JP3101709B2 - Method for producing lithium manganese oxide thin film - Google Patents

Method for producing lithium manganese oxide thin film

Info

Publication number
JP3101709B2
JP3101709B2 JP09270292A JP27029297A JP3101709B2 JP 3101709 B2 JP3101709 B2 JP 3101709B2 JP 09270292 A JP09270292 A JP 09270292A JP 27029297 A JP27029297 A JP 27029297A JP 3101709 B2 JP3101709 B2 JP 3101709B2
Authority
JP
Japan
Prior art keywords
thin film
lithium
limn
flux
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09270292A
Other languages
Japanese (ja)
Other versions
JPH1171113A (en
Inventor
衛平 湯
博文 加納
健太 大井
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP09270292A priority Critical patent/JP3101709B2/en
Publication of JPH1171113A publication Critical patent/JPH1171113A/en
Application granted granted Critical
Publication of JP3101709B2 publication Critical patent/JP3101709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池材料や分
離剤、触媒として有用なリチウムとマンガンをカチオン
として含むLiMn24を主成分とした薄膜の製造方法
に関するものである。
The present invention relates to a method for producing a thin film mainly composed of LiMn 2 O 4 containing lithium and manganese as cations, which is useful as a secondary battery material, a separating agent and a catalyst.

【0002】[0002]

【従来の技術】近年、マンガン酸化物は様々な分野で応
用され、素材としてますます重要になっているため、多
種多様なマンガン酸化物に関する開発研究、たとえば、
小型のコードレス電源のリチウムイオン二次電池の正極
材料やリチウムイオン分離剤、など、機能材料としての
マンガン酸化物の開発研究が世界的な規模で行われてい
る。
2. Description of the Related Art In recent years, manganese oxides have been applied in various fields and have become increasingly important as materials.
Research and development of manganese oxide as a functional material, such as a cathode material for a lithium-ion secondary battery as a small cordless power supply and a lithium-ion separator, is being conducted on a worldwide scale.

【0003】その中で、特にマンガン酸リチウムは二次
電池用正極活物質として有望であり、多くの開発研究が
行われ、これまで、LiMnO2,Li2MnO3、Li
Mn24の粉末を加熱法や溶融塩法で製造する多数の製
造方法が提案されている(たとえば、Strobel,
P.;Levy,J.P.;Joubert,J.C.
J.CrystalGrowth 1984,66,2
57−261.)。これらの方法で得られるマンガン酸
リチウムは、いずれも単結晶の固体であり、リチウム二
次電池の正極物質として使用する場合には、これらをペ
レット状に成形して正電極を作製している。しかしなが
ら、このようにして作製した正電極を用いた場合、高電
圧電源とすることができ、自己放電も少なく、保存性に
も優れているが、大電流を取り出せないなどの実用化に
際しての問題点が存在する。
[0003] Among them, lithium manganate is particularly promising as a positive electrode active material for a secondary battery, and much research and development has been carried out. LiMnO 2 , Li 2 MnO 3 , Li
Numerous production methods for producing Mn 2 O 4 powder by a heating method or a molten salt method have been proposed (for example, Strobel,
P. Levy, J .; P. Jobert, J .; C.
J. Crystal Growth 1984, 66, 2
57-261. ). Lithium manganate obtained by these methods is a single-crystal solid, and when used as a positive electrode material of a lithium secondary battery, these are formed into a pellet to form a positive electrode. However, when the positive electrode manufactured in this manner is used, a high-voltage power supply can be used, self-discharge is small, and storage stability is excellent, but there are problems in practical use such as a large current cannot be taken out. There is a point.

【0004】[0004]

【発明が解決しようとする課題】一般に、二次電池材料
として大電流を取り出すためには、薄膜状のものが表面
積も大きいため電極として好ましく、薄膜状の活物質を
用いれば、高電圧で自己放電も少なく、保存性に優れ、
かつ大電流を取り出せる二次電池を製造できるものと思
われる。したがって、本発明は、LiMn24を主成分
とする薄膜を高収率で容易に製造でき、かつ大がかりな
装置、設備などを必要としない工業的に有利な製造方法
を提供することにある。
In general, in order to obtain a large current as a secondary battery material, a thin film-shaped material is preferable as an electrode because of its large surface area. Less discharge, excellent storage,
It seems that a secondary battery capable of taking out a large current can be manufactured. Therefore, an object of the present invention is to provide an industrially advantageous production method that can easily produce a thin film containing LiMn 2 O 4 as a main component at a high yield, and does not require large-scale equipment and facilities. .

【0005】[0005]

【課題を解決するための手段】本発明者らは、LiMn
24を主成分とする薄膜状リチウムマンガン酸化物を得
るために鋭意研究を重ねた結果、溶融塩における気固界
面でリチウム化合物とマグネシウム化合物を反応させれ
ば、溶融塩中においてマンガン酸リチウムの生成反応が
進行する過程で、界面に存在するリチウム融剤が徐々に
蒸発して失われるため、マンガン過飽和になり、マンガ
ン酸リチウム薄膜が形成されやすくなり、界面に沿って
二次元状に拡張した薄膜が得られること、したがって、
反応終了後に水洗して残留するリチウム融剤を溶解除去
させれば、純粋なマンガン酸リチウム薄膜を分離しうる
ことを見出した。
Means for Solving the Problems The present inventors have proposed LiMn.
As a result of intensive studies to obtain a thin film lithium manganese oxide containing 2 O 4 as a main component, if a lithium compound and a magnesium compound are reacted at the gas-solid interface in the molten salt, lithium manganate in the molten salt In the process of the formation reaction of lithium, the lithium flux present at the interface gradually evaporates and is lost, resulting in manganese supersaturation, making it easy to form a lithium manganate thin film, and expanding two-dimensionally along the interface. That a thin film is obtained.
It has been found that a pure lithium manganate thin film can be separated by washing with water after the reaction to dissolve and remove the remaining lithium flux.

【0006】ところで、LiMn24結晶は、準安定相
であるため、薄膜が得られるまで加熱を継続すると、組
成が変化するという問題を生じるが、本発明者らは、さ
らに研究を重ねた結果、LiMn24結晶粒子を薄膜に
成長させる段階で、酸化性雰囲気から非酸化性雰囲気に
切り換えることにより、この問題を解決しうることを見
出した。本発明は、これらの知見に基づいてなされたも
のである。
[0006] Since LiMn 2 O 4 crystal is a metastable phase, if heating is continued until a thin film is obtained, there is a problem that the composition changes. However, the present inventors have further studied. As a result, they have found that this problem can be solved by switching from an oxidizing atmosphere to a non-oxidizing atmosphere at the stage of growing LiMn 2 O 4 crystal particles into a thin film. The present invention has been made based on these findings.

【0007】すなわち、本発明は、蒸発性リチウム塩融
剤の存在下、酸化性雰囲気中でリチウム化合物とマンガ
ン化合物とを加熱反応させて、上記融剤の界面にLiM
24結晶粒子を生成させたのち、この結晶粒子を非酸
化性雰囲気中で薄膜状に成長させることを特徴とするL
iMn24を主成分としたリチウムマンガン酸化物薄膜
の製造方法を提供するものである。
That is, according to the present invention, a lithium compound and a manganese compound are heated and reacted in an oxidizing atmosphere in the presence of an evaporating lithium salt flux, so that LiM
After generating n 2 O 4 crystal particles, the crystal particles are grown in a thin film in a non-oxidizing atmosphere.
An object of the present invention is to provide a method for producing a lithium manganese oxide thin film containing iMn 2 O 4 as a main component.

【0008】[0008]

【発明の実施の形態】本発明方法において、原料化合物
として用いられるリチウム化合物とマンガン化合物とし
ては、いずれもマンガン酸リチウム製造の際に用いられ
ている公知のものを使用することができる。このような
リチウム化合物としてはリチウムの塩化物、炭酸塩、重
炭酸塩、水酸化物などが好ましく、マンガン化合物とし
てはマンガンの炭酸塩、オキシ水酸化物、水酸化物、含
水酸化物、硫酸塩などが好ましい。リチウム化合物とマ
ンガン化合物の混合比はリチウムとマンガンのモル比
が、通常1:0.2ないし1:5、好ましくは1:0.
5ないし1:2となる範囲で選ばれる。これらは、1種
で用いてもよいし、また2種以上を組み合わせて用いて
もよい。
BEST MODE FOR CARRYING OUT THE INVENTION In the method of the present invention, as the lithium compound and the manganese compound used as raw material compounds, any of the known compounds used in the production of lithium manganate can be used. As such a lithium compound, lithium chloride, carbonate, bicarbonate, hydroxide and the like are preferable. As the manganese compound, manganese carbonate, oxyhydroxide, hydroxide, hydrated oxide, sulfate and the like are preferable. Are preferred. The mixing ratio of the lithium compound and the manganese compound is such that the molar ratio of lithium to manganese is usually 1: 0.2 to 1: 5, preferably 1: 0.
5 to 1: 2. These may be used alone or in combination of two or more.

【0009】本発明方法において、薄膜状のリチウムマ
ンガン酸化物を得るには蒸発性のある融剤を用いること
が極めて重要である。このような融剤としては、リチウ
ムの塩化物又はフッ化物を含むものが好ましい。これら
はまた、マンガン化合物と反応するリチウム化合物とし
て同時に用いることもできる。添加する融剤の量は、融
剤が溶けて反応を促進するという目的からすると、原料
マンガン化合物1モルに対して、通常5モル量以上、好
ましくは5〜20モル量、より好ましくは10〜15モ
ル量添加すればよいが、使用する反応器の形状や加熱温
度によって異なってくる。
In the method of the present invention, it is extremely important to use an evaporating flux to obtain a thin film of lithium manganese oxide. As such a flux, a flux containing lithium chloride or fluoride is preferable. They can also be used simultaneously as lithium compounds that react with manganese compounds. The amount of the flux to be added is usually 5 moles or more, preferably 5 to 20 moles, more preferably 10 to 10 moles per mole of the raw material manganese compound, for the purpose of dissolving the flux and accelerating the reaction. It may be added in an amount of 15 mol, but it depends on the shape of the reactor used and the heating temperature.

【0010】リチウムマンガン酸化物薄膜を製造するに
は、リチウム化合物、マンガン化合物、及び融剤を十分
に混合した後、ガス雰囲気を制御して加熱する。加熱温
度は用いる融剤によって異なり、塩化物の場合400℃
以上、好ましくは650〜800℃である。加熱により
薄膜が形成されたならば、生成物を水洗し融剤を溶かし
てリチウムマンガン化合物と分離する。分離した薄膜を
乾燥することによってLiMn24を主成分とする薄膜
状のリチウムマンガン化合物が得られる。この乾燥は、
通常70℃以上、好ましくは300℃以上で行われる。
In order to produce a lithium manganese oxide thin film, a lithium compound, a manganese compound, and a flux are sufficiently mixed, and the mixture is heated while controlling a gas atmosphere. The heating temperature depends on the flux used, 400 ° C for chloride
As mentioned above, it is preferably 650 to 800 ° C. When a thin film is formed by heating, the product is washed with water, the flux is dissolved, and separated from the lithium manganese compound. By drying the separated thin film, a thin film lithium manganese compound containing LiMn 2 O 4 as a main component is obtained. This drying is
Usually, it is carried out at 70 ° C. or higher, preferably at 300 ° C. or higher.

【0011】本発明方法において、LiMn24を主成
分とする薄膜を得るためには、加熱過程に電気炉の雰囲
気を制御することがきわめて重要である。LiMn24
結晶薄膜の生成過程は最初にLiMn24結晶粒子を生
成する段階と膜が成長する段階に分けることができる。
LiMn24の生成反応は一般的に酸素が必要であるた
め、この段階では電気炉を酸素雰囲気にする必要がある
が、その後LiMn24結晶膜が成長する段階ではLi
Mn24の酸化反応を避けるために酸素雰囲気を避けな
ければならない。LiMn24結晶粒子を生成する段階
での空気の導入量は、反応物の種類や反応量によって異
なるが、化学反応式に従う化学量論値が最低限必要であ
る。一般には酸素を流し続けて雰囲気の制御を行うが、
その場合酸素の導入量は流速や炉の大きさに依存し、一
般には化学量論値の10ないし40倍が適当である。た
とえば、MnOOHを出発物質とする場合では、空気の
導入量は出発物質1gあたり4000〜5000ml、
導入速度は10ないし11ml/minの範囲である。
結晶膜を成長させる段階では、酸化を避けるために雰囲
気を非酸化性にする必要がある。ただし、LiClなど
の非酸化性融剤を用いる場合は特別な保護雰囲気は必要
がない。これは融剤の蒸発により電気炉内部に融剤蒸気
が充満し、酸素の分圧は小さくなり、酸素雰囲気を避け
ることができるためである。また、粒子生成と膜成長の
二段階を別々に進行させることもできる。つまり、まず
LiMn24結晶粒子を調製し、そのLiMn24結晶
粒子を2段階目での膜成長の出発物質として使うことが
できる。
In the method of the present invention, in order to obtain a thin film containing LiMn 2 O 4 as a main component, it is very important to control the atmosphere of the electric furnace during the heating process. LiMn 2 O 4
The process of forming a crystalline thin film can be divided into a step of first forming LiMn 2 O 4 crystal particles and a step of growing a film.
Since the reaction for producing LiMn 2 O 4 generally requires oxygen, it is necessary to set the electric furnace in an oxygen atmosphere at this stage. However, at the stage where the LiMn 2 O 4 crystal film grows, Li is used.
An oxygen atmosphere must be avoided to avoid the oxidation reaction of Mn 2 O 4 . The amount of air introduced at the stage of producing LiMn 2 O 4 crystal particles varies depending on the type and amount of reactants, but a stoichiometric value according to a chemical reaction formula is required at a minimum. Generally, the atmosphere is controlled by continuously flowing oxygen.
In this case, the amount of oxygen introduced depends on the flow rate and the size of the furnace, and generally 10 to 40 times the stoichiometric value is appropriate. For example, when MnOOH is used as a starting material, the amount of introduced air is 4000 to 5000 ml / g of starting material,
The rate of introduction ranges from 10 to 11 ml / min.
At the stage of growing the crystal film, the atmosphere needs to be non-oxidizing to avoid oxidation. However, when a non-oxidizing flux such as LiCl is used, no special protective atmosphere is required. This is because the vaporization of the flux causes the inside of the electric furnace to be filled with the flux of the flux, the partial pressure of oxygen decreases, and an oxygen atmosphere can be avoided. Further, the two stages of particle generation and film growth can also be advanced separately. That is, first, LiMn 2 O 4 crystal particles are prepared, and the LiMn 2 O 4 crystal particles can be used as a starting material for film growth in the second stage.

【0012】[0012]

【発明の効果】本発明によれば、LiMn24を主成分
とする薄膜を高収率で製造することができる。本発明に
よって、高性能なリチウム二次電池やイオン選択吸着剤
を製造することができる。
According to the present invention, a thin film containing LiMn 2 O 4 as a main component can be produced at a high yield. According to the present invention, a high performance lithium secondary battery and an ion selective adsorbent can be manufactured.

【0013】[0013]

【実施例】以下に実施例及び比較例により、本発明をさ
らに詳細に説明する。
The present invention will be described in more detail with reference to the following Examples and Comparative Examples.

【0014】実施例1 塩化リチウム85ミリモル、オキシ水酸化マンガン11
ミリモルを混ぜ直径約80mmるつぼに入れ、ガス雰囲
気調整できる電気炉で10ml/minで空気を導入し
700℃で8時間加熱した。その後、空気の導入を止め
700℃で4日間保持した後、自然冷却した。加熱終了
後、生成物を取り出しビーカー中で水洗し、さらに10
0℃で乾燥した。得られた生成物は厚さが20ミクロン
ないし30ミクロンの光沢性のある黒い薄膜であった。
薄膜のX線回折チャートを図1に示す。この図より(1
11)面に高配向性のLiMn24膜であることが分
る。原子吸光法で求めたLi/Mnモル比は0.56で
あり、理論値とほぼ一致した。
Example 1 85 mmol of lithium chloride, manganese oxyhydroxide 11
The mixture was placed in a crucible having a diameter of about 80 mm, air was introduced at 10 ml / min in an electric furnace capable of adjusting the gas atmosphere, and heated at 700 ° C. for 8 hours. Thereafter, the introduction of air was stopped, the temperature was maintained at 700 ° C. for 4 days, and then the product was naturally cooled. After the heating is completed, the product is taken out and washed in a beaker, and further 10 times.
Dried at 0 ° C. The resulting product was a glossy black film having a thickness of 20 to 30 microns.
FIG. 1 shows an X-ray diffraction chart of the thin film. From this figure, (1)
11) It can be seen that the surface is a highly oriented LiMn 2 O 4 film. The molar ratio of Li / Mn determined by the atomic absorption method was 0.56, which almost coincided with the theoretical value.

【0015】実施例2 塩化リチウム83ミリモル、水酸化リチウム2ミリモ
ル、オキシ水酸化マンガン11ミリモルをよく混合した
後、10ml/minで空気を導入し650℃で8時間
加熱した。その後、空気の導入を止め650℃で4日間
保持した。加熱終了後、生成物を取り出しビーカー中で
水洗し、さらに100℃で乾燥した。得られた生成物は
厚さが20ミクロンないし30ミクロンの光沢性のある
黒い薄膜であった。薄膜のX線回折チャートは図1と同
様であった。これにより(111)面に高配向性のLi
Mn24膜であることが分る。原子吸光法で求めたLi
/Mnモル比は0.52であり、理論値とほぼ一致し
た。
Example 2 83 mmol of lithium chloride, 2 mmol of lithium hydroxide and 11 mmol of manganese oxyhydroxide were mixed well, and air was introduced at 10 ml / min and heated at 650 ° C. for 8 hours. Thereafter, the introduction of air was stopped and the temperature was maintained at 650 ° C. for 4 days. After the heating, the product was taken out, washed with water in a beaker, and further dried at 100 ° C. The resulting product was a glossy black film having a thickness of 20 to 30 microns. The X-ray diffraction chart of the thin film was similar to FIG. As a result, highly oriented Li is formed on the (111) plane.
It turns out that it is a Mn 2 O 4 film. Li determined by atomic absorption method
The / Mn molar ratio was 0.52, which almost coincided with the theoretical value.

【0016】比較例1 蒸発性のない水酸化リチウムを融剤とし、実施例1と同
様の条件下で反応させた。薄膜は生成せず、粉末状のス
ピネル型LiMn24と斜方晶系LiMnO2の混合物
を生成した。この結果から薄膜の生成には蒸発性の融剤
が必要なのが分る。
Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 except that lithium hydroxide having no volatility was used as a flux. No thin film was formed, and a mixture of powdered spinel type LiMn 2 O 4 and orthorhombic LiMnO 2 was formed. From this result, it is understood that an evaporative flux is required for forming a thin film.

【0017】比較例2 空気を流し続けて実施例1と同様の条件下で反応させ
た。得られた膜状の生成物は単斜晶系Li2MnO3構造
を示し、スピネル型LiMn24薄膜は生成しなかっ
た。この結果からスピネル型LiMn24薄膜を生成す
るためには電気炉の雰囲気制御が必要であることが分
る。
Comparative Example 2 The reaction was carried out under the same conditions as in Example 1 while continuously flowing air. The obtained film-like product showed a monoclinic Li 2 MnO 3 structure, and no spinel type LiMn 2 O 4 thin film was formed. From this result, it is understood that the atmosphere control of the electric furnace is necessary to produce the spinel type LiMn 2 O 4 thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 マンガン酸リチウム結晶膜のX線回折チャー
ト。
FIG. 1 is an X-ray diffraction chart of a lithium manganate crystal film.

フロントページの続き (56)参考文献 特開 平8−241707(JP,A) 特開 平10−55797(JP,A) 特開 平10−324521(JP,A) 特開 平8−321325(JP,A) 特開 平2−183963(JP,A) 特表 平8−507407(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 45/00 C30B 29/22 CA(STN)Continuation of the front page (56) References JP-A-8-241707 (JP, A) JP-A-10-55797 (JP, A) JP-A-10-324521 (JP, A) JP-A-8-321325 (JP) , A) JP-A-2-183396 (JP, A) JP-A-8-507407 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 45/00 C30B 29/22 CA (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蒸発性リチウム塩融剤の存在下、酸化性
雰囲気中でリチウム化合物とマンガン化合物とを加熱反
応させて、上記融剤の界面にLiMn24結晶粒子を生
成させたのち、この結晶粒子を非酸化性雰囲気中で薄膜
状に成長させることを特徴とするLiMn24を主成分
としたリチウムマンガン酸化物薄膜の製造方法。
A lithium compound and a manganese compound are heated and reacted in an oxidizing atmosphere in the presence of an evaporating lithium salt flux to generate LiMn 2 O 4 crystal particles at an interface of the flux, and A method for producing a lithium manganese oxide thin film containing LiMn 2 O 4 as a main component, wherein the crystal particles are grown into a thin film in a non-oxidizing atmosphere.
JP09270292A 1997-08-26 1997-08-26 Method for producing lithium manganese oxide thin film Expired - Lifetime JP3101709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09270292A JP3101709B2 (en) 1997-08-26 1997-08-26 Method for producing lithium manganese oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09270292A JP3101709B2 (en) 1997-08-26 1997-08-26 Method for producing lithium manganese oxide thin film

Publications (2)

Publication Number Publication Date
JPH1171113A JPH1171113A (en) 1999-03-16
JP3101709B2 true JP3101709B2 (en) 2000-10-23

Family

ID=17484238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09270292A Expired - Lifetime JP3101709B2 (en) 1997-08-26 1997-08-26 Method for producing lithium manganese oxide thin film

Country Status (1)

Country Link
JP (1) JP3101709B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191892B1 (en) 1996-04-02 2001-02-20 Canon Kabushiki Kaisha Image display apparatus
US6195207B1 (en) 1995-05-18 2001-02-27 Olympus Optical Co., Ltd. Head or face mounted image display apparatus
USRE37169E1 (en) 1996-01-19 2001-05-08 Olympus Optical Co., Ltd. Ocular optics system having at least four reflections occurring between curved surfaces
USRE37175E1 (en) 1995-11-28 2001-05-15 Olympus Optical Co., Ltd Image display apparatus
USRE37292E1 (en) 1995-07-14 2001-07-24 Olympus Optical Co., Ltd. Optical system and optical apparatus
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
USRE37579E1 (en) 1996-02-13 2002-03-12 Olympus Optical Co., Ltd. Image display apparatus comprising an internally reflecting ocular optical system
US6490095B2 (en) 2000-03-23 2002-12-03 Canon Kabushiki Kaisha Image display apparatus
US6532116B1 (en) 1993-10-05 2003-03-11 Canon Kabushiki Kaisha Compact optical apparatus for head up display
US6552854B2 (en) 2000-04-28 2003-04-22 Canon Kabushiki Kaisha Image display apparatus and optical system
US6594085B2 (en) 2000-04-28 2003-07-15 Canon Kabushiki Kaisha Image display apparatus and optical system
US6760169B2 (en) 1997-05-07 2004-07-06 Olympus Corporation Prism optical element, image observation apparatus and image display apparatus
US6814442B2 (en) 2000-04-28 2004-11-09 Canon Kabushiki Kaisha Image display apparatus and optical system
JP7179039B2 (en) 2012-01-24 2022-11-28 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ Compact eye-tracking head-mounted display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218120A (en) * 2008-03-11 2009-09-24 Toyota Motor Corp Positive electrode active material
JP5918651B2 (en) * 2012-08-09 2016-05-18 国立大学法人信州大学 Lithium composite oxide film, lithium composite oxide structure, method for producing lithium composite oxide structure, electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532116B1 (en) 1993-10-05 2003-03-11 Canon Kabushiki Kaisha Compact optical apparatus for head up display
US6317267B1 (en) 1995-05-18 2001-11-13 Olympus Optical Co., Ltd. Head or face mounted image display apparatus
US6195207B1 (en) 1995-05-18 2001-02-27 Olympus Optical Co., Ltd. Head or face mounted image display apparatus
USRE37292E1 (en) 1995-07-14 2001-07-24 Olympus Optical Co., Ltd. Optical system and optical apparatus
USRE37175E1 (en) 1995-11-28 2001-05-15 Olympus Optical Co., Ltd Image display apparatus
USRE37169E1 (en) 1996-01-19 2001-05-08 Olympus Optical Co., Ltd. Ocular optics system having at least four reflections occurring between curved surfaces
USRE37579E1 (en) 1996-02-13 2002-03-12 Olympus Optical Co., Ltd. Image display apparatus comprising an internally reflecting ocular optical system
US6191892B1 (en) 1996-04-02 2001-02-20 Canon Kabushiki Kaisha Image display apparatus
US6760169B2 (en) 1997-05-07 2004-07-06 Olympus Corporation Prism optical element, image observation apparatus and image display apparatus
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US6490095B2 (en) 2000-03-23 2002-12-03 Canon Kabushiki Kaisha Image display apparatus
US6594085B2 (en) 2000-04-28 2003-07-15 Canon Kabushiki Kaisha Image display apparatus and optical system
US6552854B2 (en) 2000-04-28 2003-04-22 Canon Kabushiki Kaisha Image display apparatus and optical system
US6814442B2 (en) 2000-04-28 2004-11-09 Canon Kabushiki Kaisha Image display apparatus and optical system
JP7179039B2 (en) 2012-01-24 2022-11-28 アリゾナ ボード オブ リージェンツ オン ビハーフ オブ ザ ユニバーシティ オブ アリゾナ Compact eye-tracking head-mounted display

Also Published As

Publication number Publication date
JPH1171113A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP3101709B2 (en) Method for producing lithium manganese oxide thin film
Xia et al. Studies on an Li Mn O spinel system (obtained by melt-impregnation) as a cathode for 4 V lithium batteries part 1. Synthesis and electrochemical behaviour of LixMn2O4
EP1875537B1 (en) Method for preparing layered core-shell cathode active materials for lithium secondary batteries
JP4691228B2 (en) Method for producing lithium-manganese composite oxide for non-aqueous lithium secondary battery
EP0915810B1 (en) Synthesis of lithium nickel cobalt dioxide
KR20120091137A (en) Positive active electrode material for lithium secondary battery, process for preparing the same and lithium secondary battery
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
WO1999033128A1 (en) Lithium manganate, method of producing the same, and lithium cell produced by the method
CN111554920A (en) Lithium-rich manganese-based positive electrode material containing sodium ions, precursor thereof and preparation method
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP5641132B2 (en) Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP2002522344A (en) Method for producing lithium manganese oxide insertion compound and compound produced
JP4650648B2 (en) Method for producing lithium manganese composite oxide
JP3101708B2 (en) Method for producing lithium manganate thin film
JP2002313338A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it
JP2001316200A (en) Manganese oxide single crystal particle and its production method
JP3655737B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3170587B2 (en) Spinel-type lithium manganese oxide and method for producing manganese oxide
JP2952352B1 (en) Method for producing lithium cobaltate for secondary battery
JPH1116572A (en) Positive electrode material for lithium secondary battery, and preparation of precursor composition thereof
JP2939546B1 (en) Manganese oxide crystal layer, method for producing the same, and lithium secondary battery using the same
JPH0722020A (en) Manufacture of lithium-manganese composite oxide and application thereof
KR100550373B1 (en) Manufacturing method of Li1 + xMn2-xO4 for use as a secondary battery electrode

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term