JP3101450B2 - Particle measurement device - Google Patents

Particle measurement device

Info

Publication number
JP3101450B2
JP3101450B2 JP04328069A JP32806992A JP3101450B2 JP 3101450 B2 JP3101450 B2 JP 3101450B2 JP 04328069 A JP04328069 A JP 04328069A JP 32806992 A JP32806992 A JP 32806992A JP 3101450 B2 JP3101450 B2 JP 3101450B2
Authority
JP
Japan
Prior art keywords
particles
flow path
electrode
measuring
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04328069A
Other languages
Japanese (ja)
Other versions
JPH06174630A (en
Inventor
和夫 井阪
博嗣 高木
隆行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP04328069A priority Critical patent/JP3101450B2/en
Publication of JPH06174630A publication Critical patent/JPH06174630A/en
Application granted granted Critical
Publication of JP3101450B2 publication Critical patent/JP3101450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Mechanical Conveyors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は流体中の粒子を搬送する
技術分野に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the technical field of transporting particles in a fluid.

【0002】[0002]

【従来の技術】流体中で細胞や担体粒子等の微小な粒子
を搬送するために、これまで様々な方法が開発されてき
た。一例として電界の及ぼす力を利用して粒子を搬送す
る方法がある。具体的には電気泳動力を利用するものや
誘電泳動力を利用するもの等が知られている。
2. Description of the Related Art Various methods have been developed for transporting minute particles such as cells and carrier particles in a fluid. As an example, there is a method of transporting particles using the force exerted by an electric field. Specifically, those utilizing electrophoretic force and those utilizing dielectrophoretic force are known.

【0003】[0003]

【発明が解決しようとする課題】電気泳動力を利用する
場合、長距離の搬送を行なおうとすると電極間隔が長く
なり、例えば数十KVという高電圧を印加する必要があ
る。これは危険性や装置の大型化が避けられないという
課題がある。
When the electrophoretic force is used, the distance between the electrodes becomes longer when carrying out long-distance transport, and it is necessary to apply a high voltage of, for example, several tens of KV. This poses a problem of danger and an increase in the size of the device.

【0004】又、誘電体泳動力を利用する場合、電界を
印加して作用力を与える位置以外に粒子があると逆向き
の電界による力を受けやすく、連続的な搬送が難しいと
いった課題がある。
In addition, when utilizing the dielectrophoretic force, if there is a particle other than the position where the action force is applied by applying an electric field, there is a problem that the force due to the opposite electric field is apt to be exerted, and it is difficult to continuously transport the particles. .

【0005】本発明は上記従来の方式を改良し、粒子を
安定して搬送することができ、高精度な測定を可能とす
る粒子測定装置の提供を目的とする。
It is an object of the present invention to provide a particle measuring apparatus which improves the above-mentioned conventional method, can stably convey particles, and enables highly accurate measurement.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の粒子測定装置は、粒子が搬送される流路途中に設け
た測定部を有し、不均一な密度を持った電界を発生する
電極を流路に沿って複数配置し、該電界の作用によって
粒子を該流路に沿って搬送し、搬送される粒子を該測定
部で測定するようにしたことを特徴とするものである。
A particle measuring apparatus according to the present invention for solving the above-mentioned problems has a measuring section provided in the middle of a flow path through which particles are conveyed, and generates an electric field having a non-uniform density. A plurality of electrodes are arranged along the flow path, particles are conveyed along the flow path by the action of the electric field, and the conveyed particles are measured by the measurement unit.

【0007】[0007]

【実施例】以下、本発明の実施例の粒子測定装置を図面
を用いて説明する。本実施例の粒子測定装置は例えば血
液試料中の血球を流し、これを光学的に測定して血球の
カウントや解析を行なうものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a particle measuring apparatus according to an embodiment of the present invention will be described with reference to the drawings. The particle measuring apparatus according to the present embodiment is for flowing blood cells in a blood sample, for example, and optically measuring the blood cells to count and analyze the blood cells.

【0008】図1は実施例の装置の構成図である。図
中、10は透明基板、11は溝部が形成された透明基板
であり、両者は接合されている。1は血液試料などのサ
ンプル液を流すための流路である。21(21′)乃至
25(25′)は流路の下面に配列された電極であり電
極対を5つ形成している。又、7は流路中の測定部に照
射光を与えるためのレーザ等の光源、8は測定部からの
光を検出する検出器であり、これらによって測定光学系
が構成されている。9はコンピュータなどを有する粒子
解析部である。
FIG. 1 is a configuration diagram of an apparatus according to an embodiment. In the figure, 10 is a transparent substrate, 11 is a transparent substrate having a groove formed, and both are joined. Reference numeral 1 denotes a flow path for flowing a sample liquid such as a blood sample. Electrodes 21 (21 ') to 25 (25') are arranged on the lower surface of the flow path, and form five electrode pairs. Reference numeral 7 denotes a light source such as a laser for applying irradiation light to the measuring unit in the flow path, and 8 denotes a detector for detecting light from the measuring unit, and these constitute a measuring optical system. 9 is a particle analysis unit having a computer and the like.

【0009】透明基板10としては例えばパイレックス
ガラスが好ましい。又、透明基板11は例えば樹脂をプ
レス加工等で加工して流路1となる溝を形成する。ある
いは透明基板11をガラスとしてこれにエッチングによ
り流路溝を形成するようにしても良い。流路径は10〜
1000μmが好ましく、扱う粒子のサイズに応じて径
を設定する。本実施例では50μm×170μmとして
いる。又、電極は透明基板10上にフォトリソグラフィ
により形成される。各電極長さは200μmで、対にな
る電極の間隙は狭部で50μm、広部で150μmであ
る。
As the transparent substrate 10, for example, Pyrex glass is preferable. The transparent substrate 11 is formed by processing a resin by, for example, press working or the like to form a groove serving as the flow path 1. Alternatively, a flow channel may be formed by etching the transparent substrate 11 using glass. The flow path diameter is 10
The diameter is preferably set to 1000 μm according to the size of the particles to be handled. In this embodiment, the size is 50 μm × 170 μm. The electrodes are formed on the transparent substrate 10 by photolithography. The length of each electrode is 200 μm, and the gap between the paired electrodes is 50 μm at the narrow portion and 150 μm at the wide portion.

【0010】図2は本実施例の電気系の構成図を示すも
のである。4は高周波発振器、5は低周波発振器、6は
切換器であり、切換器6は電極2に接続されている。高
周波発振器4は1kHz〜10MHzの交流高周波を発
生する。この交流は三角波、三角関数波、矩形波などで
ある。又、低周波発振器5は周波数1/tの矩形波を発
生し、上記矩形波の正負に応じて切換器6により電極2
への電圧印加を切り替える。ここでtは、電極2に高周
波が印加されたときに流路中の粒子が各電極の上流側端
部から下流側端部まで移動するのにほぼ要する時間であ
る。低周波発振器5の出力を基に切換器6によって時間
t毎に、電極22(22′)、24(24′)の組と、
電極21(21′)、23(23′)、25(25′)
の組とに交互に高周波電圧を印加するよう切り替えてい
る。
FIG. 2 is a diagram showing the configuration of an electric system according to this embodiment. 4 is a high frequency oscillator, 5 is a low frequency oscillator, 6 is a switch, and the switch 6 is connected to the electrode 2. The high-frequency oscillator 4 generates an AC high frequency of 1 kHz to 10 MHz. The alternating current is a triangular wave, a trigonometric function wave, a rectangular wave, or the like. The low-frequency oscillator 5 generates a rectangular wave having a frequency of 1 / t, and the switch 6 controls the electrodes 2 according to the sign of the rectangular wave.
Switch the voltage application to. Here, t is the time required for particles in the flow path to move from the upstream end to the downstream end of each electrode when a high frequency is applied to the electrode 2. A set of electrodes 22 (22 ') and 24 (24') is provided at every time t by the switch 6 based on the output of the low frequency oscillator 5,
Electrodes 21 (21 '), 23 (23'), 25 (25 ')
Are switched so that a high-frequency voltage is alternately applied to the set of.

【0011】電極対に電圧が印加された時に発生する電
気力線は、電極間隔の広い方から狭い方に行くに従って
密になった不均一な電界である。従って流路中の粒子は
電気力線の密な方向、すなわち図の右方向に作用力を受
けて右方向へ搬送される。図2では、電極21(2
1′)、23(23′)、25(25′)の組に電圧を
印加したとき発生する電気力線の状態を点線で示してい
る。各電極対が発生する電気力線は、隣の電極対の範囲
と一部重なるように各電極が配置されており、これによ
り流路中の粒子は動きが止まることなく安定して次々と
搬送される。
The lines of electric force generated when a voltage is applied to the electrode pairs are non-uniform electric fields that become denser as the distance between the electrodes goes from wide to narrow. Therefore, the particles in the flow path receive the acting force in the direction in which the lines of electric force are dense, that is, in the right direction in the drawing, and are conveyed rightward. In FIG. 2, the electrodes 21 (2
The state of the lines of electric force generated when a voltage is applied to the set of 1 '), 23 (23'), and 25 (25 ') is indicated by a dotted line. Each electrode is arranged so that the lines of electric force generated by each pair of electrodes partially overlap the range of the next pair of electrodes, so that the particles in the flow path are stably transported one after another without stopping movement. Is done.

【0012】なお、各電極はエッジ部が鋭角に形成され
ていると、特に電極間隙が狭い方の端部に電界が集中し
やすいので、電極端部のエッジに丸みを持たせたり、電
極形状を流路中心側に若干脹ませたりすれば、流路中心
部の電気力線がより密になって好ましい。
If the edges of each electrode are formed at an acute angle, the electric field tends to concentrate particularly at the end where the electrode gap is narrow, so that the edge of the electrode is rounded or the shape of the electrode is reduced. Is slightly expanded toward the center of the flow path, which is preferable because the electric lines of force at the center of the flow path become denser.

【0013】光源7と検出器8からなる測定光学系では
流路中の測定部に光を照射し、測定部を通過する粒子か
ら発する散乱光や蛍光を検出器8で測光する。粒子解析
部9では検出器8からの出力を基に、粒子のカウントや
粒子の種類や性質等の解析の演算を行なう。
In a measuring optical system comprising a light source 7 and a detector 8, light is emitted to a measuring section in the flow path, and scattered light and fluorescence emitted from particles passing through the measuring section are measured by the detector 8. The particle analysis unit 9 calculates the particle count and analyzes the type and properties of the particles based on the output from the detector 8.

【0014】図3は上記実施例の装置の変形例を示すも
のである。上記実施例と同様の電極を流路の上面及び下
面の両方に形成する、このとき上面と下面とでは電極の
向きを逆向きにして逆向きの電気力線分布を発生させる
ことができる。ここでどちらか一方の面の電極を選択し
てこれに上記実施例と同様に高周波電圧を印加すること
で、粒子の搬送方向を切り換えることができる。
FIG. 3 shows a modification of the apparatus of the above embodiment. Electrodes similar to those in the above embodiment are formed on both the upper surface and the lower surface of the flow path. At this time, the direction of the electrodes can be reversed between the upper surface and the lower surface to generate a reverse electric field line distribution. Here, by selecting an electrode on one of the surfaces and applying a high-frequency voltage to the electrode in the same manner as in the above-described embodiment, it is possible to switch the transport direction of the particles.

【0015】図4は別の変形例を示す。電極を流路の上
面と下面に交互に分散して配置して配線を容易にした。
FIG. 4 shows another modification. The electrodes were alternately dispersed and arranged on the upper surface and the lower surface of the flow path to facilitate wiring.

【0016】図5は別の変形例を示す。電極を流路の中
段に設けることにより、最も電界の強くなる電極対間を
粒子が通過するようにした。
FIG. 5 shows another modification. By providing the electrode in the middle of the channel, the particles were allowed to pass between the electrode pairs where the electric field was strongest.

【0017】[0017]

【発明の効果】本発明によれば、簡便な構成で粒子を安
定して搬送することができ、精度の高い粒子測定が可能
となる。
According to the present invention, particles can be stably transported with a simple configuration, and highly accurate particle measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】実施例の電気系の構成図である。FIG. 2 is a configuration diagram of an electric system according to an embodiment.

【図3】変形例の説明図である。FIG. 3 is an explanatory diagram of a modified example.

【図4】別の変形例の説明図である。FIG. 4 is an explanatory diagram of another modified example.

【図5】別の変形例の説明図である。FIG. 5 is an explanatory diagram of another modified example.

【符号の説明】[Explanation of symbols]

1 流路 4 高周波発振器 5 低周波発振器 6 切換器 7 光源 8 検出器 9 粒子解析部 10、11 透明基板 21(21′)乃至25(25′) 電極 DESCRIPTION OF SYMBOLS 1 Flow path 4 High frequency oscillator 5 Low frequency oscillator 6 Switching device 7 Light source 8 Detector 9 Particle analysis part 10, 11 Transparent substrate 21 (21 ') thru 25 (25') Electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭47−44365(JP,A) 特開 昭48−16260(JP,A) 熊谷寛夫、外3名、「粒子加速装 置」、昭和41年、初版、p.9−17 熊谷寛夫、「加速器」、共立出版株式 会社、昭和57年、新版2刷、p.137− 141 (58)調査した分野(Int.Cl.7,DB名) G01N 15/00 - 15/14 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-47-44365 (JP, A) JP-A-48-16260 (JP, A) Hiroo Kumagai, 3 others, “Particle Accelerator”, Showa 41 Year, first edition, p. 9-17 Hiroo Kumagai, "Accelerator", Kyoritsu Shuppan Co., Ltd., 1982, 2nd edition, p. 137− 141 (58) Fields surveyed (Int. Cl. 7 , DB name) G01N 15/00-15/14

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粒子が搬送される流路途中に設けた測定
部を有し、不均一な密度を持った電界を発生する電極を
流路に沿って複数配置し、該電界の作用によって粒子を
該流路に沿って搬送し、搬送される粒子を該測定部で測
定するようにしたことを特徴とする粒子測定装置。
1. A method according to claim 1, further comprising a measuring unit provided in the middle of the flow path through which the particles are conveyed, and a plurality of electrodes for generating an electric field having a non-uniform density arranged along the flow path. Characterized in that the particles are conveyed along the flow path, and the conveyed particles are measured by the measuring section.
【請求項2】 前記電極は間隙が狭い部分から間隙が広
い部分へと間隙が徐々に変化する電極対を、流路に沿っ
て複数配置したものであることを特徴とする請求項1記
載の粒子測定装置。
2. The electrode according to claim 1, wherein a plurality of electrode pairs whose gap gradually changes from a narrow gap to a wide gap are arranged along the flow path. Particle measuring device.
【請求項3】 前記電極対に交流電圧を与える高周波発
振器と、前記複数の電極対への電圧印加を切り替えるた
めの切替器を有することを特徴とする請求項2記載の粒
子搬送装置。
3. The particle transport device according to claim 2, further comprising: a high-frequency oscillator for applying an AC voltage to the electrode pairs; and a switch for switching voltage application to the plurality of electrode pairs.
【請求項4】 測定は前記測定部において光学的に粒子
を測定することを特徴とする請求項1記載の粒子測定装
置。
4. The particle measuring apparatus according to claim 1, wherein the measurement is performed by optically measuring the particles in the measuring section.
JP04328069A 1992-12-08 1992-12-08 Particle measurement device Expired - Fee Related JP3101450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04328069A JP3101450B2 (en) 1992-12-08 1992-12-08 Particle measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04328069A JP3101450B2 (en) 1992-12-08 1992-12-08 Particle measurement device

Publications (2)

Publication Number Publication Date
JPH06174630A JPH06174630A (en) 1994-06-24
JP3101450B2 true JP3101450B2 (en) 2000-10-23

Family

ID=18206171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04328069A Expired - Fee Related JP3101450B2 (en) 1992-12-08 1992-12-08 Particle measurement device

Country Status (1)

Country Link
JP (1) JP3101450B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601054C1 (en) * 1996-01-05 1997-04-10 Inst Bioprozess Analysenmesst Biological particle parameter measuring method
JP5542007B2 (en) * 2010-08-26 2014-07-09 日本碍子株式会社 Particulate matter detector

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
熊谷寛夫、「加速器」、共立出版株式会社、昭和57年、新版2刷、p.137−141
熊谷寛夫、外3名、「粒子加速装置」、昭和41年、初版、p.9−17

Also Published As

Publication number Publication date
JPH06174630A (en) 1994-06-24

Similar Documents

Publication Publication Date Title
US6846639B2 (en) Method for detecting pathogens attached to specific antibodies
AU597442B2 (en) Determination of particle size and electric charge
US10350613B2 (en) Method and apparatus for manipulating particles
US8425749B1 (en) Microfabricated particle focusing device
EP0214769A2 (en) Aerosol particle charge and size analyzer
US20070240495A1 (en) Microfluidic Device and Analyzing/Sorting Apparatus Using The Same
US20160250637A1 (en) Virtual deterministic lateral displacement for particle separation using surface acoustic waves
KR20130045236A (en) Microchip and particulate analyzing device
US20060070957A1 (en) Apparatus for collecting particles
JP2009156669A (en) Floating particulate substance measuring instrument
US8274654B2 (en) Apparatus for measuring nanoparticles
JP3205413B2 (en) Particle measuring device and particle measuring method
JP3101450B2 (en) Particle measurement device
JP2008232969A (en) Suspended particulate matter measuring device
JPS6390740A (en) Method and device for dispersoid analysis
Wu et al. An optical-coding method to measure particle distribution in microfluidic devices
JP2007198804A (en) Viscosity measuring instrument using particle
Wada et al. Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis
Xu Electrophoretic light scattering: Zeta potential measurement
JP4517980B2 (en) Particle measuring device
JPS6345553A (en) Microelectrophoretic cell for laser doppler electrophoretic system
Igarashi et al. A boundary element analysis of space charge fields in a corona device
Witte et al. OET meets acoustic tweezing
JPS59122930A (en) Fine particle detecting method
JPH01245131A (en) Fine-grain detecting system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees