JP3097938B2 - Surface emitting semiconductor laser - Google Patents

Surface emitting semiconductor laser

Info

Publication number
JP3097938B2
JP3097938B2 JP04267473A JP26747392A JP3097938B2 JP 3097938 B2 JP3097938 B2 JP 3097938B2 JP 04267473 A JP04267473 A JP 04267473A JP 26747392 A JP26747392 A JP 26747392A JP 3097938 B2 JP3097938 B2 JP 3097938B2
Authority
JP
Japan
Prior art keywords
layer
multilayer film
film
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04267473A
Other languages
Japanese (ja)
Other versions
JPH06120610A (en
Inventor
義孝 大礒
剛孝 小濱
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP04267473A priority Critical patent/JP3097938B2/en
Publication of JPH06120610A publication Critical patent/JPH06120610A/en
Application granted granted Critical
Publication of JP3097938B2 publication Critical patent/JP3097938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0217Removal of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/1838Reflector bonded by wafer fusion or by an intermediate compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、面発光半導体レーザに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser.

【0002】[0002]

【従来の技術】面発光半導体レーザは低しきい値電流動
作、高密度2次元集積化光源または動的単一動作が可能
なデバイスであることから、光情報処理用、光通信用、
または光インターコネクション用光源として期待されて
いる。また、通信の大容量化に伴い、面発光半導体レー
ザを電子デバイスと高集積可能なSi基板形成すること
は非常に有望である。
2. Description of the Related Art Since a surface emitting semiconductor laser is a device capable of low threshold current operation, high-density two-dimensional integrated light source or dynamic single operation, it is used for optical information processing, optical communication,
Or, it is expected as a light source for optical interconnection. Also, with the increase in communication capacity, it is very promising to form a surface emitting semiconductor laser on a Si substrate that can be highly integrated with an electronic device.

【0003】このような面発光半導体レーザではレーザ
発振させるために極めて高反射率の光反射層が必要であ
る。従来、Si基板上、InP基板上、あるいはGaA
s基板上の面発光半導体レーザの光反射層は、上記各基
板上に光学波長の1/4の膜厚を有しかつ格子整合した
2種類の半導体多層膜、例えばInP基板上であればI
nP,InGaAsP(1.3μm組成)をエピタキシ
ャル成長して形成するか、二種類の誘電体(例えばa−
Si/SiO2 )を光学波長の1/4の膜厚で交互に積
層するというDBR(distributed Bra
gg reflecter)構造を有していた。
In such a surface emitting semiconductor laser, a light reflecting layer having an extremely high reflectivity is required for laser oscillation. Conventionally, on Si substrate, InP substrate, or GaAs
The light-reflecting layer of the surface emitting semiconductor laser on the s substrate has two quarters of a semiconductor multilayer film having a film thickness of 1/4 of the optical wavelength and lattice-matched on each of the substrates, for example, I on an InP substrate
nP, InGaAsP (composition of 1.3 μm) is formed by epitaxial growth, or two types of dielectrics (for example, a-
DBR (distributed Bra) in which Si / SiO 2 ) are alternately stacked at a film thickness of 1 / of the optical wavelength.
gg reflector).

【0004】しかしながら、面発光半導体レーザを構成
する半導体多層膜においては、基板に格子整合するII
I−V族化合物半導体の2種類の半導体の屈折率差を大
きくとれない。特にInPに格子整合する半導体の場合
には2種類の半導体の屈折率差Δn、例えばInP,I
nGaAsP(1.3μm組成)のΔnは0.25程度
と低い値である。
However, in a semiconductor multilayer film constituting a surface emitting semiconductor laser, II which is lattice-matched to a substrate is used.
The difference in the refractive index between the two types of semiconductors, ie, IV group compound semiconductors, cannot be large. In particular, in the case of a semiconductor lattice-matched to InP, the refractive index difference Δn between the two kinds of semiconductors, for example, InP, I
Δn of nGaAsP (1.3 μm composition) is a low value of about 0.25.

【0005】このため高反射率を得るために半導体多層
膜の対数を多くする必要があり、面発光半導体レーザを
構成する全膜厚が短波長帯(発振波長800〜1000
nm程度)で約10μm、長波長帯で約20μmにまで
及び、成長時間が長くなり成長方向の膜厚の揺らぎが生
じ、所望の高反射率が得られにくいという問題点があっ
た。
Therefore, it is necessary to increase the logarithm of the semiconductor multilayer film in order to obtain a high reflectivity, and the total film thickness of the surface emitting semiconductor laser is limited to a short wavelength band (oscillation wavelength of 800 to 1000).
(about 10 nm) and about 20 μm in a long wavelength band, the growth time is prolonged, and the film thickness fluctuates in the growth direction, so that a desired high reflectivity is hardly obtained.

【0006】また、面発光半導体レーザにおいて、第1
光反射層と第2光反射層を高反射率(99%以上)を有
する誘電体多層膜のみで構成した場合には、量子サイズ
効果が生じる短いキャビティ長を構成し、かつ均一に電
流注入可能な井戸数(20well程度以下)の超格子
構造(MQW:multi quantum wel
l)の活性層にすることが可能となり、しきい値電流密
度の著しい減少が期待される。しかしながら、この場合
には、キャビティを構成する半導体の全膜厚が約0.5
μmとなり、再現性、信頼性を確保することが難しく、
また電極が活性層に近いため空間的に均一な電流を活性
層に注入することが困難であるという問題点があった。
In a surface emitting semiconductor laser, the first
When the light reflection layer and the second light reflection layer are composed of only a dielectric multilayer film having a high reflectivity (99% or more), a short cavity length where a quantum size effect occurs is formed, and current can be uniformly injected. Super lattice structure (MQW: multi quantum well) with a large number of wells (about 20 wells or less)
1) It is possible to form an active layer, and a remarkable decrease in threshold current density is expected. However, in this case, the total thickness of the semiconductor constituting the cavity is about 0.5
μm, it is difficult to ensure reproducibility and reliability,
In addition, since the electrodes are close to the active layer, it is difficult to inject a spatially uniform current into the active layer.

【0007】一方、従来より、Si基板上に面発光半導
体レーザを形成する場合には次の2つの問題点があっ
た。第1に、Si基板とInPの格子定数が異なること
から面発光半導体レーザを構成する半導体膜に高密度転
位が発生し、しきい値電流が増加し安定な動作が得られ
にくいこと、第2に、Si基板とInPの熱膨張係数の
違いにより膜厚が15μm程度になるとクラックが発生
することである。このため、第1光反射層および第2光
反射層を両方とも半導体多層膜で形成することは困難で
あった。
On the other hand, conventionally, when a surface emitting semiconductor laser is formed on a Si substrate, there are the following two problems. First, since the lattice constants of the Si substrate and InP are different, high-density dislocations occur in the semiconductor film constituting the surface emitting semiconductor laser, the threshold current increases, and stable operation is hardly obtained. In addition, cracks occur when the film thickness becomes about 15 μm due to the difference in thermal expansion coefficient between the Si substrate and InP. For this reason, it was difficult to form both the first light reflection layer and the second light reflection layer with a semiconductor multilayer film.

【0008】また、GaAs基板,InP基板やSi基
板以外の基板には面発光半導体レーザを作製することは
困難であった。
Further, it has been difficult to fabricate a surface emitting semiconductor laser on a substrate other than a GaAs substrate, an InP substrate or a Si substrate.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、低し
きい値電流でもレーザ発振が可能であり、かつ容易に室
温で連続発振できる面発光半導体レーザを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a surface emitting semiconductor laser which can oscillate a laser even at a low threshold current and can easily oscillate continuously at room temperature.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は2種類の半導体層を交互に積層し
てなる光学波長の1/4の膜厚の第1の半導体多層膜と
2種類の誘電体層を交互に積層してなる光学波長の1/
4の膜厚の第1の誘電体多層膜とを有する第1の光反射
層と、該第1の光反射層の上に順次設けられたn型クラ
ッド層、活性層およびp型クラッド層と、該p型クラッ
ド層の上に設けられ、かつ2種類の半導体層を交互に積
層してなる光学波長の1/4の膜厚の第2の半導体多層
膜と2種類の誘電体層を交互に積層してなる光学波長の
1/4の膜厚の第2の誘電体多層膜とを有する第2の反
射層と、を含み、前記第1の光反射層の前記第1の誘電
体多層膜は、表面に誘電体膜を有する基板の該誘電体膜
に融着されていることを特徴とする。
In order to achieve the above-mentioned object, a first aspect of the present invention is a first semiconductor multi-layer having a thickness of 1/4 of an optical wavelength, wherein two types of semiconductor layers are alternately laminated. Of the optical wavelength obtained by alternately laminating a film and two types of dielectric layers.
A first light reflection layer having a first dielectric multilayer film having a thickness of 4; an n-type cladding layer, an active layer and a p-type cladding layer sequentially provided on the first light reflection layer; A second semiconductor multilayer film provided on the p-type cladding layer and having a film thickness of 1/4 of the optical wavelength and formed by alternately laminating two types of semiconductor layers, and two types of dielectric layers are alternately formed. A second dielectric multilayer film having a film thickness of 1/4 of the optical wavelength laminated on the first dielectric multilayer film of the first light reflective layer. The film is characterized by being fused to a dielectric film of a substrate having a dielectric film on the surface.

【0011】また、請求項2記載の発明は金属部と2種
類の半導体層を交互に積層してなる光学波長の1/4の
膜厚の第1の半導体多層膜と2種類の誘電体層を交互に
積層してなる光学波長の1/4の膜厚の第1の誘電体多
層膜とを有する第1の光反射層と、該第1の光反射層の
上に順次設けられたn型クラッド層、活性層およびp型
クラッド層と、該p型クラッド層の上に設けられ、かつ
2種類の半導体層を交互に積層してなる光学波長の1/
4の膜厚の第2の半導体多層膜と2種類の誘電体層を交
互に積層してなる光学波長の1/4の膜厚の第2の誘電
体多層膜とを有する第2の反射層と、を含み、前記第1
の光反射層の前記金属部は、表面に金属膜を有する基板
の該金属膜に融着されていることを特徴とする。
According to a second aspect of the present invention, there is provided a first semiconductor multi-layer film having a thickness of 1/4 of an optical wavelength and two types of dielectric layers formed by alternately laminating a metal part and two types of semiconductor layers. And a first light reflection layer having a first dielectric multilayer film having a thickness of 1/4 of the optical wavelength, which is obtained by alternately laminating the first light reflection layer, and n provided sequentially on the first light reflection layer. A type cladding layer, an active layer, a p-type cladding layer, and 1/1 of the optical wavelength provided on the p-type cladding layer and formed by alternately laminating two types of semiconductor layers.
A second reflection layer having a second semiconductor multilayer film having a thickness of 1/4 of an optical wavelength and a second semiconductor multilayer film having a thickness of 4 and a dielectric layer of two types alternately laminated; And wherein the first
Wherein the metal portion of the light reflection layer is fused to the metal film of a substrate having a metal film on the surface.

【0012】[0012]

【作用】本発明によれば、量子サイズ効果が生じる短い
キャビティ長を有し、かつ高反射率の光反射層を有する
長波長帯面発光半導体レーザをそのキャビティ方向で保
持することにより信頼性良く作製することが可能とな
る。このため、本発明の面発光半導体レーザの活性層に
電流注入の均一な範囲内(井戸数20well程度以
下)で、超格子構造(MQW)を用いることができ、レ
ーザ発振のしきい値電流の低減が達成され、室温での連
続発振が容易となる。
According to the present invention, a long-wavelength surface emitting semiconductor laser having a short cavity length at which a quantum size effect occurs and having a light reflection layer with high reflectivity is held in the cavity direction with high reliability. It can be manufactured. For this reason, the superlattice structure (MQW) can be used within the uniform range of current injection (about 20 wells or less) in the active layer of the surface emitting semiconductor laser of the present invention, and the threshold current of laser oscillation can be reduced. Reduction is achieved and continuous oscillation at room temperature is facilitated.

【0013】また、本発明の面発光半導体レーザをSi
基板上に作製する場合、予め別の基板上に格子整合する
n型クラッド層、活性層、p型クラッド層を構成するた
め半導体膜の転位密度を低減でき、低しきい値電流を達
成でき、半導体レーザの寿命時間を著しく増加させるこ
とが可能である。
The surface emitting semiconductor laser of the present invention is
When fabricated on a substrate, an n-type cladding layer, an active layer, and a p-type cladding layer, which are lattice-matched on another substrate in advance, can reduce the dislocation density of the semiconductor film and achieve a low threshold current. It is possible to significantly increase the lifetime of a semiconductor laser.

【0014】短波長帯面発光半導体レーザにおいては、
本発明によりエピタキシャル成長時間を大幅に短縮する
ことで、膜厚の揺らぎを抑えることが容易になり歩留り
の向上が可能となる。
In a short wavelength band surface emitting semiconductor laser,
By greatly shortening the epitaxial growth time according to the present invention, it is easy to suppress the fluctuation of the film thickness, and the yield can be improved.

【0015】また従来単結晶であるGaAs,InP,
Si基板以外に高品質な結晶を有する面発光半導体レー
ザを形成することは困難であったが、本発明によれば、
単結晶以外の基板でも面発光半導体レーザを作製するこ
とが可能となる。
Further, GaAs, InP,
Although it was difficult to form a surface emitting semiconductor laser having a high-quality crystal other than a Si substrate, according to the present invention,
A surface-emitting semiconductor laser can be manufactured using a substrate other than a single crystal.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施例1)図1ないし図5に本発明の長
波長帯の面発光半導体レーザの一実施例の製造方法を工
程順に示す。
(Embodiment 1) FIGS. 1 to 5 show a method of manufacturing a long-wavelength surface emitting semiconductor laser according to an embodiment of the present invention in the order of steps.

【0018】まず、図1に示すように、InP基板1上
にInPバッファ層2,InGaAsP層(1.3μm
組成)とInP層を交互に4.5対からなる光学波長の
1/4の膜厚の第2の半導体多層膜(DBR層)3,I
nPからなるn型クラッド層4,InGaAsP(1.
3μm組成)のバリア層とInGaAsの井戸層との1
0対からなるMQW活性層5およびInPからなるp型
クラッド層6でλキャビティを構成し、InGaAsP
層(1.3μm組成)とInP層を交互に4.5対から
なる光学波長の1/4の膜厚の第1の半導体多層膜(D
BR層)7を連続してエピタキシャル成長させる。
First, as shown in FIG. 1, an InP buffer layer 2 and an InGaAsP layer (1.3 μm
Composition) and the InP layer are alternately composed of 4.5 pairs, the second semiconductor multilayer film (DBR layer) 3, I having a thickness of 1/4 of the optical wavelength.
n-type cladding layer 4 made of nP, InGaAsP (1.
1 μm) between the barrier layer (3 μm composition) and the well layer of InGaAs.
An MQW active layer 5 composed of 0 pairs and a p-type cladding layer 6 composed of InP constitute a λ cavity, and the InGaAsP
Layers (1.3 μm composition) and InP layers are alternately formed into 4.5 pairs of first semiconductor multilayer films (D
(BR layer) 7 is continuously epitaxially grown.

【0019】次に、図2に示すように、上記第1の半導
体多層膜7の上にSiO2 層とTiO2 層とを交互に1
2対蒸着して光学波長の1/4の膜厚の第1の誘電体多
層膜8を形成する。
Next, as shown in FIG. 2, an SiO 2 layer and a TiO 2 layer are alternately formed on the first semiconductor multilayer film 7.
Two pairs are deposited to form a first dielectric multilayer film 8 having a thickness of 1/4 of the optical wavelength.

【0020】次に、図3に示すように、予めSiO2
表面に蒸着してSiO2 の誘電体膜9を形成しておいた
第2基板であるSi基板10上に図2に示した第1の誘
電体多層膜8の上端面を密着させ、真空に引いた状態で
アニール温度450℃で両者を融着する。
Next, as shown in FIG. 3, a SiO 2 dielectric film 9 is formed on the surface of the substrate by depositing SiO 2 on the surface thereof in advance, as shown in FIG. The upper end surfaces of the first dielectric multilayer film 8 are brought into close contact with each other, and they are fused together at an annealing temperature of 450 ° C. while being evacuated.

【0021】次に、図4に示すように、上記InP基板
1を研磨して100μm程度の厚さとした後、HClと
3 PO4 の混合溶液により上記第2の半導体多層膜3
のInGaAsP層が現れるまでエッチングを行い、そ
の後SiO2 層とTiO2 層とを交互に12対蒸着して
第2の誘電体多層膜11を形成する。ここで、図4に示
すように、第1の半導体多層膜7と第1の誘電体多層膜
8とは第1の光反射層12を構成し、また第2の半導体
多層膜3と第2の誘電体多層膜11とは第2の光反射層
13を構成している。
Next, as shown in FIG. 4, after polishing the InP substrate 1 to a thickness of about 100 μm, the second semiconductor multilayer film 3 is mixed with a mixed solution of HCl and H 3 PO 4.
Etching is performed until the InGaAsP layer of No. 1 appears, and thereafter, 12 pairs of SiO 2 layers and TiO 2 layers are alternately deposited to form a second dielectric multilayer film 11. Here, as shown in FIG. 4, the first semiconductor multilayer film 7 and the first dielectric multilayer film 8 constitute a first light reflecting layer 12, and the second semiconductor multilayer film 3 and the second The dielectric multilayer film 11 constitutes the second light reflection layer 13.

【0022】次に、図5に示すように、前記第1の光反
射層12の第1の半導体多層膜7のInGaAsP層ま
で直径50μmの円柱状にエッチングを施し、素子分離
のためポリイミドからなる絶縁膜14により平坦化した
後、外径48μm,内径40μmのドーナツ状に前記第
2の光反射層13の第2の半導体多層膜3のInGaA
sP層の上部までエッチングし、最後に両電極15およ
び16をパターニングして目的の面発光半導体レーザを
形成する。
Next, as shown in FIG. 5, the first light reflection layer 12 is etched in a columnar shape with a diameter of 50 μm up to the InGaAsP layer of the first semiconductor multilayer film 7 and made of polyimide for element isolation. After planarization by the insulating film 14, the second semiconductor multilayer film 3 of the second light reflection layer 13 is formed of InGaAs of a donut shape having an outer diameter of 48 μm and an inner diameter of 40 μm.
Etching is performed up to the upper part of the sP layer, and finally, both electrodes 15 and 16 are patterned to form a target surface emitting semiconductor laser.

【0023】上記のようにして構成した長波長帯面発光
半導体レーザにおいて電流−光出力特性を測定したとこ
ろ、しきい値電流55mAで発振波長1.55μmのレ
ーザ発振が確認された。また寿命実験において、出力5
00μWの条件でAPC動作を行い1000時間までレ
ーザ発振が確認された。
When the current-light output characteristics of the long-wavelength surface emitting semiconductor laser configured as described above were measured, laser oscillation having an oscillation wavelength of 1.55 μm was confirmed at a threshold current of 55 mA. In the life test, output 5
APC operation was performed under the condition of 00 μW, and laser oscillation was confirmed up to 1000 hours.

【0024】(実施例2)図6ないし図10に本発明の
面発光半導体レーザの他の実施例の製造方法を工程順に
示す。
(Embodiment 2) FIGS. 6 to 10 show a method of manufacturing a surface emitting semiconductor laser according to another embodiment of the present invention in the order of steps.

【0025】まず、図6に示すようにGaAs基板31
上にGaAsバッファ層32,AlGaAs層(Alの
混晶比0.3)とAlAs層を交互に4.5対からなる
光学波長の1/4の膜厚の第2の半導体多層膜(DBR
層)33,AlGaAs(Alの混晶比は1〜0.3ま
で徐々に変化させる)からなるn型クラッド層34,A
lGaAs(Alの混晶比0.3)のバリア層とGaA
sの井戸層の5対からなるMQW活性層35,AlGa
As(Alの混晶比は0.3〜1まで徐々に変化させ
る)からなるp型クラッド層36でλキャビティを構成
し、AlAs層とAlGaAs層(Alの混晶比0.
3)を交互に5対からなる光学波長の1/4の膜厚の第
1の半導体多層膜(DBR層)37を連続してエピタキ
シャル成長させる。
First, as shown in FIG.
A GaAs buffer layer 32, an AlGaAs layer (Al mixed crystal ratio: 0.3) and an AlAs layer are alternately formed on the second semiconductor multilayer film (DBR) having a thickness of 1/4 of the optical wavelength and consisting of 4.5 pairs.
Layer) 33, an n-type clad layer 34, A made of AlGaAs (the mixed crystal ratio of Al is gradually changed from 1 to 0.3).
1GaAs (Al mixed crystal ratio: 0.3) barrier layer and GaAs
MQW active layer 35 composed of five pairs of s well layers, AlGa
A λ cavity is constituted by a p-type cladding layer 36 made of As (the mixed crystal ratio of Al is gradually changed to 0.3 to 1), and an AlAs layer and an AlGaAs layer (a mixed crystal ratio of Al of 0.1 are used).
3) The first semiconductor multilayer film (DBR layer) 37 having a thickness of 対 of the optical wavelength and consisting of five pairs is alternately grown continuously and epitaxially.

【0026】次に、図7に示すように、上記第1の半導
体多層膜37の上にSiO2 層とTiO2 層とを交互に
12対蒸着して光学波長の1/4の膜厚の第1の誘電体
多層膜38を形成する。
Next, as shown in FIG. 7, 12 pairs of SiO 2 layers and TiO 2 layers are alternately vapor-deposited on the first semiconductor multilayer film 37 to form a film having a thickness of 1 / of the optical wavelength. A first dielectric multilayer film 38 is formed.

【0027】次に、図8に示すように、ドーナツ状に第
1の半導体多層膜37のAlGaAsの上端までエッチ
ングした後、金を蒸着して金属部39を形成する。その
後予め金錫を蒸着して電極40を形成しておいた第2基
板であるSi基板41に上記第1の誘電体多層膜38の
上端を密着させ、H2 雰囲気中で400℃でアニールを
行い融着する。
Next, as shown in FIG. 8, after etching to the upper end of the AlGaAs of the first semiconductor multilayer film 37 in a donut shape, gold is deposited to form a metal part 39. Thereafter, the upper end of the first dielectric multilayer film 38 is brought into close contact with the Si substrate 41 which is the second substrate on which the electrode 40 has been formed by depositing gold / tin in advance, and annealing is performed at 400 ° C. in an H 2 atmosphere. Perform and fuse.

【0028】次に、図9に示すように、第1基板である
GaAs基板31を研磨して100μm程度の厚さとし
た後、H22 とNH4 OHの混合溶液により上記第2
の半導体多層膜33のAlGaAs層が現れるまでエッ
チングを行い、その後SiO2 層とTiO2 層と交互に
12対蒸着して第2の誘電体多層膜42を形成する。こ
こで、図9に示すように、第1の半導体多層膜37と第
1の誘電体多層膜38とは第1の光反射層43を構成
し、また第2の半導体多層膜33と第2の誘電体多層膜
42とは第2の光反射層44を構成している。
Next, as shown in FIG. 9, after the GaAs substrate 31 as the first substrate is polished to a thickness of about 100 μm, the second substrate is mixed with a mixed solution of H 2 O 2 and NH 4 OH.
Etching is performed until the AlGaAs layer of the semiconductor multilayer film 33 appears, and then a second dielectric multilayer film 42 is formed by alternately depositing 12 pairs of SiO 2 layers and TiO 2 layers. Here, as shown in FIG. 9, the first semiconductor multilayer film 37 and the first dielectric multilayer film 38 constitute a first light reflecting layer 43, and the second semiconductor multilayer film 33 and the second The dielectric multilayer film 42 constitutes the second light reflection layer 44.

【0029】次に、図10に示すように、導波路を形成
するため第1の光反射層43の第1の半導体多層膜37
まで直径20μmの円柱状にエッチングを施して凹部を
形成し、その凹部に絶縁のためSiO2 を堆積させて絶
縁膜45を形成した後、外径19μm,内径15μmの
ドーナツ状に前記第2の光反射層44の第2の半導体多
層膜33のAlGaAsの上部までエッチングをしポリ
イミドで素子間の絶縁を行った後、最後に電極46をパ
ターニングして目的の面発光半導体レーザを形成する。
Next, as shown in FIG. 10, the first semiconductor multilayer film 37 of the first light reflection layer 43 is formed to form a waveguide.
Etching is performed in a cylindrical shape having a diameter of 20 μm to form a concave portion, and SiO 2 is deposited in the concave portion for insulation to form an insulating film 45. After etching up to the upper portion of AlGaAs of the second semiconductor multilayer film 33 of the light reflection layer 44 and insulating between elements with polyimide, finally, the electrode 46 is patterned to form a target surface emitting semiconductor laser.

【0030】上記のようにして構成した面発光半導体レ
ーザにおいて電流−光出力特性を特定したところ、しき
い値電流5mAで発振波長850nmのレーザ発振が確
認された。また寿命実験において、出力500μWの条
件でAPC動作を行い1000時間までレーザ発振が確
認された。
When the current-light output characteristics of the surface emitting semiconductor laser configured as described above were specified, laser oscillation at an oscillation wavelength of 850 nm was confirmed at a threshold current of 5 mA. In the life experiment, APC operation was performed under the condition of an output of 500 μW, and laser oscillation was confirmed up to 1000 hours.

【0031】本実施例ではInP基板等の前記第1基板
上に格子整合する半導体で面発光半導体レーザを構成し
たが、格子定数の異なる半導体組成の層を一層以上設け
たり、また光反射層の電気的抵抗を下げるため半導体組
成を徐々に変化させたり、2種類の半導体組成の間に中
間層を設けたりしても同様の効果があることは言うまで
もない。
In this embodiment, the surface-emitting semiconductor laser is formed of a semiconductor lattice-matched on the first substrate such as an InP substrate. However, one or more layers of a semiconductor composition having different lattice constants may be provided, or a light reflection layer may be formed. It goes without saying that the same effect can be obtained even if the semiconductor composition is gradually changed in order to lower the electric resistance, or if an intermediate layer is provided between the two kinds of semiconductor compositions.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
量子サイズ効果の生じる短いキャビティ長にした場合で
も信頼性の高い長波長帯面発光半導体レーザを作製する
ことが可能となり、このため活性層に超格子構造である
MQW(multi quantum well)を用
いることができ、レーザ発振のしきい値電流の低減が達
成され、室温連続発振が容易となる。
As described above, according to the present invention,
Even if the cavity length is short enough to cause the quantum size effect, a highly reliable long-wavelength surface emitting semiconductor laser can be manufactured. Therefore, the MQW (multi quantum well) having a superlattice structure is used for the active layer. And the threshold current of laser oscillation is reduced, and continuous oscillation at room temperature is facilitated.

【0033】また、短波長帯面発光半導体レーザにおい
ては、エピタキシャル成長時間を大幅に短縮することに
より、膜厚の揺らぎを抑えることが容易になり歩留りを
改善できる。
In the short-wavelength band surface emitting semiconductor laser, the fluctuation of the film thickness can be easily suppressed and the yield can be improved by greatly shortening the epitaxial growth time.

【0034】また前記第2基板としてSi基板を用いる
場合、Si基板上に形成された長波長帯面発光レーザに
比べて、前記クラッド層、前記活性層を構成する半導体
の転位密度が低減でき、低しきい値電流が達成され、半
導体レーザの寿命時間を著しく増加させることが可能と
なる。またGaAs,InP,Si基板以外にも面発光
半導体レーザを作製することが可能となる。
When a Si substrate is used as the second substrate, the dislocation density of the semiconductor constituting the cladding layer and the active layer can be reduced as compared with a long wavelength band surface emitting laser formed on the Si substrate. A low threshold current is achieved and the lifetime of the semiconductor laser can be significantly increased. In addition, it becomes possible to manufacture a surface emitting semiconductor laser other than the GaAs, InP, and Si substrates.

【0035】また、本発明の面発光半導体レーザをSi
基板上の電子デバイスと高集積化することにより、光交
換用、光インターコネクション用、または光情報処理用
の光源としても利用できる。
The surface emitting semiconductor laser of the present invention is
By being highly integrated with an electronic device on a substrate, it can be used as a light source for optical switching, optical interconnection, or optical information processing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体レーザの一実施例の製造工程の
一工程を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing one step of a manufacturing process of an embodiment of a semiconductor laser of the present invention.

【図2】図1に示した工程の後工程を示す縦断面図であ
る。
FIG. 2 is a longitudinal sectional view showing a step subsequent to the step shown in FIG.

【図3】図2に示した工程の後工程を示す縦断面図であ
る。
FIG. 3 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 2;

【図4】図3に示した工程の後工程を示す縦断面図であ
る。
FIG. 4 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 3;

【図5】図4に示した工程の後工程を示す縦断面図であ
る。
FIG. 5 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 4;

【図6】本発明の半導体レーザの他の実施例の製造工程
の一工程を示す縦断面図である。
FIG. 6 is a longitudinal sectional view showing one step of a manufacturing process of another embodiment of the semiconductor laser of the present invention.

【図7】図6に示した工程の後工程を示す縦断面図であ
る。
FIG. 7 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 6;

【図8】図7に示した工程の後工程を示す縦断面図であ
る。
8 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 7;

【図9】図8に示した工程の後工程を示す縦断面図であ
る。
FIG. 9 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 8;

【図10】図9に示した工程の後工程を示す縦断面図で
ある。
FIG. 10 is a longitudinal sectional view showing a step subsequent to the step shown in FIG. 9;

【符号の説明】[Explanation of symbols]

1 InP基板 2 InPバッファ層 3 第2の半導体多層膜 4 n型クラッド層 5 MQW活性層 6 p型クラッド層 7 第1の半導体多層膜 8 第1の誘電体多層膜 9 Si基板表面の誘電体膜 10 Si基板 11 第2の誘電体多層膜 12 第1の光反射層 13 第2の光反射層 14 絶縁膜 15 電極 16 電極 31 GaAs基板 32 GaAsバッファ層 33 第2の半導体多層膜 34 n型クラッド層 35 MQW活性層 36 p型クラッド層 37 第1の半導体多層膜 38 第1の誘電体多層膜 39 金属部 40 電極 41 Si基板 42 第2の誘電体多層膜 43 第1の光反射層 44 第2の光反射層 45 絶縁膜 46 電極 Reference Signs List 1 InP substrate 2 InP buffer layer 3 Second semiconductor multilayer film 4 n-type cladding layer 5 MQW active layer 6 p-type cladding layer 7 first semiconductor multilayer film 8 first dielectric multilayer film 9 dielectric on Si substrate surface Film 10 Si substrate 11 second dielectric multilayer film 12 first light reflection layer 13 second light reflection layer 14 insulating film 15 electrode 16 electrode 31 GaAs substrate 32 GaAs buffer layer 33 second semiconductor multilayer film 34 n-type Clad layer 35 MQW active layer 36 p-type clad layer 37 first semiconductor multilayer film 38 first dielectric multilayer film 39 metal part 40 electrode 41 Si substrate 42 second dielectric multilayer film 43 first light reflection layer 44 Second light reflection layer 45 Insulating film 46 Electrode

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−229688(JP,A) 特開 平2−302085(JP,A) 特開 平2−306682(JP,A) 特開 平3−263390(JP,A) 特開 平2−54589(JP,A) 特開 平4−263482(JP,A) 特開 平4−340288(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-4-229688 (JP, A) JP-A-2-302085 (JP, A) JP-A-2-306682 (JP, A) JP-A-3-302 263390 (JP, A) JP-A-2-54589 (JP, A) JP-A-4-263482 (JP, A) JP-A-4-340288 (JP, A) (58) Fields investigated (Int. 7 , DB name) H01S 5/00-5/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2種類の半導体層を交互に積層してなる
光学波長の1/4の膜厚の第1の半導体多層膜と2種類
の誘電体層を交互に積層してなる光学波長の1/4の膜
厚の第1の誘電体多層膜とを有する第1の光反射層と、 該第1の光反射層の上に順次設けられたn型クラッド
層、活性層およびp型クラッド層と、 該p型クラッド層の上に設けられ、かつ2種類の半導体
層を交互に積層してなる光学波長の1/4の膜厚の第2
の半導体多層膜と2種類の誘電体層を交互に積層してな
る光学波長の1/4の膜厚の第2の誘電体多層膜とを有
する第2の反射層と、を含み、前記第1の光反射層の前
記第1の誘電体多層膜は、表面に誘電体膜を有する基板
の該誘電体膜に融着されていることを特徴とする面発光
半導体レーザ。
1. An optical wavelength of a first semiconductor multilayer film having a thickness of 1 / of an optical wavelength obtained by alternately laminating two types of semiconductor layers and an optical wavelength obtained by alternately laminating two types of dielectric layers. A first light reflection layer having a first dielectric multilayer film having a thickness of 1/4, an n-type cladding layer, an active layer and a p-type cladding sequentially provided on the first light reflection layer A second layer having a film thickness of 1/4 of the optical wavelength, which is provided on the p-type cladding layer and is formed by alternately laminating two types of semiconductor layers.
A second reflective layer having a thickness of 1/4 of the optical wavelength and a second dielectric multilayer film formed by alternately laminating a semiconductor multilayer film of two types and two types of dielectric layers. The surface emitting semiconductor laser according to claim 1, wherein the first dielectric multilayer film of the first light reflection layer is fused to the dielectric film of a substrate having a dielectric film on the surface.
【請求項2】 金属部と2種類の半導体層を交互に積層
してなる光学波長の1/4の膜厚の第1の半導体多層膜
と2種類の誘電体層を交互に積層してなる光学波長の1
/4の膜厚の第1の誘電体多層膜とを有する第1の光反
射層と、 該第1の光反射層の上に順次設けられたn型クラッド
層、活性層およびp型クラッド層と、 該p型クラッド層の上に設けられ、かつ2種類の半導体
層を交互に積層してなる光学波長の1/4の膜厚の第2
の半導体多層膜と2種類の誘電体層を交互に積層してな
る光学波長の1/4の膜厚の第2の誘電体多層膜とを有
する第2の反射層と、を含み、前記第1の光反射層の前
記金属部は、表面に金属膜を有する基板の該金属膜に融
着されていることを特徴とする面発光半導体レーザ。
2. A semiconductor device comprising: a first semiconductor multilayer film having a film thickness of 1 / of an optical wavelength formed by alternately laminating a metal portion and two types of semiconductor layers; and two types of dielectric layers alternately laminated. Optical wavelength 1
A first light reflecting layer having a first dielectric multilayer film having a thickness of /, an n-type cladding layer, an active layer, and a p-type cladding layer sequentially provided on the first light reflecting layer And a second layer having a thickness of 1 / of the optical wavelength, which is provided on the p-type cladding layer and is formed by alternately laminating two types of semiconductor layers.
A second reflective layer comprising a semiconductor multilayer film and a second dielectric multilayer film having a thickness of 1 / of the optical wavelength obtained by alternately laminating two types of dielectric layers. The surface emitting semiconductor laser according to claim 1, wherein the metal part of the light reflection layer is fused to the metal film of a substrate having a metal film on the surface.
JP04267473A 1992-10-06 1992-10-06 Surface emitting semiconductor laser Expired - Fee Related JP3097938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04267473A JP3097938B2 (en) 1992-10-06 1992-10-06 Surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04267473A JP3097938B2 (en) 1992-10-06 1992-10-06 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH06120610A JPH06120610A (en) 1994-04-28
JP3097938B2 true JP3097938B2 (en) 2000-10-10

Family

ID=17445335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04267473A Expired - Fee Related JP3097938B2 (en) 1992-10-06 1992-10-06 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP3097938B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69610610T2 (en) * 1995-12-26 2001-05-03 Nippon Telegraph & Telephone Vertical cavity surface emitting laser and method of manufacturing the same
US5748665A (en) * 1996-01-16 1998-05-05 Motorola, Inc. Visible VCSEL with hybrid mirrors
US7072376B2 (en) * 2004-09-16 2006-07-04 Corning Incorporated Method of manufacturing an InP based vertical cavity surface emitting laser and device produced therefrom
JP2009290161A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Optical semiconductor device
US11283240B2 (en) * 2018-01-09 2022-03-22 Oepic Semiconductors, Inc. Pillar confined backside emitting VCSEL
CN110021875B (en) * 2018-01-09 2022-05-13 苏州乐琻半导体有限公司 Surface emitting laser device and light emitting device including the same
US11233377B2 (en) * 2018-01-26 2022-01-25 Oepic Semiconductors Inc. Planarization of backside emitting VCSEL and method of manufacturing the same for array application

Also Published As

Publication number Publication date
JPH06120610A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US6121068A (en) Long wavelength light emitting vertical cavity surface emitting laser and method of fabrication
US6277696B1 (en) Surface emitting laser using two wafer bonded mirrors
JP3481458B2 (en) Semiconductor laser
JPH05275798A (en) Laser diode
US20020150137A1 (en) Long wavelength laser diodes on metamorphic buffer modified gallium arsenide wafers
JP3097938B2 (en) Surface emitting semiconductor laser
JP2002076433A (en) Semiconductor light emitting element
JPH05160515A (en) Quantum well type laser diode
US6797986B1 (en) Semiconductor light emitting element
US20020146053A1 (en) Surface emitting semiconductor laser device
US6822266B2 (en) Semiconductor light-emitting device
JP2001223433A (en) Vertical cavity semiconductor surface emission laser element and optical system using the same
JP3914350B2 (en) Semiconductor laser device
JPH1146036A (en) Surface-emitting type semiconductor laser and manufacture of the same
JP3123030B2 (en) Long wavelength surface emitting semiconductor laser
JPH05315695A (en) Semiconductor laser
JP2004281968A (en) Surface-emitting semiconductor laser element
JP3123026B2 (en) Si substrate top emission laser
JPH10233558A (en) Multilayer film structure wherein diamond layer is incorporated, optical device with it and its manufacturing method
JP2001024282A (en) Manufacture of semiconductor device using group iii-v mixed crystal semiconductor and optical communication system
EP2449638B1 (en) Vertical cavity surface emitting devices incorporating wafer fused reflectors
JP3469051B2 (en) Surface emitting semiconductor laser
JPH08340146A (en) Surface emitting type semiconductor laser
JP4668529B2 (en) GaInNAs semiconductor laser
JP3680283B2 (en) Manufacturing method of semiconductor element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees