JP2702961B2 - Ground fault line selection device - Google Patents

Ground fault line selection device

Info

Publication number
JP2702961B2
JP2702961B2 JP9149688A JP9149688A JP2702961B2 JP 2702961 B2 JP2702961 B2 JP 2702961B2 JP 9149688 A JP9149688 A JP 9149688A JP 9149688 A JP9149688 A JP 9149688A JP 2702961 B2 JP2702961 B2 JP 2702961B2
Authority
JP
Japan
Prior art keywords
phase
zero
output
ground fault
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9149688A
Other languages
Japanese (ja)
Other versions
JPH01264530A (en
Inventor
博 芳賀
安郎 秋沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9149688A priority Critical patent/JP2702961B2/en
Publication of JPH01264530A publication Critical patent/JPH01264530A/en
Application granted granted Critical
Publication of JP2702961B2 publication Critical patent/JP2702961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非接地配電線路の機材劣化による地絡回線
を特定する装置に係り、特に配電線に設けた零相変流器
から得る零相電流のみで地絡回線を特定することが可能
な地絡回線装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for specifying a ground fault line due to deterioration of equipment of an ungrounded distribution line, and particularly relates to a zero-phase current transformer provided on a distribution line. The present invention relates to a ground fault line device capable of specifying a ground fault line using only phase current.

〔従来の技術〕[Conventional technology]

「高圧受電設備指針」社団法人日本電気協会発行によ
れば我が国の高圧配電線路は、一般に樹技状の系統であ
り、受電用変圧器の中性点は非接地となつている。そし
て、その線路の各相電線は、大地に対し幾何学的配置が
非対称となつている部分が存在している。このため各相
の対地静電容量が不平衡となり、常時残留零相電流I0r
が存在しており、絶縁電線の増大と共に対地静電容量も
増加している。
According to the "High Voltage Receiving Equipment Guideline" issued by the Japan Electrical Association, the high voltage distribution lines in Japan are generally tree-like systems, and the neutral point of the receiving transformer is ungrounded. And each phase electric wire of the line has a part whose geometrical arrangement is asymmetric with respect to the ground. For this reason, the ground capacitance of each phase becomes unbalanced, and the residual zero-phase current I 0r
And the capacitance to ground increases with the increase of the insulated wires.

一方地絡保護には、一般に接地変圧器より得る零相電
圧と、各配電線に設置された零相変流器から得る零相電
流を入力とし、この両者の位相関係を判定し地絡回線を
特定する地絡方向継電器が採用されている。この検出感
度は、保安上及び線路機材の保守点検業務の効率化と、
供給信頼度の向上を計る点から絶縁劣化区間を高感度に
検出することが望まれている。しかし前記残留零相電圧
の存在や、残留零相電流の存在、更に対地静電容量の増
大による零相電圧の低下などより検出感度は制限されて
しまう。また残留電圧、電流で許容される検出感度以上
に整定した場合は、その判定結果に誤まりを起こす結果
となる。
On the other hand, for ground fault protection, generally, the zero-phase voltage obtained from the grounding transformer and the zero-phase current obtained from the zero-phase current transformer installed in each distribution line are input. A ground fault directional relay that identifies the This detection sensitivity improves the efficiency of maintenance and inspection work for security and track equipment,
It is desired to detect the insulation degradation section with high sensitivity in order to improve the supply reliability. However, the detection sensitivity is limited by the existence of the residual zero-sequence voltage, the existence of the residual zero-sequence current, and the decrease of the zero-sequence voltage due to an increase in the ground capacitance. Further, when the detection sensitivity is set to be equal to or higher than the detection sensitivity allowed by the residual voltage and the current, the result of the determination becomes erroneous.

第2図は非接地系配電線路の従来の地絡保護の概要を
示したものである。この図に於て、F1〜F3は、配電線で
しや断器CB1〜CB3を介してそれぞれ母線BUSに接続さ
れ、さらに主変圧器MTに接続される。一方地絡方向継電
器DG1〜DG3は夫々対応する零相変流器ZCT1〜ZCT3、と共
通設置の接地変成器GPTの出力する電気信号を入力と
し、零相電圧V0および零相電流I01〜I03が所定値以上で
かつ位相関係が所定位相角以内の時動作出力を導出し、
該当しや断器CB1〜CB3のいずれかを作動させ開放する。
FIG. 2 shows an outline of conventional ground fault protection of an ungrounded distribution line. In FIG Te at, F 1 to F 3 are respectively connected to the bus BUS via a distribution line was and disconnection device CB 1 to CB 3, is connected to a further main transformer MT. Meanwhile grounded directional relay DG 1 ~DG 3 is zero-phase current transformer respectively corresponding ZCT 1 ~ZCT 3, and inputs the electrical signal output by the ground transformer GPT common installation, the zero-phase voltage V 0 and zero-phase When the currents I 01 to I 03 are equal to or more than a predetermined value and the phase relationship is within a predetermined phase angle, an operation output is derived,
Actuates one of the corresponding to and disconnection device CB 1 to CB 3 is opened.

第2図の地絡方向継電器DG1〜DG3の構成と動作につい
て第3図と第4図を用いて説明する。第3図は地絡方向
継電器の1例であり、ここでPTは、接地変成器GPTの出
力零相電圧V0をレベル検出回路1に適した電気量に変換
する変成器で、CTは、零相変流器ZCTの出力零相電流I0
をレベル検出回路3に適した電気量に変換する変成器で
ある。レベル検出回路1は、V0の所定のレベル以上を方
形波回路2に導出する。一方レベル検出回路3は、I0
所定のレベル以上を方形波回路4に導出する。位相比較
回路5は、方形波回路2および4の出力方形波を入力と
し、これらの方形波の重り角が動作判定角(電気角で約
90℃)以下のとき判定出力を出力回路6に導出し、出力
回路6は、位相比較回路5のパルス状の信号を受けて、
そのパルスが所定個数連続したことを検出して該当する
しや断器CB1〜CB3へしや断指令を出力する。
The configuration and operation of the earth fault directional relay DG 1 ~DG 3 of FIG. 2 will be described with reference to FIG. 3 and FIG. 4. FIG. 3 is an example of a ground fault direction relay, where PT is a transformer for converting the output zero-phase voltage V 0 of the grounding transformer GPT into an electric quantity suitable for the level detection circuit 1, and CT is Output zero-phase current I 0 of zero-phase current transformer ZCT
Is a transformer for converting into a quantity of electricity suitable for the level detection circuit 3. The level detection circuit 1 derives a predetermined level or more of V 0 to the square wave circuit 2. On the other hand, the level detection circuit 3 derives a predetermined level of I 0 or more to the square wave circuit 4. The phase comparison circuit 5 receives the square waves output from the square wave circuits 2 and 4 as inputs, and determines the weight angle of these square waves as the operation determination angle (about the electrical angle).
90 ° C.) or less, the determination output is derived to the output circuit 6, and the output circuit 6 receives the pulse signal of the phase comparison circuit 5,
Detecting that the pulses have continued for a predetermined number of times, the corresponding pulse generators CB 1 to CB 3 are output with a pulse disconnect command.

第4図に第3図の各部の波形a,b,c,dを示しており、
零相電圧V0と零相電流I0の位相差角θが位相比較回路5
の動作判定角以下で動作出力を導出する。第5図は第3
図で示す地絡方向継電器のV0とI0との動作及び不動作域
を示す位相特性図で位相比較回路5の動作判定角を電気
角で約90゜とした例示で、本例の位相弁別は、V0とI0
の重なり角が90゜より小さい場合、すなわち(180−
θ)<π/2のとき不動作となり、(180−θ)>π/2の
とき動作となる。
FIG. 4 shows waveforms a, b, c, and d of the respective parts in FIG.
The phase difference angle θ between the zero-phase voltage V 0 and the zero-phase current I 0 is determined by the phase comparison circuit 5
The operation output is derived below the operation determination angle of. FIG. 5 shows the third
In the phase characteristic diagram showing the operation and non-operation area of V 0 and I 0 of the ground fault directional relay shown in the figure, the operation judgment angle of the phase comparison circuit 5 is set to about 90 ° in electrical angle. If discrimination overlaps angle to V 0 and I 0 is less than 90 degrees, i.e. (180-
θ) <π / 2, no operation is performed, and when (180−θ)> π / 2, operation is performed.

次に第2図の系統の配電線F1のG点に1線地絡事故G
が発生したと仮定し、地絡方向継電器DG1〜DG3の動作に
ついて説明する。
Then 1-line ground fault G to G point of the distribution line F 1 strains of Figure 2
There is assumed that occurred, the operation of the earth fault directional relay DG 1 ~DG 3.

事故発生と同時に各DG1〜DG3には、正常時とは異なる
V0が印加され、一方、I0についてみると、DG1では故障
点電流Igに見合つた零相電流I01がZCT1より印加され
る。DG2は対地静電容量C2の充電々流IC2に見合つた電流
I02,DG3は、接地静電容量C3に見合つた電流I03が印加さ
れる。第2図に示すように各配電線の電流方向は、F1
母線BUSより流出する方向でF2,F3では、母線に対し流入
する方向となつておりこの例ではほぼ180゜の位相差を
もつている。すなわち故障回線F1のDG1を動作方向とす
べく位相判定を行なつたとすればF2のDG2,F3のDG3は不
動作となるため故障回線の選択が可能となる。
At the same time as the accident occurred, each DG 1 to DG 3 is different from normal
V 0 is applied, whereas, when viewed for I 0, commensurate ivy zero-phase current I 01 in the fault point in DG 1 current I g is applied from ZCT 1. DG 2 is the current corresponding to the charging current I C2 of the ground capacitance C 2
A current I 03 corresponding to the ground capacitance C 3 is applied to I 02 and DG 3 . Current direction of each distribution line as shown in FIG. 2, the F 2, F 3 in the direction F 1 flows out from the bus BUS, approximately 180 ° position in this example and summer and direction flowing to bus Has a difference. That DG 3 fault line DG 2 of F 2 when the phase determination that there was line summer in order to the operation direction DG 1 of F 1, F 3 becomes possible to select the fault line to become inoperative.

次に常時、系統に残留零相電圧V0r,残留零相電流I0r
が発生している系統に地絡事故が発生した例について説
明する。地絡事故によつて発生する零相電圧をV0s、事
故回線の零相電流をI0s1、健全回線の零相電流をI0s2
すると第6図に示すようにDGRの端子入力零相電圧は、V
0s1またはV0s2のように、V0sとV0rのベクトル合成とな
り真の故障によつて発生した真のV0sより±φ位相ずれ
を起こしこの値はV0sとV0rの大きさが等しいときその合
成零相電圧はV0sに対し±45゜の位相差をもつことにな
る。残留零相電圧V0rの発生位相は系統条件によつて同
相から360゜の範囲となり、DGRの動作範囲を示す位相特
性は第6図に示すように零相電圧の位相ずれ角φと等し
くV0sの基準特性Sに対しφ1の位相のずれを起こ
す。一方継電器の端子入力零相電流は、事故回線の
I01、健全回線のI02は、それぞれの回線に発生している
残留電流I0r1,I0r2と事故時発生したそれぞれの回線に
流れる真の零相電流I0s1,I0s2とのベクトル合成とな
る。この時の事故回線のDGでは位相特性BとI01との関
係において不動作となる範囲、健全回線DGでは、位相特
性BとI02との関係で動作となる範囲が存在する。
Next, always, the residual zero-sequence voltage V 0r and the residual zero-sequence current I 0r
An example in which a ground fault accident has occurred in a system where a fault has occurred will be described. The zero-phase voltage by connexion occurs a ground fault V 0 s, the zero-phase current of the fault line I 0S1, the zero-phase current of the healthy line When I 0S2 first 6 DGR terminal input zero-phase voltage as shown in FIG. Is V
As 0s1 or V 0S2, when this value causes a ± phi phase shift than the true V 0 s which I connexion generated a true failure becomes a vector synthesis of V 0 s and V 0r is equal magnitude of V 0 s and V 0r The resultant zero-phase voltage has a phase difference of ± 45 ° with respect to V 0s . The generation phase of the residual zero-phase voltage V 0r is in the range of 360 ° from the same phase depending on the system conditions, and the phase characteristic indicating the operating range of the DGR is equal to the phase shift angle φ of the zero-phase voltage as shown in FIG. phi 1 to the reference signature S of 0 s, it causes a shift of phi 2 phase. On the other hand, the terminal input zero-phase current of the relay
I 01 and I 02 of the healthy line are vector composites of the residual currents I 0r1 and I 0r2 generated in the respective lines and the true zero-phase currents I 0s1 and I 0s2 flowing in the respective lines generated at the time of the accident. Become. Range of inoperative in relation to the the DG accident line phase characteristics B and I 01 at this time, the healthy line DG, there is a range that operation in relation to the phase characteristics B and I 02.

次に1線地絡事故発生時の零相電圧について対地静電
容量との関係について第7図にて説明する。第7図は1
線地絡発生時の等価回路である相電圧E、系全体の対地
静電容量をC0、故障点抵抗Rgとすると発生する零相電圧
V0と相電圧との関係は(1)式で示すことができる。
Next, the relationship between the zero-sequence voltage at the time of occurrence of the one-line ground fault and the capacitance to the ground will be described with reference to FIG. Fig. 7 shows 1
The phase voltage E, which is an equivalent circuit when a line ground fault occurs, the zero-phase voltage generated when the capacitance of the entire system to ground is C 0 , and the fault point resistance R g is
The relationship between V 0 and the phase voltage can be expressed by equation (1).

すなわち第8図にベクトル図に示すように、gR
gは、故障点に印加される電圧で は零相電圧V0に相当する、Rgを一定とした時のV0は対地
静電容量C0の大きい系統では小さくなることがわかる。
That is, as shown in the vector diagram in FIG. 8, g R
g is the voltage applied to the fault point Is equivalent to the zero-phase voltage V 0 , and it can be seen that V 0 when R g is constant becomes smaller in a system having a large ground capacitance C 0 .

一方系統の配電線路を構成する機材の経年的な絶縁劣
化による地絡事故は、微小地絡で間欠的に発生し、更に
経時と共に連続的になる。この検出を、従来の地絡方向
継電器は地絡事故が所定の時間連続して発生したことを
判定する方式となつている。
On the other hand, ground faults due to aging insulation deterioration of equipment constituting the distribution line of the system occur intermittently due to minute ground faults, and become continuous over time. The conventional ground fault directional relay determines this by determining that a ground fault has occurred continuously for a predetermined time.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

以上述べたように従来の地絡方向継電器は、配電線の
出口に設けられる零相変流器(ZCT)より得る零相電流
(I0)の他に、母線に接続される接地変成器(GPT)よ
り得る零相電圧(V0)との位相弁別を行なつて回線の選
択をするもので、位相別弁を行なう基本原理を各回線に
流れる零相電流I0の他に基準となる電気量(この例では
V0)を必ず取り込む方式としている。
As described above, the conventional earth-fault directional relay has a zero-phase current (I 0 ) obtained from a zero-phase current transformer (ZCT) provided at the outlet of the distribution line, and a grounding transformer (I 0 ) connected to the bus. GPT) is used to select a line by performing phase discrimination with the zero-phase voltage (V 0 ) obtained from the GPT). The basic principle of performing phase discrimination is a reference other than the zero-phase current I 0 flowing through each line. Quantity of electricity (in this example,
V 0 ).

一方検出感度は、従来の地絡方向継電器では、常時、
残留電圧または残留電流の存在する系統では、残留電気
量と地絡事故によつて発生する零相分電気量とのベクト
ル合成量を入力として位相を弁別することになるため、
特に動作限界近傍の微地絡事故(高抵抗地絡事故)時に
は、位相弁別を誤ることになる。これを防止するため検
出感度を高くし残留零相電圧または残留電流に影響を受
けないように配慮するなど残留電気量により検出感度の
整定に制約を受ける。また地絡事故の判定を確実にする
ため、地絡事故が連続して所定の時間継続したことを確
認する方式となつているため軽微な地絡事故で間欠的な
ものは検出できないケースがあつた。
On the other hand, the detection sensitivity is always
In a system with residual voltage or residual current, the phase is discriminated by using the vector composite amount of the residual electric amount and the zero-phase electric amount generated by the ground fault as input.
In particular, in the event of a micro-ground fault near the operating limit (high-resistance ground fault), phase discrimination will be erroneous. To prevent this, the detection sensitivity is restricted by the amount of residual electricity, for example, the detection sensitivity is increased so as not to be affected by the residual zero-sequence voltage or residual current. In addition, in order to ensure the determination of a ground fault, a method is used to confirm that the ground fault has continued for a predetermined period of time. Was.

本発明は、各配電線に設置する零相変流器より得る零
相電流のみを入力とし、この零相電流相互の位相関係か
ら地絡回線を選択可能とし、更に、常時発生している残
留電流の大きさに左右されることなく軽微な地絡事故を
も判定可能な、地絡回線選択装置を提供することにあ
る。
According to the present invention, only a zero-phase current obtained from a zero-phase current transformer installed in each distribution line is input, and a ground fault line can be selected from the phase relationship between the zero-phase currents. It is an object of the present invention to provide a ground fault line selecting device capable of determining a minor ground fault without being influenced by the magnitude of the current.

〔課題を解決するための手段〕[Means for solving the problem]

上記課題を達成するために本発明では、複数回線を有
する非接地系配電線路の地絡事故を検出する地絡回線選
択装置において、各回線の零相電流の高次周波成分を導
出する高次周波導出手段、複数回線中の所定回線の高次
周波導出手段からの出力信号と、他の回線の高次周波導
出手段からの出力信号との位相関係を比較し、所定の位
相範囲となったとき判別出力を導出する位相判定手段
と、位相判定手段の判別出力が所定の時間内に所定値と
なったことを判定する出力判定手段とを備えるようにし
たものである。
In order to achieve the above object, according to the present invention, in a ground fault line selection device for detecting a ground fault accident of an ungrounded distribution line having a plurality of lines, a high order frequency component of a zero-phase current of each line is derived. The frequency deriving means, the output signal from the higher-order frequency deriving means of a predetermined line in the plurality of lines, and the phase relationship between the output signal from the higher-order frequency deriving means of another line, the predetermined phase range A phase determining means for deriving a determination output; and an output determining means for determining that the determination output of the phase determination means has reached a predetermined value within a predetermined time.

〔作用〕[Action]

非接地系樹枝状配電線路において、1線地絡事故発生
時の零相電流は、健全回線側の対地充電々流の向きは、
母線(BUS)に流入する方向に流れる方向で事故回線側
では、母線から流出する方向に流れる。この値は、健全
回線の対地充電々流と対値漏洩抵抗による電流の合成値
が流れる。(一般に対地漏洩電流は対地充電々流に比較
して非常に小さいため省略しても良い。) 従つて、各々の配電線に設置する零相変流器より得た
零相電流を直流分及び基本波成分を阻止し第2次高調波
分以上をパスするハイパスフイルタを介してこの電流の
位相関係を相互に比較し他の複数回線の電流方向と自回
線の電流方向が逆位相となつたことを判別し、その逆位
相関係にある回線を事故回線と特定する。
In an ungrounded dendritic distribution line, the zero-phase current at the time of a one-line ground fault occurs,
On the accident line side, the air flows in the direction flowing into the bus (BUS) and flows out from the bus. This value is a composite value of the current due to the ground charge of the healthy line and the current due to the value leakage resistance. (Generally, the ground leakage current is very small compared to the ground charging current, so it may be omitted.) Therefore, the zero-phase current obtained from the zero-phase current transformer installed in each distribution line is divided into the DC component and The phase relations of the currents are compared with each other via a high-pass filter that blocks the fundamental wave component and passes the second harmonic wave or more, and the current directions of the other plural lines and the own line become opposite phases. Is determined, and the line having the opposite phase relationship is specified as the faulty line.

〔実施例〕〔Example〕

以下、本発明の一実施例について説明する。 Hereinafter, an embodiment of the present invention will be described.

第1図に本発明による配電線の地絡回線選択装置の一
実施例を示す。本発明の接続で、第2図と異なる点は、
母線(BUS)に接続される接地変圧器GPTより得る零相電
圧(V0)の取り込みを不要とし、各配電線路に設置する
零相変流器(ZCT1〜ZCTm)の2次側電流(i01,i02
i0n)のみを取り込む方式とした点にあり、他は同一で
ある。
FIG. 1 shows an embodiment of an apparatus for selecting a ground fault line of a distribution line according to the present invention. The connection of the present invention differs from FIG.
It is not necessary to take in the zero-phase voltage (V 0 ) obtained from the grounding transformer GPT connected to the bus (BUS), and the secondary side current of the zero-phase current transformers (ZCT 1 to ZCT m ) installed in each distribution line (I 01 , i 02
i 0n ), and the rest is the same.

第1図において、MTは受電変圧器、CB1,CB2,CBnは配
電線F1〜Fnのしや断器、ZCT1,ZCT2,ZCTnは故障点電流
(Ig)または対地充電々流(IC2,ICn)に見合つた電流
(i01,i02,i0n)に変換する零相変流器、C1,C2,Cnは、
当該配電線路の対地静電容量、DGは本発明の地絡回線選
択装置、OT1はF1,OT2はF2、OTnは、Fnに対応して出力す
る事故回線選択出力信号であり第9図は、第1図のDGの
構成例である。第9図において1−1,1−2,1−nは、ZC
Tの2次電流i01,i02,i0nを入力とし、この電流の特定次
数分を通過させるフイルタ、2−1,2−2,2−nは、1−
1,1−2,1−nの出力に対応し、これを方形波に変換する
波形整形回路、3は、波形整形回路の出力信号を入力と
し、所定の位相関係になつたとき出力を導出する位相弁
別部、(31−1,31−2,31−n)は、対応する波形整形回
路の出力を反転する位相反転回路、(32−1,32−2,32−
n)は、自回線の位相反転回路出力と他の回路の波形整
形回路出力とを入力する、論理積回路、(33−1,33−2,
33−n)は、対応する論理積回路の出力を入力とし、特
定次数の電気角π/2+α以上と入力波形がなつた時出力
する波形測定回路、4は、波形測定回路の出力が所定の
時間内に所定の量になつたことを計測し、所定値以上で
該当しや断器CB1〜CBnへ引外し指令を出す出力回路など
で構成している。
In FIG. 1, MT is a power receiving transformer, CB 1 , CB 2 , and CB n are distribution line breakers F 1 to F n , and ZCT 1 , ZCT 2 , and ZCT n are fault point currents (I g ) or The zero-phase current transformers C 1 , C 2 , and C n that convert the currents (i 01 , i 02 , i 0n ) corresponding to the ground charging currents (I C2 , I Cn )
The ground capacitance of the distribution line concerned, DG is a ground fault line selection device of the present invention, OT 1 is F 1 , OT 2 is F 2 , OT n is an accident line selection output signal output corresponding to F n FIG. 9 shows an example of the configuration of the DG shown in FIG. In FIG. 9, 1-1, 1-2, 1-n are ZC
A filter which receives a secondary current i 01 , i 02 , i 0n of T as an input and allows a specific order of this current to pass through, 2-1,2-2,2-n is 1-
A waveform shaping circuit corresponding to the output of 1, 1-2, 1-n and converting this into a square wave, 3 receives an output signal of the waveform shaping circuit as an input, and derives an output when a predetermined phase relationship is established. (31-1, 31-2, 31-n) is a phase inverting circuit for inverting the output of the corresponding waveform shaping circuit, (32-1, 32-2, 32-
n) is an AND circuit for inputting the output of the phase inversion circuit of the own line and the output of the waveform shaping circuit of another circuit, (33-1, 33-2,
33-n) is a waveform measuring circuit which receives the output of the corresponding AND circuit as an input and outputs when the input waveform forms an electrical angle of π / 2 + α or more of a specific order, and 4 designates that the output of the waveform measuring circuit is a predetermined value. measures that has decreased to a predetermined amount in time, constitute such an output circuit tripping to the corresponding to and disconnection device CB 1 to CB n instructs at least a predetermined value.

この構成において以下動作を説明する。 The operation of this configuration will be described below.

例えば第1図において母線(BUS)のG2点に地絡事故
が発生したと仮定すると、各配電線路の対地充電々流I
C1〜ICnが故障点G2に流れ各配電線に流れる充電々流
は、対応するZCT1〜ZCTnよりこれに見合つた零相電流i
01〜i0nに変換されDGに印加される。DGではこの電流の
基本波以外の高次数の高調波電流成分の特定調波数成分
電流に関する位相判定を行なう。この故障のケースの対
地充電々流の方向は各配電線共母線側に流入する方向で
全回線共ほぼ同位相にある、この関係を第10図に示す。
位相弁別回路3の論理積回路(31−1,31−n)は、各形
波整形回路の出力が全べて同相となつており自回線のみ
位相反転されているため、この出力はほぼ零となる。従
つて、この理論回路の出力信号が零の場合この回路の後
段の回路は作動しないため出力OT1〜OTnは零となり該当
する全べての回線は健全であることを示す。
For example, assuming that a ground fault in the G 2 points of the bus (BUS) is generated in the first view, ground charging s flow I of each distribution line
C1 ~I Cn charging s flowing in the distribution line flows in the fault point G 2 is the corresponding ZCT 1 ~ZCT n This commensurate ivy zero-phase current i from
01 to i 0n and applied to DG. In the DG, the phase of a specific harmonic number component current of a higher-order harmonic current component other than the fundamental wave of this current is determined. In the case of this failure, the direction of the ground charging flow is almost the same for all the lines in the direction in which each distribution line flows into the common bus side. This relationship is shown in FIG.
In the AND circuit (31-1, 31-n) of the phase discriminating circuit 3, since the outputs of all the waveform shaping circuits are all in phase and only the own line is inverted, the output is almost zero. Becomes Accordance connexion, indicating that the output signal of this theory circuit is the circuit in the subsequent stage of the circuit case zero total all of the line output OT 1 ~OT n is applicable becomes zero because it does not work is sound.

次に第1図においてF1のG1点に地絡事故が発生したこ
とを仮定すると、対地充電々流i02,i0nは母線側に流入
する方向に流れ、故障点G1にはIg1が母線から流出する
方向に流れる。このIg1は、ほぼC2Cnと健全回線
の対地充電々流が支配的であり、このIg1とI02,I0nの位
相差はほぼ180゜近傍にある。この電流はZCT1〜ZCTn
介してこれに見合つたi01〜i0nに変換されDGに印加され
る。第11図にこのケースの各部の波形を示す。位相弁別
部3の論理回路32−1は位相反転回路31−1と形整形回
路21−2,21−nの信号を入力とするためその重り角が出
力され第11図の31−1の出力波形の如く所定の幅をもつ
て出力される。他の論理積回路32−2,32−nは2−1の
出力との論理積となるためこの出力は零となる。波形測
定回路31−1〜31−nは論理積回路32−1の出力が電気
角でほぼ180゜の幅とを有するため第11図の33−1の如
くパル波形を導出する。次に出力回路4は33−1の出力
パルスを所の時間内に決められた値に達したか否かを確
認しこの値が所定の値となつた時、対応する当該CBに作
動指令を出力する。
Now earth fault in G 1 point F 1 is assumed to be generated at the first view, ground charging s flow i 02, i 0n flow in a direction flowing into the bus side, the fault point G 1 I g1 flows out of the bus. This I g1 is almost C2 + Cn and the dominant charging current of the healthy line to the ground is dominant, and the phase difference between this I g1 and I 02 and I 0n is about 180 °. This current is applied to the DG is converted into this through ZCT 1 ~ZCT n in commensurate ivy i 01 through i 0n. FIG. 11 shows the waveform of each part in this case. The logic circuit 32-1 of the phase discriminating unit 3 receives the signals of the phase inverting circuit 31-1 and the shape shaping circuits 21-2 and 21-n as inputs and outputs the weight angle thereof. It is output with a predetermined width like a waveform. Since the other AND circuits 32-2 and 32-n are ANDed with the output of 2-1, this output becomes zero. The waveform measuring circuits 31-1 to 31-n derive a Pal waveform as shown at 33-1 in FIG. 11 because the output of the AND circuit 32-1 has a width of approximately 180 degrees in electrical angle. Next, the output circuit 4 confirms whether or not the output pulse of 33-1 has reached a predetermined value within a predetermined time, and when this value reaches a predetermined value, issues an operation command to the corresponding CB. Output.

以上の本発明の一実施例によれば、各配電線に設置す
る零相変流器より得る零相電流のみで残留電流の大小に
左右されないで、地絡回線の特定できる効果がある。
According to the embodiment of the present invention described above, there is an effect that the ground fault line can be specified without being influenced by the magnitude of the residual current only by the zero-phase current obtained from the zero-phase current transformer installed in each distribution line.

次に他の一実施例について説明する。 Next, another embodiment will be described.

本発明は第9図に示す出力回路4の判定方法のみ異な
るもので他は第9図と同一である。一般に配電線路の機
材の絶縁劣化は、劣化の初期では微少電流が流れその発
生は間欠的で不規則的であり経時と共にその発生間隔が
短かくなる。
The present invention is different from FIG. 9 only in the method of determining the output circuit 4 shown in FIG. Generally, in the insulation deterioration of the equipment of the distribution line, in the initial stage of the deterioration, a minute current flows and the generation is intermittent and irregular, and the generation interval becomes short with time.

従つて本実施例の出力回路は、この発生様相に見合つ
た判定方法とし、絶縁劣化の経時的な変化を検出可能に
したものである。
Accordingly, the output circuit of the present embodiment employs a determination method suitable for this generation mode, and is capable of detecting a change with time of insulation deterioration.

この回路は、波形測定回路33−1〜33−nの出力パル
スの量が所定時間前の量と現在のパルス量を比較しその
量が増加している時対応する当該しや断器にしや断指令
を導出せしめる方式としたもので本発明の実施例によれ
ば、配電線路の劣化を経時的に判定することが可能とな
る。
This circuit compares the amount of the output pulse of the waveform measuring circuits 33-1 to 33-n with the amount of the pulse before a predetermined time and the current amount of the pulse. According to the embodiment of the present invention, it is possible to determine the deterioration of the distribution line over time.

〔発明の効果〕〔The invention's effect〕

本発明によれば、各配電線に設けられる零相変流器よ
り得る零相電流のみを入力とし、系統に常時発生する残
留電流を消去すべくフイルターを設け、各回線の零相電
流の相互の位相関係より事故回線を特定する方式とした
ため、従来一般に行なわれている接地変圧器より得るV0
と零相変流器より得る零相電流とから位相弁別する方式
と異なり常時の残留電流の大きさに左右されることなく
また零相電圧の特有の波形及び大きさに着目することが
なく、地絡回線の特定ができる。また装置の簡単化など
ができる効果がある。
According to the present invention, only a zero-phase current obtained from a zero-phase current transformer provided in each distribution line is input, a filter is provided to eliminate a residual current constantly generated in the system, and a mutual connection of the zero-phase current of each line is provided. for was scheme to identify the accident line from the phase relationship, V 0 obtained from ground transformer are carried out conventionally
Unlike the method of discriminating the phase from the zero-phase current obtained from the zero-phase current transformer, without being affected by the magnitude of the residual current at all times, and without paying attention to the unique waveform and magnitude of the zero-phase voltage, Ground fault line can be specified. Further, there is an effect that the apparatus can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例の系統接続図、第2図は従
来の地絡方向継電器による回線選択方式の例、第3図,
第4図は従来のDGの動作説明図、第5図は位相特性図、
第6図はベクトル図、第7図は1線地絡時の等価回路、
第8図は第7図に対応するベクトル図、第9図は、本発
明の一実施例の原理構成図、第10図,第11図は各部の波
形説明図。 MT……受電変圧器、CB1〜CBn……しや断器、ZCT1〜ZCTn
……零相変流器、F1〜Fn……配電線路、G1,G2……故障
点、C1〜Cn……対地静電容量、DG……地絡回線選択装
置、4……出力回路、OT1〜OTn……出力信号。
FIG. 1 is a system connection diagram of one embodiment of the present invention, FIG. 2 is an example of a conventional line selection system using a ground fault directional relay, FIG.
FIG. 4 is a diagram illustrating the operation of a conventional DG, FIG. 5 is a phase characteristic diagram,
FIG. 6 is a vector diagram, FIG. 7 is an equivalent circuit at the time of one-line ground fault,
FIG. 8 is a vector diagram corresponding to FIG. 7, FIG. 9 is a principle configuration diagram of one embodiment of the present invention, and FIG. 10 and FIG. MT: Power receiving transformer, CB 1 to CB n … Shiya breaker, ZCT 1 to ZCT n
…… Zero-phase current transformer, F 1 to F n …… Distribution line, G 1 , G 2 …… Fault point, C 1 to C n …… Capacity to ground, DG …… Ground fault line selection device, 4 …… Output circuit, OT 1 to OT n …… Output signal.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数回線を有する非接地系配電線路の地絡
事故を検出する地絡回線選択装置において、前記各回線
の零相電流の高次周波成分を導出する高次周波導出手
段、前記複数回線中の所定回線の高次周波導出手段から
の出力信号と、他の回線の高次周波導出手段からの出力
信号との位相関係を比較し、所定の位相範囲となったと
き判別出力を導出する位相判定手段と、該位相判定手段
の判別出力が所定の時間内に所定値となったことを判定
する出力判定手段とを備えたことを特徴とする地絡回線
選択装置。
1. A ground fault line selecting device for detecting a ground fault accident on an ungrounded distribution line having a plurality of lines, wherein a high-order frequency deriving means for deriving a high-order frequency component of a zero-phase current of each of the lines. Compare the phase relationship between the output signal from the higher-order frequency deriving means of the predetermined line in the plurality of lines and the output signal from the higher-order frequency deriving means of the other lines, and determine the discrimination output when a predetermined phase range is reached. A ground fault line selecting device, comprising: a phase determining means for deriving; and an output determining means for determining that a determination output of the phase determining means has reached a predetermined value within a predetermined time.
【請求項2】請求項1の地絡回線選択装置において、前
記出力判定手段は、前記位相判定手段の前記判別出力を
入力し、所定時間内の判定値と一定時間前の所定時間内
の判定値とを比較しその比較量が増加または減少するこ
とを判定する手段を備えたことを特徴とする地絡回線選
択装置。
2. The ground fault line selecting device according to claim 1, wherein said output judging means receives said judgment output of said phase judging means and judges a judgment value within a predetermined time and a judgment within a predetermined time before a predetermined time. A ground fault line selecting device, comprising: means for comparing the value with a value to determine whether the comparison amount increases or decreases.
JP9149688A 1988-04-15 1988-04-15 Ground fault line selection device Expired - Lifetime JP2702961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9149688A JP2702961B2 (en) 1988-04-15 1988-04-15 Ground fault line selection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9149688A JP2702961B2 (en) 1988-04-15 1988-04-15 Ground fault line selection device

Publications (2)

Publication Number Publication Date
JPH01264530A JPH01264530A (en) 1989-10-20
JP2702961B2 true JP2702961B2 (en) 1998-01-26

Family

ID=14028023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9149688A Expired - Lifetime JP2702961B2 (en) 1988-04-15 1988-04-15 Ground fault line selection device

Country Status (1)

Country Link
JP (1) JP2702961B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995023B2 (en) * 2006-10-02 2012-08-08 東北電力株式会社 DC ground fault line discrimination device and discrimination method
JP4971285B2 (en) * 2008-10-20 2012-07-11 株式会社近計システム Electric equipment accident sign detection device and electric equipment accident sign detection system
ES2758531B2 (en) * 2019-11-06 2021-02-23 Univ Madrid Politecnica SYSTEM AND METHOD OF LOCATION OF EARTH FAULTS IN ALTERNATING CURRENT INSTALLATIONS

Also Published As

Publication number Publication date
JPH01264530A (en) 1989-10-20

Similar Documents

Publication Publication Date Title
US7345488B2 (en) Apparatus and method for determining a faulted phase of a three-phase ungrounded power system
CN104577999B (en) Bus bar protecting method and system based on transient zero-sequence current feature
CN110907761B (en) Continuous line selection method and system for single-phase earth fault
Haleem et al. Application of new directional logic to improve DC side fault discrimination for high resistance faults in HVDC grids
CN107091970A (en) The Fault Phase Selection method of isolated neutral system
EP0026620B1 (en) Method and apparatus for identifying faults in electric power transmission systems
Schlake et al. Performance of third harmonic ground fault protection schemes for generator stator windings
US5793593A (en) Method and apparatus using a five-wire network for distribution of electrical power
CN112305374B (en) Single-phase earth fault line selection method for power distribution network
JP2702961B2 (en) Ground fault line selection device
Owen The historical development of neutral grounding practices
CN110261713B (en) Method for diagnosing AC side ground fault of converter of flexible DC power grid
Nam et al. Ground-fault location algorithm for ungrounded radial distribution systems
JP3160612B2 (en) Power system insulation deterioration detection method and apparatus
CN109884466B (en) Distribution network grounding line selection method for identifying double negative sequence current vector relation characteristics
CN115360683B (en) Protection method for single-phase earth fault of neutral point ungrounded system
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system
JPH0343593B2 (en)
CN218767078U (en) Zero sequence current detection device of power system
Billaut et al. Effective System Grounding. Analysis of the effect of High penetration of IBRs
Abdel-Fattah et al. A novel transient current-based differential algorithm for earth fault detection in medium voltage distribution networks
JP2607483B2 (en) Ground fault directional relay
Smith et al. An Investigation into the Limitations of the Combined dv/dt and di/dt Protection Technique for Compact dc Distribution Systems
JP2633882B2 (en) Ground fault line selection device
Lien et al. A fast computing algorithm for microgrid fault protection system using communication-assisted digital relays and initially experimental results