorated circuit affects the sound circuit and causes the phase near the second phase to change. Appear as ground leakage currents I 0f2 and I 0f3 . However, the current values of the ground leakage currents I 0f2 and I 0f3 themselves are small.

【0023】上述した解析結果を基に絶縁劣化検出装置
6を説明すると、母線3の線間電圧E12から基準相電圧
1,E2,E3を求めているため、接地形計器用変圧器
GPTの中性点電位が変化し場合、従来のようにこれに
伴って接地形計器用変圧器GPTの二次の相電圧が変動
することがなく、検出の精度と信頼性を向上させること
ができる。しかも従来のように接地形計器用変圧器GP
Tの三次の零相電圧E0を用いていないため、零相電圧
0による誤動作を防止してその残留値以下の高感度で
検出を行うことができる。図1に示す位相比較回路13
は、図8に示すように当該劣化回線の対地漏洩電流I
0f1と、当該劣化回線の基準相電圧E1との位相差が、予
め設定した範囲θ内にあるのを検出すると、最大値比較
回路15に入力される。また図8に示すように、対地漏
洩電流Iof1が設定値Ior以上となると、その値が実効
値演算回路14から劣化判定回路15と最大値比較回路
16に入力される。その他の回線の対地漏洩Iof2,I
of3は第二相の近傍側に発生するが、設定値Ior以下で
あるので、実効値演算回路14からその実効値は出力さ
れない。したがって、第一相が劣化相であり、この劣化
相を含む回線が劣化回線であることが判別される。な
お、対地漏洩電流I0f1と基準相電圧E1との位相差の設
定値となる範囲θは、少なくとも進み側に設定すれば良
いが、ここでは回路構成の簡便さから進み側と遅れ側に
それぞれ設定した範囲θを定めている。
The insulation deterioration detecting device 6 will be described based on the above analysis results. Since the reference phase voltages E 1 , E 2 , and E 3 are obtained from the line voltage E 12 of the bus 3, the transformer for the ground-type instrument is obtained. When the neutral point potential of the detector GPT changes, the secondary phase voltage of the ground-type instrument transformer GPT does not fluctuate as in the prior art, thereby improving the accuracy and reliability of detection. Can be. Moreover, as in the past, the grounding type transformer GP
Since the third-order zero-phase voltage E 0 of T is not used, malfunction due to the zero-phase voltage E 0 can be prevented, and detection can be performed with high sensitivity equal to or less than the residual value. Phase comparison circuit 13 shown in FIG.
Is the ground leakage current I of the deteriorated line as shown in FIG.
And 0F1, the phase difference between the reference phase voltage E 1 of the degradation line detects that the is in the range θ set in advance, is inputted to the maximum value comparator circuit 15. As shown in FIG. 8, when the ground leakage current I of1 becomes equal to or larger than the set value I or , the value is input from the effective value calculation circuit 14 to the deterioration determination circuit 15 and the maximum value comparison circuit 16. Leakage of other lines to ground I of2 , I
Although of3 occurs near the second phase, the effective value is not output from the effective value calculation circuit 14 because it is equal to or less than the set value Ior . Therefore, it is determined that the first phase is the deteriorated phase, and the line including the deteriorated phase is the deteriorated line. Note that the range θ that is the set value of the phase difference between the ground leakage current I 0f1 and the reference phase voltage E 1 may be set at least to the leading side. Each set range θ is defined.

【0024】次に、母線3側で発生した地絡事故の検出
について説明する。
Next, detection of a ground fault occurring on the bus 3 will be described.

【0025】母線3側で地絡事故が発生した場合、絶縁
物の静電容量に基く対地充電電流が相電圧の変化により
三相の不平衡分としての差分が零相変流器ZCTの一次
側に流れ込み、それぞれ図9(a)〜(c)に示す位相
関係で各配電線の対地漏洩電流I0f1,I0f2,I0f3
検出される。この対地漏洩電流I0f1,I0f2,I0f3
電流値は、図10に示すように地絡事故の程度により相
電圧値および位相共大きく変化し、配電線の対地充電電
流の不平衡分に基く対地漏洩電流が重地絡となる程、全
て検出レベルIor以上となり、かつ地絡相と異なる相電
圧との位相差が設定された範囲θ内に入る。しかしなが
ら、この場合には、図10に示すように各回線の対地漏
洩電流Iof1,Iof2,Iof3の位相が全て同相となるの
で、図1の複数回線位相同時比較回路18でこれを検出
することにより、母線側の事故と判定し、これを表示器
19に表示する。なお、複数回線位相同時比較回路18
は、図2にその詳細を示すように、各回線における各相
毎にアンド回路15aからの劣化判定信号を入力する2
回線以上演算回路18aとオア回路18bから構成さ
れ、2回線以上演算回路18aで各回線のうち少なくと
も2つの回線の同一相から劣化判定信号が同時に入力さ
れたことを検出し、その検出信号をオア回路18bを介
して、すなわち各相共通にして表示器19に出力し、母
線地絡を表示する。
When a ground fault occurs on the bus 3 side, the difference between the charging current to the ground based on the capacitance of the insulator as a three-phase unbalanced component due to the change in the phase voltage is the primary of the zero-phase current transformer ZCT. And the leakage currents I 0f1 , I 0f2 , and I 0f3 of each distribution line to the ground are detected with the phase relationships shown in FIGS . The current values of the ground leakage currents I 0f1 , I 0f2 , and I 0f3 greatly change in phase voltage and phase depending on the degree of ground fault as shown in FIG. As the ground leakage current based on the ground fault increases, the detection level becomes all I or more, and the phase difference between the ground fault phase and a phase voltage different from the ground fault phase falls within the set range θ. However, in this case, as shown in FIG. 10, since the phases of the ground leakage currents I of1 , I of2 and I of3 of each line are all in phase, this is detected by the multiple line phase simultaneous comparison circuit 18 of FIG. By doing so, it is determined that there is an accident on the bus side, and this is displayed on the display 19. It should be noted that the multiple line phase simultaneous comparison circuit 18
Inputs a deterioration determination signal from the AND circuit 15a for each phase in each line, as shown in detail in FIG.
An arithmetic circuit 18a or more circuits and an OR circuit 18b are provided, and two or more arithmetic circuits 18a detect that degradation determination signals are simultaneously input from the same phase of at least two of the lines, and OR the detected signals. The signal is output to the display 19 via the circuit 18b, that is, for each phase in common, to indicate a bus ground fault.

【0026】なお、上述の実施例においては、母線3に
設けた接地形計器用変圧器GPTから母線3の線間電圧
を得たが、他の方法、例えば母線3に計器用変圧器を接
続し、この計器用変圧器から母線3の線間電圧を得ても
良い。
In the above-described embodiment, the line voltage of the bus 3 is obtained from the grounded-type instrument transformer GPT provided on the bus 3. However, another method, for example, the instrument transformer is connected to the bus 3. Then, the line voltage of the bus 3 may be obtained from the instrument transformer.

【0027】[0027]

【発明の効果】以上説明したように本発明の絶縁劣化検
出装置によれば、配電線の零相変流器の二次の零相電流
と、母線の線間電圧から変換した基準相電圧とを第1の
検出手段で位相比較するようにしたため、従来のように
使用状態で発生する接地形計器用変圧器の三次の零相電
圧よりも低い電圧で、しかも相電圧が変化する影響を無
視して絶縁劣化の検出を行うことができ、高い感出検度
で初期段階から正確絶縁劣化を検出することができ
る。さらに、少なくとも2つの配電線の同一相の第1の
検出手段から検出信号が同時に得られたことを第2の検
出手段で検出するようにしたため、上記絶縁劣化が母線
側で発生したと判定することができる。
As described above, according to the insulation deterioration detecting apparatus of the present invention, the secondary zero-phase current of the zero-phase current transformer of the distribution line and the reference phase voltage converted from the bus line voltage are used. The first
Since the phase comparison is made by the detection means, the insulation is degraded at a voltage lower than the tertiary zero-phase voltage of the ground-type instrument transformer generated in use as in the past, and ignoring the effect of the phase voltage change. can be performed in the detection, it is possible to accurately detect the insulation deterioration from the initial stage with high sensitive output Kendo. Furthermore, the first of the same phase of at least two distribution lines
The second detection indicates that the detection signals have been simultaneously obtained from the detection means.
The insulation deterioration is detected by the bus
Can be determined to have occurred.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による絶縁劣化検出装置を用
いた系統の回路図である。
FIG. 1 is a circuit diagram of a system using an insulation deterioration detecting device according to an embodiment of the present invention.

【図2】図1に示した絶縁劣化検出装置の詳細ブロック
図である。
FIG. 2 is a detailed block diagram of the insulation deterioration detecting device shown in FIG.

【図3】図1に示した負荷電気機器の概略構成図であ
る。
FIG. 3 is a schematic configuration diagram of the load electric device shown in FIG. 1;

【図4】図3に示した負荷電気機器の等価回路図であ
る。
FIG. 4 is an equivalent circuit diagram of the load electric device shown in FIG.

【図5】正常状態における基準相電圧と対地漏洩電流の
ベクトル図である。
FIG. 5 is a vector diagram of a reference phase voltage and a ground leakage current in a normal state.

【図6】絶縁劣化状態における基準相電圧と対地漏洩電
流のベクトル図である。
FIG. 6 is a vector diagram of a reference phase voltage and a ground leakage current in an insulation deterioration state.

【図7】複数の配電線の各対地漏洩電流と各基準相電圧
のベクトル図である。
FIG. 7 is a vector diagram of each ground leakage current and each reference phase voltage of a plurality of distribution lines.

【図8】図1に示した劣化判定回路の動作特性図であ
る。
8 is an operation characteristic diagram of the deterioration determination circuit shown in FIG.

【図9】母線側地絡事故時の各対地漏洩電流と各基準相
電圧のベクトル図である。
FIG. 9 is a vector diagram of each ground leakage current and each reference phase voltage at the time of a bus-side ground fault.

【図10】図1に示した複数回線位相同時比較回路の動
作特性図である。
FIG. 10 is an operation characteristic diagram of the multiple line phase comparison circuit shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1 電源変圧器 3 母線 6 絶縁劣化検出装置 8 ケーブル 9 電動機 11 相電圧変換回路 13 位相比較回路 14 実効値演算回路 15 劣化判定回路 16 最大値比較回路 17 全回線劣化相共通出力
回路 18 複数回線位相同時比較
回路 19 表示器 GPT 接地形計器用変圧器 ZCT 零相変流器 I0 零相電流 I0f1,I0f2,I0f3 対地漏洩電流
DESCRIPTION OF SYMBOLS 1 Power transformer 3 Bus 6 Insulation deterioration detection device 8 Cable 9 Motor 11 Phase voltage conversion circuit 13 Phase comparison circuit 14 Effective value calculation circuit 15 Deterioration judgment circuit 16 Maximum value comparison circuit 17 All line deterioration phase common output circuit 18 Multiple line phase Simultaneous comparison circuit 19 Indicator GPT Transformer for grounded type instrument ZCT Zero-phase current transformer I0 Zero-phase current I0f1 , I0f2 , I0f3 Ground leakage current

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H02H 7/26 H02H 7/26 C F (72)発明者 阿部 寛延 宮城県仙台市青葉区一番町三丁目7番1 号 東北電力株式会社内 (56)参考文献 特開 平4−42726(JP,A) 特開 昭57−97326(JP,A) 特開 平4−331417(JP,A) 特開 昭59−169326(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02H 3/00 H02H 7/26 H02H 3/34 ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 7 Identification code FI H02H 7/26 H02H 7/26 CF (72) Inventor Hironobu Abe 3-7-1, Ichibancho, Aoba-ku, Sendai City, Miyagi Prefecture Tohoku Electric Power Co., Inc. (56) References JP-A-4-42726 (JP, A) JP-A-57-97326 (JP, A) JP-A-4-331417 (JP, A) JP-A-59-169326 (JP JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02H 3/00 H02H 7/26 H02H 3/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電源に接続された母線に、それぞれ負荷
電気機器を有する複数の配電線を接続し、各配電線にそ
れぞれ零相変流器を設けて成る絶縁劣化検出装置におい
て、上記母線の線間電圧から基準相電圧を作る相電圧変
換回路と、各相毎に、この基準相電圧と上記零相変流器
の二次の零相電流との位相差が所定の範囲に入ると共
に、上記零相変流器の二次の零相電流が所定の設定値を
越えたことを検出する第1の検出手段と、各配電線の各
相毎の上記第1の検出手段のうち少なくとも2つの配電
線の同一相の第1の検出手段から検出信号が同時に得ら
れたことを検出する第2の検出手段と、この第2の検出
手段から検出信号が得られたときに上記母線側の絶縁破
壊と判定する判定手段とを設けたことを特徴とする絶縁
劣化検出装置。
1. An insulation deterioration detecting apparatus comprising: a plurality of distribution lines each having a load electric device connected to a bus connected to a power supply; and a zero-phase current transformer provided in each distribution line. A phase voltage conversion circuit that generates a reference phase voltage from the line voltage, and for each phase, a phase difference between the reference phase voltage and the secondary zero-phase current of the zero-phase current transformer falls within a predetermined range, First detecting means for detecting that the secondary zero-phase current of the zero-phase current transformer has exceeded a predetermined set value; and at least two of the first detecting means for each phase of each distribution line. Power distribution
The detection signals are simultaneously obtained from the first detection means of the same phase of the line.
Second detecting means for detecting the occurrence of the insulation failure, and judging means for judging the bus-side dielectric breakdown when a detection signal is obtained from the second detecting means. Insulation deterioration detection device.
JP05122956A 1993-05-25 1993-05-25 Insulation degradation detector Expired - Lifetime JP3109633B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP05122956A JP3109633B2 (en) 1993-05-25 1993-05-25 Insulation degradation detector
FR9405982A FR2709385B1 (en) 1993-05-25 1994-05-17 Device for detecting deterioration of insulation of distribution lines connected to bus bars for power supply.
DE4418124A DE4418124C2 (en) 1993-05-25 1994-05-24 Device for detecting insulation deterioration on power supply lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05122956A JP3109633B2 (en) 1993-05-25 1993-05-25 Insulation degradation detector

Publications (2)

Publication Number Publication Date
JPH06339218A JPH06339218A (en) 1994-12-06
JP3109633B2 true JP3109633B2 (en) 2000-11-20

Family

ID=14848792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05122956A Expired - Lifetime JP3109633B2 (en) 1993-05-25 1993-05-25 Insulation degradation detector

Country Status (3)

Country Link
JP (1) JP3109633B2 (en)
DE (1) DE4418124C2 (en)
FR (1) FR2709385B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2810117B1 (en) * 2000-06-13 2002-08-23 Electricite De France RESISTANT DEFECT DETECTION METHOD
JP4702726B2 (en) * 2000-11-30 2011-06-15 日置電機株式会社 Display method of vector lines in power meter
JP2003202357A (en) * 2001-11-01 2003-07-18 Toshiba Corp Method and apparatus for insulation monitoring
JP4020304B2 (en) * 2002-08-09 2007-12-12 株式会社東芝 Ground fault direction relay and ground fault direction relay device
EP2756571B1 (en) * 2011-10-28 2016-04-06 Siemens Aktiengesellschaft Method and protective device for identifying a ground fault in a polyphase electrical energy supply network having a compensated or isolated star point
JP5963560B2 (en) * 2012-06-19 2016-08-03 日置電機株式会社 Power measuring apparatus and vector diagram display method in power measuring apparatus
KR101844825B1 (en) * 2017-03-31 2018-04-04 한국전력공사 Non-destructive safety eqiupment dielectric test apparatus and method
JP6757868B1 (en) * 2020-06-03 2020-09-23 日本テクノ株式会社 High-voltage CV cable insulation deterioration information acquisition device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019363B2 (en) * 1990-06-06 2000-03-13 株式会社明電舎 Ground fault display of distribution line
KR960003360B1 (en) * 1991-06-03 1996-03-09 마쯔시다덴기산교 가부시기가이샤 Zero phase voltage measuring device
JP3160612B2 (en) * 1991-06-17 2001-04-25 株式会社日立製作所 Power system insulation deterioration detection method and apparatus
FR2682190B1 (en) * 1991-10-07 1995-08-04 Electricite De France METHOD FOR THE SELECTIVE DETECTION OF A RESISTANT FAULT IN AN ELECTRICAL POWER DISTRIBUTION NETWORK AND DEVICE FOR ITS IMPLEMENTATION.

Also Published As

Publication number Publication date
DE4418124A1 (en) 1994-12-01
JPH06339218A (en) 1994-12-06
DE4418124C2 (en) 1998-12-24
FR2709385A1 (en) 1995-03-03
FR2709385B1 (en) 1998-11-06

Similar Documents

Publication Publication Date Title
FI115488B (en) Method and apparatus for detecting a breaking earth fault in a power distribution network
JP3704532B2 (en) Method and apparatus for determining a ground fault on a conductor of an electric machine
RU2633433C2 (en) Directional detection of fault in network, in particular, in system with grounded compensated or insulated neutral
US8300369B2 (en) System and method for polyphase ground-fault circuit-interrupters
US4638242A (en) Method and device for measuring insulation deterioration of electric line
CN100405685C (en) Device and method for detecting an earth fault and relay with such a device
JP3109633B2 (en) Insulation degradation detector
US5612601A (en) Method for assessing motor insulation on operating motors
JP4871511B2 (en) Interrupt insulation measuring device
Leal et al. Comparison of online techniques for the detection of inter-turn short-circuits in transformers
JP2006200898A5 (en)
JP2992615B2 (en) Line constant measuring device and ground fault monitoring device for ungrounded electric circuit
JP2578766B2 (en) Live tan δ measuring device
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
CN106602516A (en) PT secondary harmonic eliminating device and harmonic eliminating method
JP3161757B2 (en) Power system insulation deterioration detection method, insulation deterioration detection device, insulation deterioration detection system, and insulation deterioration determination device
KR100637619B1 (en) Method and apparatus for protecting shunt capacitor banks based on voltage difference
Zhou et al. Characterization of EMI/RFI in commercial and industrial electrical systems
JPH07245869A (en) Insulation deterioration detection device for electric equipment
JPH04220573A (en) Low-voltage system line wire insulation monitoring method
US2864037A (en) Fault detector for polyphase circuits
JPH0643196A (en) Insulation monitor device in low voltage electric circuit
JP2702961B2 (en) Ground fault line selection device
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system
JPH01170865A (en) Detecting device for grounding failure point of electric distribution line

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 13

EXPY Cancellation because of completion of term