JP3103604B2 - Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal - Google Patents

Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal

Info

Publication number
JP3103604B2
JP3103604B2 JP03036760A JP3676091A JP3103604B2 JP 3103604 B2 JP3103604 B2 JP 3103604B2 JP 03036760 A JP03036760 A JP 03036760A JP 3676091 A JP3676091 A JP 3676091A JP 3103604 B2 JP3103604 B2 JP 3103604B2
Authority
JP
Japan
Prior art keywords
frequency
signal
delay detection
shift qpsk
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03036760A
Other languages
Japanese (ja)
Other versions
JPH04249451A (en
Inventor
今掘博之
遠藤昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03036760A priority Critical patent/JP3103604B2/en
Publication of JPH04249451A publication Critical patent/JPH04249451A/en
Application granted granted Critical
Publication of JP3103604B2 publication Critical patent/JP3103604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はデジタル移動体通信にお
いて効率的な周波数の利用の見地から奨用されるπ/4
シフト4相シフトキーイング(QPSK)方式の遅延検
波復調器における周波数制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to .pi. / 4 which is recommended from the viewpoint of efficient use of frequencies in digital mobile communication.
The present invention relates to frequency control in a shift detection four-phase shift keying (QPSK) type differential detection demodulator.

【0002】[0002]

【従来の技術】デジタル移動体通信、特に自動車電話に
おける変調方式としては、周波数の効率的な利用上、こ
こに用いられる変復調器として回路構成が簡単で、搬送
波の有するる位相の遷移軌跡が原点を通過しないため帯
域外の減衰特性も良く、π/4シフトQPSK方式が有
力視されていて、復調器としては、静的伝送時の誤り率
特性が良好であること、レイリーフェーデイング下にお
ける誤り率が劣化しないこと等の条件を満足するものと
して遅延検波方式が有望である。
2. Description of the Related Art As a modulation system in digital mobile communication, particularly in a car telephone, in order to efficiently use a frequency, a circuit configuration is simple as a modulator / demodulator used here, and a phase transition trajectory of a carrier wave is originated. Since the signal does not pass through the band, the attenuation characteristic out of the band is good, and the π / 4 shift QPSK method is considered to be promising. As a demodulator, the error rate characteristic at the time of static transmission is good, and the error under the Rayleigh fading is good. The delay detection method is promising as one that satisfies the condition that the rate does not deteriorate.

【0003】しかしその反面、搬送波の周波数偏差によ
る誤り率特性が同期検波方式よりも劣り、この周波数変
化が装置全体の構成、性能にまで及ぶために、受信側の
局発周波系と送信機の送出する搬送波とを一致させる制
御手段つまり周波数調整機能を備えしめることが必要に
なる。
However, on the other hand, the error rate characteristic due to the frequency deviation of the carrier wave is inferior to that of the synchronous detection system, and this frequency change affects the configuration and performance of the entire apparatus. It is necessary to provide control means for matching the carrier wave to be transmitted, that is, a frequency adjustment function.

【0004】図3におけるπ/4シフトQPSK遅延検
波方式復調器の周波数補正制御回路では、(1)IF帯
の遅延検波復調器によって最初に復調したベースバンド
伝送信号を、一旦4逓倍して変調分を除去し、その信号
をループフィルタを介して増幅することにより、搬送周
波数オフセットに比例した位相差出力を得て、この制御
電圧によって遅延素子のサンプル・クロックを変え、上
記搬送周波数オフセットに対応した遅延量に基づいて周
波数補正しようとするものである。
In the frequency correction control circuit of the π / 4 shift QPSK differential detection type demodulator shown in FIG. 3, (1) the baseband transmission signal first demodulated by the IF band differential detection demodulator is temporarily multiplied by 4 and modulated. Then, the signal is amplified through a loop filter to obtain a phase difference output proportional to the carrier frequency offset, and the control voltage changes the sample clock of the delay element to correspond to the carrier frequency offset. The frequency is to be corrected based on the delay amount obtained.

【0005】次に図4に示す従来の周波数調整回路にお
いて、(2)I、Q各ベースバンド信号を夫々A/D変
換し、搬送波オフセット検波器を通過後シンボル・クロ
ック信号CL とモード制御器MCとから信号入力される
アップ/ダウン・デジタルカウンタ及びチャンネルゲー
ト信号S1 をもらってする予めプリセット可能なセレク
タSELを経由した後、D/A変換して局発周波数を調
整するVCO(VCXO)の制御信号S2 を得るように
したものが知られている。
Next, in the conventional frequency adjusting circuit shown in FIG. 4, (2) A / D conversion of each of I and Q baseband signals, and after passing through a carrier offset detector, the symbol clock signal CL and mode control are performed. after passing through the pre presettable selector SEL which got the up / down digital counter and a channel gate signals S 1 is the signal input from the vessel MC, VCO to adjust the local oscillator frequency converting D / a (VCXO) that to obtain a control signal S 2 are known.

【0006】しかしながら、前記(1)の方法による
と、π/4シフトQPSK信号は、崩落線の振幅が一定
でないために周波数の補正が容易でなく、I、Q信号を
一旦4逓倍してから周波数補正用に信号再生する必要が
あり、回路構成が大がかりになることが免れないし、前
記(2)の方法ではI、Q各ベースバンド信号出力を周
波数オフセットを示す量がA/D変換されてから行うデ
ジタル演算の速度を上げるために、デジタル化回路が無
闇に大きくなる。
However, according to the method (1), the frequency of the π / 4 shifted QPSK signal is not easy to correct because the amplitude of the collapse line is not constant. It is necessary to reproduce the signal for frequency correction, and it is inevitable that the circuit configuration becomes large. In the method (2), the amount indicating the frequency offset of each of the I and Q baseband signal outputs is A / D converted. In order to increase the speed of the digital operation performed from the beginning, the digitizing circuit becomes unnecessarily large.

【0007】従って従来のπ/4シフトQPSK変調波
信号の遅延検波復調器を周波数制御する方法では、図
3、図4に見られるように回路構成が煩雑であり、搬送
波再生回路以降について見ても莫大になるとともに、通
信システムが求めている周波数安定度に対して10pp
mの周波数のずれの補正が難かしく、復調器等の生産能
率からもこれらの難点は未だ解消するに至っていない。
Therefore, in the conventional method of controlling the frequency of the delay detection demodulator for a π / 4 shift QPSK modulated wave signal, the circuit configuration is complicated as shown in FIGS. And the frequency stability required by the communication system is 10 pp.
It is difficult to correct the frequency shift of m, and these difficulties have not yet been solved from the viewpoint of the production efficiency of the demodulator and the like.

【0008】[0008]

【発明が解決しようとする課題】本発明は前記従来の障
害を払拭するとともに、π/4QPSK変調搬送中間周
波数のベースバンド信号を読みとれるようにするまでに
要する回路構成を簡易化し、読取り後の演算に要する処
理量を削減し得る周波数制御方法にある。
SUMMARY OF THE INVENTION The present invention eliminates the above-mentioned conventional problems, and simplifies the circuit configuration required for reading a baseband signal of a π / 4 QPSK modulated carrier intermediate frequency. The frequency control method is capable of reducing the amount of processing required for calculation.

【0009】[0009]

【課題を解決するための手段】かくしてπ/4シフトQ
PSK変調中間周波をπ/2移相器によってI、Q各ベ
ースバンド信号に分離してデジタル信号に夫々変換後
に、過去の受信信号をデータとして記憶させて演算処理
と判断機能を備えたプロセッサを介して調整さるべき局
発周波数を直接制御する温度補償された電圧制御発振器
と局発との逓倍作用により、信号の読取り前後2段階に
分けて周波数制御することを特徴とするものである。
The π / 4 shift Q
After separating the PSK modulation intermediate frequency into I and Q baseband signals by a π / 2 phase shifter and converting them into digital signals, a processor having an arithmetic processing and determination function by storing past received signals as data, The frequency control is performed in two stages before and after the signal is read by the multiplication of the temperature-compensated voltage controlled oscillator that directly controls the local oscillation frequency to be adjusted via the local oscillator.

【0010】以下図1及び図2により本発明の周波数制
御方法について詳説する。先ず図1は本発明の周波数制
御方法を実施するπ/4シフトQPSK遅延検波復調器
の周波数制御回路で、π/4シフトQPSK中間搬送波
の受信によってミキサM1 及びM2 とπ/2移相器によ
ってI、Q各ベースバンド信号に分離され、ベースバン
ド信号の周波数のみを夫々ループフィルタLPF1 、L
PF2 により取出した後、アナログ/デジタル変換器A
/Dにより夫々デジタル変換したベースバンド信号
D 、QD を得て、受信信号を逐次貯蔵するRAMを備
えたプロセッサPRCSに夫々入力し、その出力をデジ
タル/アナログ信号にD/A変換器を介して変換し、ノ
イズ又はジッタを除去するループフィルタLPF3 を経
て温度補償型TCXOつまりVCO(電圧制御発振器)
に戻す帰還ループが形成されている。
Hereinafter, the frequency control method of the present invention will be described in detail with reference to FIGS. First, FIG. 1 is a frequency control circuit of the [pi / 4 shift QPSK delay detection demodulator implementing the frequency control method of the present invention, [pi / 4 shift QPSK intermediate carrier mixers M 1 and M 2 and [pi / 2 phase shifter upon receipt of The baseband signals are separated into I and Q baseband signals by a filter, and only the frequencies of the baseband signals are separated into loop filters LPF 1 and LF, respectively.
Analog / Digital converter A after extraction by PF 2
/ D to obtain baseband signals I D and Q D , respectively, and input them to a processor PRCS having a RAM for sequentially storing received signals, and output the digital / analog signals to a D / A converter. Temperature-compensated TCXO via a loop filter LPF 3 which converts the noise and removes noise or jitter, that is, a VCO (voltage controlled oscillator)
A return loop is formed.

【0011】OSCは前記ミキサの局発周波数をつくる
局部発振器(局発)であり、上記VCOと逓倍機能を奏
せしめて、局発周波数の10ppmを±0に微調するま
で上記VCOが走査する。
The OSC is a local oscillator (local oscillator) for generating a local oscillation frequency of the mixer. The OSC has a multiplication function with the VCO, and scans the VCO until the local oscillation frequency is finely adjusted to 10 ppm to ± 0.

【0012】送信側は信号フォーマットとして1バース
ト中にプリアンブル信号とIDコード信号とを制御チャ
ンネルを使って送出し、受信側は制御チャンネル上でデ
ータ信号つまりI,Qベースバンド信号が送信されたプ
リアンブル信号とIDコード信号として読取れるか否か
の可否をプロセッサにより判断させる。ここでプロセッ
サは第1段階の調整としてデータ信号が読取り可能にな
るようVCOを掃引する。データ信号が読取り可能にな
ると送信側へその旨を返信する。次に通信チャンネルに
より音声データに付加された既知の信号によってVCO
出力周波数を第2段階の調整として微調整する。
[0012] transmitting side and the preamble signal and the ID code signal is sent via a control channel as a signal format in one burst, the receiver data signals, i.e. I on the control channel, Q baseband signals are transmitted up
The processor determines whether or not it can be read as a reamble signal and an ID code signal . Here the processor
As a first step adjustment, the data signal becomes readable.
To sweep the so that VCO. When the data signal becomes readable, it sends a reply to the transmitting side. Next, the VCO is generated by a known signal added to the audio data through the communication channel.
Fine-tune the output frequency as a second stage adjustment.

【0013】図2はベースバンド信号I及びQの各振幅
の空間図であり、π/4QPSKの8値をI、Qの各値
が1、−1、0の何れかを取る状態”1”を一重丸で、
+1/√2又は−1/√2の状態”2”を二重丸で夫々
表わしており伝送される信号は状態”1”と”2”を交
互に繰返すI、Q信号が遷移することを意味している。
FIG. 2 is a spatial diagram of the amplitudes of the baseband signals I and Q. The eight values of π / 4 QPSK are expressed as “1” in which each value of I and Q takes one of 1, −1, and 0. With a single circle,
The state “2” of + 1 / √2 or -1 / √2 is represented by a double circle, respectively, and the transmitted signal is that the I and Q signals which alternately repeat the states “1” and “2” transition. Means.

【0014】今、状態”1”において周波数が完全に一
致していれば、I又はQの信号が±1であり、他方の信
号が0となるが、現実には周波数に誤差があるので上記
±1の値は小さなものとなり、他方も0とはならずに或
る値を持つ。即ち本来I、Qの値が(I、Q)=(1、
0)であるべき時に、(I、Q)=(0,9,0.4
4)のようになったとすると、Qの値が0でなく0.4
4であるということは、周波数オフセットが存在し、こ
の値が正であることは周波数がプラス方向つまり時計方
向に遷移していることを意味し、或る時刻にI、Q信号
の周波数の状態が”1”のうちの何の値を取るかが判っ
ていれば、I、Q信号の内、本来0となるべき方の、
正、負符号だけで周波数がプラス、マイナス何れの方向
にずれているかが判別される。
If the frequencies completely match in state "1", the I or Q signal is ± 1 and the other signal is 0, but in reality there is an error in the frequency. The value of ± 1 becomes small, and the other does not become 0 but has a certain value. That is, the values of I and Q are originally (I, Q) = (1,
0), (I, Q) = (0, 9, 0.4)
Assuming that the result is 4), the value of Q is not 0 but 0.4.
4 means that there is a frequency offset, and that this value is positive means that the frequency is transiting in the positive direction, that is, clockwise, and that at a certain time the state of the frequency of the I and Q signals If it is known what value of “1” takes, of the I and Q signals,
It is determined whether the frequency is shifted in the plus or minus direction only by the positive and negative signs.

【0015】本発明においては、データ伝送時に将来の
I、Q値の予測はしていないが、プリアンブル信号の配
列は決まっているので、プリアンブル送出時に”1”の
状態における本来0であるべき方の正、負符号を判断す
ることができ、これをプロセッサの判断機能に委ねるこ
とができるのである。
In the present invention, the future I and Q values are not predicted at the time of data transmission, but the arrangement of the preamble signal is fixed. Can be determined, and this can be left to the determination function of the processor.

【0016】例えばI信号が1→0→1、Q信号が0→
1→1と変化する時、1、Q値の組がI=1、Q=0の
時”1”、I=0、Q=1の組が”2”、I=1、Q=
1の組が”3”という情報の遷移を表わすことから、検
波出力(I、Q)は(1、0)→(−1/√2、−1/
√2)→(0、−1)となって、”3”の状態はI=
1、Q=1の時であってI信号が正であれば周波数をマ
イナス側へ遷移させ、負であればプラス側へ遷移させる
ようにVCOであるTCXOを制御すれば、局発OSC
の周波数が微調されるのである。
For example, if the I signal is 1 → 0 → 1, the Q signal is 0 →
When changing from 1 to 1, the set of 1, Q values is I = 1, when Q = 0, "1", the set of I = 0, Q = 1 is "2", I = 1, Q =
Since the set of 1 represents the information transition of “3”, the detection output (I, Q) is (1, 0) → (−1 / √2, −1 /
(2) → (0, -1), and the state of “3” is I =
When the Q signal is 1, and the I signal is positive, the frequency is shifted to the negative side, and when the signal is negative, the TCXO, which is the VCO, is shifted to the positive side.
Is fine-tuned.

【0017】[0017]

【発明の効果】本発明は、π/4シフトQPSK変調中
間周波数からベースバンド信号をつくり出した後、回路
構成上、従来必要とされている搬送波再生回路、データ
タイミング再生回路、識別器、直並列変換器といった付
属回路に代替するプロセッサを局発周波数の2段階調整
を司るVCOを含む制御ループ内に取込んで、ベースバ
ンド信号の遷移パターンからI、Q値を予想できるよう
にしたから、遅延検波方式の復調器における局発周波数
のずれに対して敏速に制御ができ、ひいてはこのずれに
基因する信号の誤り率特性の悪化を阻止することができ
る。従ってπ/4シフトQPSK搬送波のオフセットに
対応した遅延量を以て局発周波数が、極めて簡易な構成
による遅延検波復調器を周波数制御帰還ループに組込め
るとともに、生産時に煩わしい調整工数もなく量産性に
優れ、経済的な周波数制御方法を実現することができ
る。
According to the present invention, after a baseband signal is generated from a π / 4 shift QPSK modulation intermediate frequency, a carrier wave reproducing circuit, a data timing reproducing circuit, a discriminator, and a serial / parallel circuit which are conventionally required in terms of circuit configuration. A processor that replaces an auxiliary circuit such as a converter is incorporated in a control loop including a VCO that controls the local oscillation frequency in two steps, so that I and Q values can be predicted from the transition pattern of the baseband signal. It is possible to quickly control the deviation of the local oscillation frequency in the demodulator of the detection system, and to prevent deterioration of the error rate characteristic of the signal caused by this deviation. Therefore, the delay frequency corresponding to the offset of the π / 4-shifted QPSK carrier wave enables the local oscillation frequency to be incorporated in the frequency control feedback loop with a delay detection demodulator having an extremely simple configuration, and is excellent in mass productivity without troublesome adjustment steps during production. Thus, an economical frequency control method can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のπ/4シフトQPSK変調波信号の遅
延検波復調器における周波数制御方法を実施する回路構
成図である。
FIG. 1 is a circuit configuration diagram for implementing a frequency control method in a delay detection demodulator for a π / 4 shift QPSK modulated wave signal of the present invention.

【図2】ベースバンドI、Q信号の空間図であり、各ル
ープフィルタ通過後、プロセッサへ入力される信号の状
態”1”、”2”を表わす。
FIG. 2 is a spatial diagram of baseband I and Q signals, showing states “1” and “2” of signals input to a processor after passing through each loop filter.

【図3】従来の遅延検波方式ダイバーシテイ復調器の回
路構成図である。
FIG. 3 is a circuit configuration diagram of a conventional delay detection diversity demodulator.

【図4】従来の周波数調整回路の構成図である。FIG. 4 is a configuration diagram of a conventional frequency adjustment circuit.

【符号の説明】[Explanation of symbols]

MIX1 、MIX2 ミキサ A/D アナログ/デジタル変
換器 PRCS プロセッサ D/A デジタル/アナログ変
換器 LPF1 、LPF2 、LPF3 ループフィルタ OSC 局部発振器(局発) TCXO VCO(電圧制御発振
器) π/2PS π/2移相器 I、Q ベースバンド信号
MIX 1 , MIX 2 Mixer A / D Analog / Digital Converter PRCS Processor D / A Digital / Analog Converter LPF 1 , LPF 2 , LPF 3 Loop Filter OSC Local Oscillator (Local Oscillator) TCXO VCO (Voltage Controlled Oscillator) π / 2PS π / 2 phase shifter I, Q Baseband signal

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04L 27/00 - 27/38 H04B 7/26 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H04L 27/00-27/38 H04B 7/26

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】π/4シフトQPSK変調波信号の遅延検
波復調器を周波数制御する方法において、通信用信号フ
ォーマットが1バースト中にプリアンブル及びIDコー
ドをデータとして、制御チャンネルを介して送信される
変調搬送波の受信時に、上記変調搬送波をI,Q各ベー
スバンド信号に変換し、上記ベースバンド信号を夫々入
力されるプロセッサが第1段階の調整として局発周波数
を制御する電圧制御発振器への指令により周波数掃引し
つつ該ベースバンド信号を監視し、該ベースバンド信号
が上記データとして読取り可能になったときその旨を
信側に返信し、しかる後に通話チャンネルを介して送信
される信号の内、音声データに付加されたパターンの既
知な信号により、上記電圧制御発振器の出力周波数を
2段階の調整として微調整するようにしたことを特徴と
するπ/4シフトQPSK変調波信号の遅延検波復調器
における周波数制御方法。
In a method for controlling the frequency of a delay detection demodulator for a π / 4 shift QPSK modulated wave signal, a communication signal format is transmitted through a control channel as a preamble and an ID code as data during one burst. Upon receiving the modulated carrier, the modulated carrier is converted into I and Q baseband signals, and the baseband signals are input respectively.
The processor to be activated is the local oscillator frequency as the first adjustment
Frequency sweep by command to voltage controlled oscillator
While monitoring the baseband signal, the baseband signal
Is returned to the transmitting side when the data becomes readable as the above data , and then, among the signals transmitted via the communication channel, the known signal of the pattern added to the audio data is used. The output frequency of the voltage controlled oscillator
A frequency control method in a delay detection demodulator for a π / 4 shift QPSK modulated wave signal, which is finely adjusted as a two-step adjustment .
JP03036760A 1991-02-05 1991-02-05 Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal Expired - Fee Related JP3103604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03036760A JP3103604B2 (en) 1991-02-05 1991-02-05 Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03036760A JP3103604B2 (en) 1991-02-05 1991-02-05 Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal

Publications (2)

Publication Number Publication Date
JPH04249451A JPH04249451A (en) 1992-09-04
JP3103604B2 true JP3103604B2 (en) 2000-10-30

Family

ID=12478709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03036760A Expired - Fee Related JP3103604B2 (en) 1991-02-05 1991-02-05 Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal

Country Status (1)

Country Link
JP (1) JP3103604B2 (en)

Also Published As

Publication number Publication date
JPH04249451A (en) 1992-09-04

Similar Documents

Publication Publication Date Title
EP0804833B1 (en) Frequency synchronized bidirectional radio system
US5610946A (en) Radio communication apparatus
WO1996019875A9 (en) Frequency synchronized bidirectional radio system
EP0555089A2 (en) Spread spectrum communication system
KR900008437B1 (en) Transmission data demudulation circuit
US5150383A (en) Asynchronous quadrature demodulator
US3984777A (en) Carrier wave reproducer device for use in the reception of a multi-phase phase-modulated wave
JP2959498B2 (en) Automatic frequency control circuit
EP0173362B1 (en) Arrangement of recovering a clock signal form an angle-modulated carrier signal having a modulation index m = 0.5
JP3103604B2 (en) Frequency control method in delay detection demodulator for π / 4 shift QPSK modulated wave signal
JP3080601B2 (en) Carrier recovery circuit
US5802113A (en) Clock signal recovery system for communication systems using quadrature amplitude modulation
US5841815A (en) Data receiver for correcting a phase of a received phase-modulated signal
JPH07177054A (en) Digital radio communication terminal
JP3287015B2 (en) Auxiliary signal transmission method
JP2001345869A (en) Carrier-reproducing circuit and digital signal receiver
JP2504581B2 (en) Digital signal transmission system
JPH04345328A (en) Line changeover control circuit
JPH09130440A (en) Detection circuit device
JP3518739B2 (en) Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
US4489411A (en) Process and a circuit arrangement for signal transmission using an amplitude-modulated radio broadcasting system
JP3274203B2 (en) Clock recovery circuit of MSK demodulator
JPH11308289A (en) Demodulator and radio communication equipment
JP2692440B2 (en) FSK data reception method
AU692058C (en) Frequency synchronized bidirectional radio system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080825

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees