JP2952352B1 - Method for producing lithium cobaltate for secondary battery - Google Patents

Method for producing lithium cobaltate for secondary battery

Info

Publication number
JP2952352B1
JP2952352B1 JP10101833A JP10183398A JP2952352B1 JP 2952352 B1 JP2952352 B1 JP 2952352B1 JP 10101833 A JP10101833 A JP 10101833A JP 10183398 A JP10183398 A JP 10183398A JP 2952352 B1 JP2952352 B1 JP 2952352B1
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium cobaltate
cobalt oxide
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10101833A
Other languages
Japanese (ja)
Other versions
JPH11278850A (en
Inventor
衛平 湯
博文 加納
健太 大井
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP10101833A priority Critical patent/JP2952352B1/en
Application granted granted Critical
Publication of JP2952352B1 publication Critical patent/JP2952352B1/en
Publication of JPH11278850A publication Critical patent/JPH11278850A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【要約】 【課題】 特に層方向に結晶成長した、安定な結晶性を
有するリチウムイオン二次電池用正極材料として好適な
コバルト酸リチウムを、効率よく製造する方法を提供す
る。 【解決手段】 リチウム系融剤の存在下、リチウム化合
物とコバルト化合物とを、酸素雰囲気中、400〜80
0℃の温度で加熱し、反応させることにより、コバルト
酸リチウムを製造する。
Kind Code: A1 Abstract: A method for efficiently producing lithium cobalt oxide, which is crystal-grown particularly in a layer direction and has a stable crystallinity and is suitable as a cathode material for a lithium ion secondary battery, is provided. SOLUTION: In the presence of a lithium-based flux, a lithium compound and a cobalt compound are mixed in an oxygen atmosphere at 400 to 80%.
By heating at a temperature of 0 ° C. to cause a reaction, lithium cobaltate is produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池用正極材
料として好適な、特に層方向に結晶がよく成長した、安
定な結晶状コバルト酸リチウムの製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a stable crystalline lithium cobaltate which is suitable as a positive electrode material for a secondary battery, in particular, a crystal in which a crystal grows well in a layer direction.

【0002】[0002]

【従来の技術】近年、ノートパソコン、ビデオカメラ、
携帯電話やPHS(簡易型携帯電話)などの携帯型機器
が急速に伸びてきており、それに伴って、ニッケルカド
ミウム電池、リチウムイオン電池、ニッケル水素電池な
どの二次電池の需要が急速に伸びてきている。これらの
3種の二次電池は、それぞれ一長一短があるが、これら
の中で、特にリチウムイオン電池及びニッケル水素電池
の伸びが著しい。
2. Description of the Related Art In recent years, notebook computers, video cameras,
Portable devices such as mobile phones and PHS (simplified mobile phones) are rapidly growing, and demand for secondary batteries such as nickel cadmium batteries, lithium ion batteries, and nickel metal hydride batteries is growing rapidly. ing. Each of these three types of secondary batteries has advantages and disadvantages. Among them, lithium ion batteries and nickel hydrogen batteries have particularly remarkable growth.

【0003】リチウムイオン電池は、従来用いられてき
たニッケルカドミウム電池に比べて、一般に体積エネル
ギー密度及び重量エネルギー密度で約1.5〜2倍の特
性を有し、約3倍に相当する出力を示すなどの優れた特
徴を有している。
[0003] Lithium-ion batteries generally have a volume energy density and a weight energy density of about 1.5 to 2 times the characteristics of conventionally used nickel cadmium batteries, and have an output corresponding to about 3 times. It has excellent features such as shown.

【0004】このリチウムイオン電池においては、一般
に、正極材料としてコバルト酸リチウム(LiCo
2)が、負極材料としてリチウム金属などが用いられ
ているが、コバルト酸リチウムを正極材料とする場合、
理論容量は274mAh/gであるが、実用容量は、充
放電時の相変化が起こらない範囲で使用するため、通常
110〜120mAh/g程度となる。
In this lithium ion battery, lithium cobalt oxide (LiCoO) is generally used as a cathode material.
O 2 ) uses lithium metal or the like as a negative electrode material, but when lithium cobalt oxide is used as a positive electrode material,
The theoretical capacity is 274 mAh / g, but the practical capacity is usually about 110 to 120 mAh / g because it is used in a range where no phase change occurs during charging and discharging.

【0005】ところで、リチウムイオン二次電池におい
ては、その正極材料の比表面積が放電容量を決定する重
要な因子であることが知られており、正極材料の比表面
積が大きいほど、電池反応面積が大きくなるため、イオ
ンの移動が円滑に行われ、強負荷充放電に対して容量低
下が少なくなる。
In a lithium ion secondary battery, it is known that the specific surface area of the positive electrode material is an important factor for determining the discharge capacity. As the specific surface area of the positive electrode material increases, the reaction area of the battery increases. Since the size is large, the movement of ions is performed smoothly, and a decrease in capacity with respect to heavy load and discharge is reduced.

【0006】コバルト酸リチウムは、一般に層状岩塩構
造を有しており、リチウムイオン二次電池の正極材料と
して用いる場合、放電容量が大きく、かつ良好な充放電
サイクル特性を得るには、安定した良好な結晶性を有す
るとともに、特に層方向に結晶がよく成長していること
が望ましい。
[0006] Lithium cobalt oxide generally has a layered rock salt structure, and when used as a positive electrode material of a lithium ion secondary battery, a large discharge capacity and stable charge / discharge cycle characteristics are required to obtain good charge / discharge cycle characteristics. It is desirable that the crystal have good crystallinity and that the crystal grows particularly well in the layer direction.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、特に層方向に結晶成長した安定な結晶性
を有するリチウムイオン二次電池用正極材料として好適
なコバルト酸リチウムを、効率よく製造する方法を提供
することを目的としてなされたものである。
SUMMARY OF THE INVENTION Under such circumstances, the present invention provides lithium cobalt oxide which is particularly suitable as a positive electrode material for a lithium ion secondary battery having stable crystallinity grown in the layer direction. The purpose of the present invention is to provide a method for efficiently manufacturing.

【0008】[0008]

【課題を解決するための手段】本発明者らは、優れた結
晶性をもつコバルト酸リチウムを製造する方法について
鋭意研究を重ねた結果、特定のリチウム系融剤の存在下
に、コバルト化合物を酸素雰囲気中、特定の温度で加熱
し、溶融反応させることにより、層方向に結晶がよく成
長し、安定な結晶性をもつコバルト酸リチウムが得られ
ることを見出し、この知見に基づいて本発明を完成する
に至った。
The present inventors have conducted intensive studies on a method for producing lithium cobalt oxide having excellent crystallinity, and as a result, have found that a cobalt compound can be produced in the presence of a specific lithium-based flux. By heating at a specific temperature in an oxygen atmosphere and performing a melting reaction, it has been found that crystals grow well in the layer direction, and lithium cobalt oxide having stable crystallinity can be obtained. It was completed.

【0009】すなわち、本発明は、コバルト化合物を、
このコバルト化合物に対し反応性を有するリチウム系融
剤の存在下、酸素雰囲気中、400〜800℃の温度に
おいて加熱し、溶融反応させることを特徴とする二次電
池用コバルト酸リチウムの製造方法を提供するものであ
る。
That is, the present invention provides a method for producing a cobalt compound
A method for producing lithium cobalt oxide for a secondary battery, comprising heating in an oxygen atmosphere at a temperature of 400 to 800 ° C. in the presence of a lithium flux having reactivity with the cobalt compound to cause a melting reaction. To provide.

【0010】[0010]

【発明の実施の形態】本発明方法において用いられるコ
バルト化合物としては、従来公知の化合物、例えば炭酸
塩、オキシ水酸化物、水酸化物、含水酸化物、硫酸塩な
どの中から、適宜選択して用いることができ、特に制限
はない。これらのコバルト化合物は通常単独で用いられ
るが、所望ならば2種以上を組み合わせて用いてもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION The cobalt compound used in the method of the present invention is appropriately selected from conventionally known compounds such as carbonates, oxyhydroxides, hydroxides, hydrated oxides and sulfates. Can be used without any particular limitation. These cobalt compounds are usually used alone, but may be used in combination of two or more if desired.

【0011】本発明方法において用いられるリチウム系
融剤としては、反応温度で溶融し、かつ同時にコバルト
化合物と反応するものであればよく、特に制限はない
が、リチウムの塩化物や水酸化物が好ましい。
The lithium-based flux used in the method of the present invention is not particularly limited as long as it melts at the reaction temperature and simultaneously reacts with the cobalt compound. preferable.

【0012】このリチウム系融剤は通常単独で用いられ
るが、所望ならば2種以上を組み合わせて用いてもよ
い。その使用量は、使用する反応器の形状や加熱温度な
どにより変わるが、該融剤が溶けて反応を促進させると
いう目的からすると、コバルト化合物1モルに対して、
通常10モル以上、好ましくは10〜30モルの範囲で
選ばれる。
This lithium-based flux is usually used alone, but if desired, two or more kinds may be used in combination. The amount used varies depending on the shape of the reactor used, the heating temperature, etc., but from the viewpoint of melting the flux and accelerating the reaction, with respect to 1 mol of the cobalt compound,
It is usually selected in a range of 10 mol or more, preferably 10 to 30 mol.

【0013】次に、本発明方法の好適な態様について説
明すると、まず、コバルト化合物及びリチウム系融剤
を、それぞれ所定の割合で十分に均質になるように混合
したのち、酸素雰囲気中で加熱溶融する。加熱温度は、
400〜800℃の範囲で選ばれるが、使用する融剤の
種類に応じて、上記範囲で適宜選定すればよい。融剤が
リチウムの塩化物である場合、特に600〜750℃の
範囲が好ましい。この温度が400℃未満では融剤が溶
融せず、反応が進行しにくい。また800℃より高いと
酸化コバルトを形成するため、好ましくない。また、酸
素雰囲気としては、酸素ガス、酸素ガスと窒素やアルゴ
ンなどの不活性ガスとの混合物、あるいは空気などから
なる雰囲気が挙げられる。
Next, a preferred embodiment of the method of the present invention will be described. First, a cobalt compound and a lithium-based flux are mixed at a predetermined ratio so as to be sufficiently homogeneous, and then heated and melted in an oxygen atmosphere. I do. The heating temperature is
The temperature is selected within the range of 400 to 800 ° C., but may be appropriately selected within the above range according to the type of the flux used. When the flux is a chloride of lithium, the range of 600 to 750C is particularly preferable. When the temperature is lower than 400 ° C., the flux does not melt, and the reaction hardly proceeds. If the temperature is higher than 800 ° C., cobalt oxide is formed, which is not preferable. Examples of the oxygen atmosphere include an oxygen gas, a mixture of an oxygen gas and an inert gas such as nitrogen or argon, or an atmosphere composed of air or the like.

【0014】反応終了後、反応生成物に水を加え、リチ
ウム系融剤を溶解し、次いでろ過、遠心分離、デカンテ
ィションなどの公知の手段により固液分離したのち、固
形物を十分に水洗後、乾燥処理することにより、所望の
コバルト酸リチウムを得ることができる。乾燥処理は、
通常70℃以上、好ましくは100℃以上の温度で行う
のがよい。
After completion of the reaction, water is added to the reaction product to dissolve the lithium-based flux, followed by solid-liquid separation by a known means such as filtration, centrifugation, decantation, and the like. By performing a drying treatment, a desired lithium cobalt oxide can be obtained. The drying process is
It is usually good to carry out at a temperature of 70 ° C. or higher, preferably 100 ° C. or higher.

【0015】このようにして、安定な結晶性を有すると
ともに、特に層方向に結晶がよく成長したコバルト酸リ
チウムが得られる。この結晶形態については、X線回折
により確認することができる。本発明方法で得られたコ
バルト酸リチウムは、前記のような優れた結晶形態を有
するので、リチウムイオン二次電池用正極材料として好
適に用いられる。
In this way, a lithium cobalt oxide having stable crystallinity and having a crystal grown particularly in the layer direction can be obtained. This crystal form can be confirmed by X-ray diffraction. Lithium cobaltate obtained by the method of the present invention has the above-mentioned excellent crystal morphology, and thus is suitably used as a positive electrode material for a lithium ion secondary battery.

【0016】[0016]

【発明の効果】本発明方法によれば、安定した良好な結
晶性を有するとともに、特に層方向に結晶がよく成長し
てなる、リチウムイオン二次電池用正極材料として好適
なコバルト酸リチウムを、効率よく製造することができ
る。
According to the method of the present invention, lithium cobalt oxide, which has stable and good crystallinity and is particularly suitable as a cathode material for a lithium ion secondary battery, in which crystals grow well in the layer direction, It can be manufactured efficiently.

【0017】[0017]

【実施例】次に、本発明を実施例により、さらに詳細に
説明する。
Next, the present invention will be described in more detail by way of examples.

【0018】実施例 塩化リチウム214ミリモル及び水酸化コバルト11ミ
リモルをよく混合し、直径約80mmのルツボに入れ、
電気炉中で、空気を400ml/分の速度で導入しなが
ら、650℃にて4日間加熱し、溶融状態で反応させ
た。加熱終了後、反応生成物を取り出し、ビーカー中で
よく水洗したのち、固形物をろ取し、さらに100℃で
乾燥することにより、黒い粉末が得られた。この粉末に
ついて、X線回折を行った。図1に、このX線回折チャ
ートを示す。このチャートより、(003)面が発達し
ていることが明らかである。また、原子吸光法で求めた
組成は、Li0.88CoO2.0であった。
EXAMPLE A mixture of 214 mmol of lithium chloride and 11 mmol of cobalt hydroxide was thoroughly mixed, and placed in a crucible having a diameter of about 80 mm.
The mixture was heated at 650 ° C. for 4 days in an electric furnace while introducing air at a rate of 400 ml / min, and reacted in a molten state. After the heating, the reaction product was taken out, washed well with water in a beaker, and then the solid was collected by filtration and further dried at 100 ° C. to obtain a black powder. This powder was subjected to X-ray diffraction. FIG. 1 shows this X-ray diffraction chart. From this chart, it is clear that the (003) plane is developed. The composition determined by the atomic absorption method was Li 0.88 CoO 2.0 .

【0019】次に、リチウムイオン二次電池において、
上記で得られたコバルト酸リチウムを正極に、リチウム
金属を負極に用いセルを作成し、定電流0.5mA/c
2、4.3〜3.0Vで充放電テストを行った。1回
目の充放電曲線と、1回目から7回目までのサイクル特
性を、図2及び図3にそれぞれ示す。1回目の放電容量
は156mAh/gと高い値である。また、x=0.5
のときの放電容量は135mAh/gと計算することが
でき、理論値(137mAh/g)とほぼ一致した。7
回目までの充放電のクーロン効率は98%以上の高い値
を示した。
Next, in a lithium ion secondary battery,
A cell was prepared using the lithium cobaltate obtained above as a positive electrode and lithium metal as a negative electrode, and a constant current of 0.5 mA / c.
A charge / discharge test was performed at m 2 , 4.3 to 3.0 V. FIGS. 2 and 3 show the first charge / discharge curve and the cycle characteristics from the first time to the seventh time, respectively. The first discharge capacity is a high value of 156 mAh / g. Also, x = 0.5
In this case, the discharge capacity could be calculated to be 135 mAh / g, which almost coincided with the theoretical value (137 mAh / g). 7
The Coulomb efficiency of charge and discharge up to the second time showed a high value of 98% or more.

【0020】比較例 塩化リチウム214ミリモル、水酸化コバルト11ミリ
モルをよく混合し、直径約80mmのルツボに入れ、電
気炉中で、空気を400ml/分の速度で導入しなが
ら、850℃にて4日間加熱処理した。加熱終了後、反
応生成物を取り出し、ビーカー中でよく水洗したのち、
固形物をろ取し、さらに100℃で乾燥した。得られた
生成物のX線回折チャートを図4に示す。コバルト酸リ
チウムが得られず、Co23とCoOが生成しているこ
とが分かる。
Comparative Example 214 mmol of lithium chloride and 11 mmol of cobalt hydroxide were mixed well, placed in a crucible having a diameter of about 80 mm, and introduced at 850 ° C. in an electric furnace while introducing air at a rate of 400 ml / min. Heat treatment was performed for days. After heating, take out the reaction product and wash it well in a beaker.
The solid was collected by filtration and further dried at 100 ° C. FIG. 4 shows an X-ray diffraction chart of the obtained product. It can be seen that lithium cobaltate was not obtained and Co 2 O 3 and CoO were generated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明方法で得られたコバルト酸リチウムの
1例のX線回折チャート。
FIG. 1 is an X-ray diffraction chart of one example of lithium cobaltate obtained by the method of the present invention.

【図2】 本発明方法で得られたコバルト酸リチウム
を、リチウムイオン二次電池の正極に用いた場合の充放
電曲線の1例を示すグラフ。
FIG. 2 is a graph showing one example of a charge / discharge curve when lithium cobaltate obtained by the method of the present invention is used for a positive electrode of a lithium ion secondary battery.

【図3】 本発明方法で得られたコバルト酸リチウム
を、リチウムイオン二次電池の正極に用いた場合のサイ
クル特性の1例を示すグラフ。
FIG. 3 is a graph showing an example of cycle characteristics when lithium cobaltate obtained by the method of the present invention is used for a positive electrode of a lithium ion secondary battery.

【図4】 比較例で得られたコバルト酸化物のX線回折
チャート。
FIG. 4 is an X-ray diffraction chart of a cobalt oxide obtained in a comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−64928(JP,A) 特開 平10−312805(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01G 51/00 H01M 4/02 H01M 10/40 H01M 4/58 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-64928 (JP, A) JP-A-10-312805 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01G 51/00 H01M 4/02 H01M 10/40 H01M 4/58

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 コバルト化合物を、このコバルト化合物
に対し反応性を有するリチウム系融剤の存在下、酸素雰
囲気中、400〜800℃の温度において加熱し、溶融
反応させることを特徴とする二次電池用コバルト酸リチ
ウムの製造方法。
1. A secondary compound characterized by heating a cobalt compound at a temperature of 400 to 800 ° C. in an oxygen atmosphere in the presence of a lithium-based flux reactive with the cobalt compound to cause a melting reaction. A method for producing lithium cobaltate for a battery.
【請求項2】 リチウム系融剤がリチウムの塩化物又は
水酸化物あるいはそれらの混合物である請求項1記載の
製造方法。
2. The method according to claim 1, wherein the lithium flux is a chloride or hydroxide of lithium or a mixture thereof.
JP10101833A 1998-03-31 1998-03-31 Method for producing lithium cobaltate for secondary battery Expired - Lifetime JP2952352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10101833A JP2952352B1 (en) 1998-03-31 1998-03-31 Method for producing lithium cobaltate for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10101833A JP2952352B1 (en) 1998-03-31 1998-03-31 Method for producing lithium cobaltate for secondary battery

Publications (2)

Publication Number Publication Date
JP2952352B1 true JP2952352B1 (en) 1999-09-27
JPH11278850A JPH11278850A (en) 1999-10-12

Family

ID=14311099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10101833A Expired - Lifetime JP2952352B1 (en) 1998-03-31 1998-03-31 Method for producing lithium cobaltate for secondary battery

Country Status (1)

Country Link
JP (1) JP2952352B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890441A (en) * 2022-05-16 2022-08-12 昆明理工大学 Method for recovering lithium chloride and cobalt oxide from waste lithium cobaltate battery positive plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678457B2 (en) * 2000-10-24 2011-04-27 株式会社豊田中央研究所 Lithium transition metal composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114890441A (en) * 2022-05-16 2022-08-12 昆明理工大学 Method for recovering lithium chloride and cobalt oxide from waste lithium cobaltate battery positive plate
CN114890441B (en) * 2022-05-16 2023-05-23 昆明理工大学 Method for recycling lithium chloride and cobalt oxide from waste lithium cobalt oxide battery positive plate

Also Published As

Publication number Publication date
JPH11278850A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US5759719A (en) Electrode material for lithium intercalation electrochemical cells
EP2606523B1 (en) Method for preparing negative active material, negative electrode material and lithium ion battery
JPH06325765A (en) Nonaqueous electrolytic secondary battery and its manufacture
TW201031044A (en) Positive electrode materials for high discharge capacity lithium ion batteries
KR100595362B1 (en) Lithium-Nickel complex oxide for Cathode Material of Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Same and Cathode Material containing the Same
JP2001028265A (en) Positive electrode active material for lithium secondary battery and manufacture thereof
Huang et al. A 4 V Lithium Manganese Oxide Cathode for Rocking‐Chair Lithium‐Ion Cells
JP2000058059A (en) Positive-electrode active material for lithium secondary battery and its manufacture
JP4159640B2 (en) Anode active material for lithium ion battery and method for producing the same
EP0779669A1 (en) Lithium manganese oxide compound and method of preparation
US6291100B1 (en) Electrode composition comprising doped tungsten oxides and electrochemical cell comprising same
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
CN116031380A (en) Polycrystalline sodium ion-like positive electrode material, and preparation method and application thereof
JP4724912B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery
US6274278B1 (en) Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
KR20040014270A (en) Negative electrode active material, method of producing the same, and nonaqueous electrolyte cell
JP2952352B1 (en) Method for producing lithium cobaltate for secondary battery
JP2001052703A (en) Positive electrode material for lithium secondary battery and its manufacture
JP2001064020A (en) Production of lithium manganate
KR100358799B1 (en) Method of preparing positive active material for lithium secondary battery
JP4491947B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
CN106299349B (en) Lithium ion battery adulterates the preparation method of lithium nickelate material with holmium
JPS62176054A (en) Lithium battery

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term