JP3096686B1 - Fuel cell reformer - Google Patents

Fuel cell reformer

Info

Publication number
JP3096686B1
JP3096686B1 JP11204731A JP20473199A JP3096686B1 JP 3096686 B1 JP3096686 B1 JP 3096686B1 JP 11204731 A JP11204731 A JP 11204731A JP 20473199 A JP20473199 A JP 20473199A JP 3096686 B1 JP3096686 B1 JP 3096686B1
Authority
JP
Japan
Prior art keywords
activated carbon
fuel cell
reformer
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11204731A
Other languages
Japanese (ja)
Other versions
JP2001035522A (en
Inventor
雅次郎 井ノ上
敬祐 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP11204731A priority Critical patent/JP3096686B1/en
Application granted granted Critical
Publication of JP3096686B1 publication Critical patent/JP3096686B1/en
Publication of JP2001035522A publication Critical patent/JP2001035522A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

【要約】 【課題】 始動性や過渡応答性に優れ、小型化が可能な
燃料電池用改質器を提供する。 【解決手段】 500 Ω/125cm3 以下の電気抵抗を有する
活性炭に担持した燃料改質触媒を有し、かつ前記活性炭
に担持した燃料改質触媒を挟んで少なくとも一対の電極
を設け、前記活性炭を直接通電することにより抵抗発熱
させる燃料電池用改質器。
Abstract: PROBLEM TO BE SOLVED: To provide a reformer for a fuel cell which has excellent startability and transient response and can be downsized. SOLUTION: The fuel cell has a fuel reforming catalyst supported on activated carbon having an electric resistance of 500 Ω / 125 cm 3 or less, and at least one pair of electrodes is provided with the fuel reforming catalyst supported on the activated carbon interposed therebetween. A fuel cell reformer that generates resistance heat by direct energization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素系燃料を
水素ガスに改質する燃料電池用改質器であって、始動性
や過渡応答性に優れ、小型化が可能な燃料電池用改質器
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reformer for a fuel cell, which reforms a hydrocarbon fuel into hydrogen gas. The reformer has excellent startability and transient response and can be downsized. Regarding porcelain.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
地球環境における有害排出ガス(COx 、NOx 、HC等)規
制の強化に伴って、排出ガス低減化技術及びエネルギー
利用の高効率化技術の研究開発が活発化している。その
中でも、最もエネルギー効率が高く且つ有害排出ガス量
の極めて少ない技術として、水素ガスと酸素ガスとの電
気化学的反応を利用した燃料電池発電が挙げられる。
2. Description of the Related Art In recent years,
With the tightening of regulations on harmful exhaust gas (CO x , NO x , HC, etc.) in the global environment, research and development of exhaust gas reduction technology and energy utilization high efficiency technology have been activated. Among them, as a technology having the highest energy efficiency and a very small amount of harmful exhaust gas, there is a fuel cell power generation utilizing an electrochemical reaction between hydrogen gas and oxygen gas.

【0003】燃料電池の発電に必要な水素燃料は、通常
天然ガス、石油、石炭等を水蒸気を伴った改質を行うこ
とにより生成される。例えば、メタンから水素を生成す
る場合、下記式(A) 、(B) : CH4 +H2 O → 3H2 +CO − 49.3 kcal/mol ・・・(A) CO +H2 O → H2 +CO2 + 9.8 kcal/mol ・・・(B) に示すような水蒸気改質反応(A) と変性反応(B) の過程
を通る。水蒸気改質反応(A) は800 ℃前後の高温を必要
とし、改質触媒として金属Niをアルミナ等の担体に担持
したものが用いられている。このような改質触媒は、ペ
レット状、パウダー状或いはハニカムモノリス状等の形
状で燃料電池用改質器内に設置されており、改質器を加
熱して触媒活性温度領域まで昇温したところで、ガス化
した炭化水素系燃料と水蒸気とを一定比率で触媒層を通
過させることにより水素燃料を得ることができる。
[0003] Hydrogen fuel required for power generation by a fuel cell is usually produced by reforming natural gas, petroleum, coal and the like with steam. For example, when hydrogen is generated from methane, the following formulas (A) and (B): CH 4 + H 2 O → 3H 2 + CO−49.3 kcal / mol (A) CO + H 2 O → H 2 + CO 2 + 9.8 kcal / mol ··· Pass through the process of steam reforming reaction (A) and denaturation reaction (B) as shown in (B). The steam reforming reaction (A) requires a high temperature of about 800 ° C., and a catalyst in which metal Ni is supported on a carrier such as alumina is used as a reforming catalyst. Such a reforming catalyst is installed in a reformer for a fuel cell in the form of a pellet, a powder, a honeycomb monolith, or the like, and the reformer is heated to a catalyst activation temperature region by heating the reformer. A hydrogen fuel can be obtained by passing a gasified hydrocarbon-based fuel and steam at a fixed ratio through a catalyst layer.

【0004】ここで触媒を触媒活性温度まで加熱する方
法として、別途燃料の燃焼を行い、得られた熱を直接熱
交換或いは熱交換器により触媒に伝搬する方法、また電
気ヒーターで熱伝導により触媒を加熱する方法等が用い
られている。しかし、従来の加熱方式では加熱を開始し
てから水素を生成するまでに長時間を要することから、
他の発電装置と比較して始動性及び過渡応答性が劣って
いた。
Here, as a method of heating the catalyst to the catalyst activation temperature, a method of separately burning fuel and transmitting the obtained heat to the catalyst directly by heat exchange or a heat exchanger, or a method of conducting heat by heat conduction with an electric heater. Is used. However, in the conventional heating method, since it takes a long time from the start of heating to the generation of hydrogen,
The startability and the transient response were inferior to other power generation devices.

【0005】これに対し、改質器の応答性を上げるため
触媒に加える熱量を大幅に増加することで昇温時間を短
縮化する方法が考えられるが、それだけの熱量を発生さ
せ且つ触媒に速やかに熱を伝搬するには装置の大型化が
必要になり、また加熱分布が不均一になるという問題が
ある。また、高周波誘電により発熱させる方法も装置の
大型化が必要になる。
On the other hand, a method of shortening the heating time by greatly increasing the amount of heat applied to the catalyst in order to increase the responsiveness of the reformer can be considered. However, there is a problem that the size of the apparatus needs to be increased in order to propagate heat to the heater, and that the heating distribution becomes non-uniform. In addition, the method of generating heat by high-frequency dielectric requires an increase in the size of the apparatus.

【0006】一方、発熱させたい物質に直接電流を流し
ジュール熱を発生させる方法は、通電する物質の両端に
電極を設けるだけで済むため、コンパクトな装置で急速
な昇温が可能である。しかし、従来の触媒担持担体(ア
ルミナ、ゼオライト等)は電気絶縁体(106 Ω以上)で
あり、直接通電する方法を用いることはできなかった。
On the other hand, a method of generating Joule heat by directly passing an electric current to a substance to be heated requires only providing electrodes at both ends of a substance to be energized, so that a rapid rise in temperature is possible with a compact apparatus. However, the conventional catalyst-carrying carrier (alumina, zeolite, etc.) is an electric insulator (10 6 Ω or more), and the method of direct energization cannot be used.

【0007】従って本発明の目的は、始動性や過渡応答
性に優れ、小型化が可能な燃料電池用改質器を提供する
ことである。
Accordingly, it is an object of the present invention to provide a fuel cell reformer which is excellent in startability and transient response and which can be downsized.

【0008】[0008]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、燃料改質触媒の担体として高導
電性活性炭を用いることで、直接通電が可能であり且つ
触媒担持量を増加できるとの知見に基づき、燃料改質触
媒を担持した高導電性活性炭を改質器に充填或いは取り
付けるとともに、当該高導電性活性炭を抵抗発熱させる
ため、少なくとも一対の電極を設けることにより、従来
よりも小型で応答性の高い改質器を提供できることを見
出し本発明に想到した。
Means for Solving the Problems As a result of intensive studies in view of the above-mentioned objects, the present inventors have found that by using highly conductive activated carbon as a carrier for a fuel reforming catalyst, direct energization is possible and the amount of catalyst carried Based on the knowledge that can be increased, while filling or attaching a highly conductive activated carbon carrying a fuel reforming catalyst to the reformer, and at least a pair of electrodes to provide resistance heating of the highly conductive activated carbon, by providing at least a pair of electrodes, The present inventors have found that it is possible to provide a reformer having a smaller size and higher responsiveness than before, and have reached the present invention.

【0009】すなわち、本発明の燃料電池用改質器は、
燃料改質触媒の両端に電極を設けるだけで担体自体に直
接電流を流しジュール熱を発生できるため、コンパクト
な装置で急速な昇温が可能であり、始動性・過渡応答性
の向上が可能である。
That is, the reformer for a fuel cell of the present invention comprises:
Just providing electrodes at both ends of the fuel reforming catalyst allows current to flow directly into the carrier itself to generate Joule heat, enabling rapid temperature rise with a compact device and improving startability and transient response. is there.

【0010】さらに、担体として用いる高導電性活性炭
は、700 〜2000 m2 /gもの大きな比表面積を有するた
め、従来の担体(アルミナ担体:〜200m2 /g、ゼオライ
ト系担体:〜500m2 /g)と比較して単位重量当たりの触
媒担持量を増加することができ、より一層小型で改質効
率に優れた燃料電池用改質器の実現を可能とする。
Furthermore, highly conductive activated carbon used as the carrier, 700 ~2000 m 2 / g stuff because it has a large specific surface area, conventional carriers (alumina support: 200 m 2 / g, zeolite carrier: to 500m 2 / As compared with g), the amount of catalyst carried per unit weight can be increased, and a more compact fuel cell reformer with excellent reforming efficiency can be realized.

【0011】[0011]

【発明の実施の形態】本発明の燃料電池用改質器は、燃
料改質触媒を担持した高導電性活性炭を改質器に充填ま
たは取り付け、かつ前記高導電性活性炭を抵抗発熱させ
るため、少なくとも一対の電極を設けたものである。本
発明の好ましい実施態様によれば、図1に示すように燃
料ガスの導入口11及び改質された水素ガスを含むガスの
導出口12を備えた改質器1に、前記燃料ガスを改質すべ
く充填又は取り付けられた触媒を担持した活性炭13、及
び前記触媒活性炭13を抵抗発熱により昇温させるための
一対の電極14を設ける。
BEST MODE FOR CARRYING OUT THE INVENTION A reformer for a fuel cell according to the present invention is designed to charge or attach a highly conductive activated carbon carrying a fuel reforming catalyst to a reformer and to cause the highly conductive activated carbon to generate resistance heat. At least one pair of electrodes is provided. According to a preferred embodiment of the present invention, as shown in FIG. 1, the reformer 1 is provided with a fuel gas inlet 11 and a gas outlet 12 containing reformed hydrogen gas. An activated carbon 13 loaded with or attached to a catalyst for the purpose of the measurement, and a pair of electrodes 14 for raising the temperature of the activated carbon 13 by resistance heating are provided.

【0012】(A) 燃料改質触媒 燃料改質触媒としては公知のものを特に限定なく使用で
きる。具体的には、Ni、NiO 、NiS 、Cu、CuO 、Fe3 C
4 、Pt、Pd、Au、Ru、Cr2 O 3 、ZnO 、MgO 、CaO 、K
2 O 、BaO、La2 O 3 、CeO 2 、Al2 O 3 等の触媒を用
いることができる。これらの中で特に好ましいものは、
Ni、Cu、Ruである。燃料改質触媒は単独で用いても2種
類以上を組合せて用いてもよい。
(A) Fuel reforming catalyst A known fuel reforming catalyst can be used without any particular limitation. Specifically, Ni, NiO, NiS, Cu, CuO, Fe 3 C
4, Pt, Pd, Au, Ru, Cr 2 O 3, ZnO, MgO, CaO, K
Catalysts such as 2 O, BaO, La 2 O 3 , CeO 2 , and Al 2 O 3 can be used. Particularly preferred of these are:
Ni, Cu and Ru. The fuel reforming catalyst may be used alone or in combination of two or more.

【0013】(B) 高導電性活性炭 高導電性活性炭は燃料改質触媒を担持するための担体と
して用いる。なお、本明細書において、「高導電性活性
炭」とは、電気抵抗が500 Ω/125cm3 以下の活性炭を意
味する。より好ましくは、電気抵抗が100 Ω/125cm3
下である。
(B) Highly conductive activated carbon Highly conductive activated carbon is used as a carrier for supporting a fuel reforming catalyst. In this specification, “highly conductive activated carbon” means activated carbon having an electric resistance of 500 Ω / 125 cm 3 or less. More preferably, the electric resistance is 100 Ω / 125 cm 3 or less.

【0014】活性炭の電気抵抗が大きい場合は、熱処理
により高導電化することが好ましい。熱処理は、触媒担
持前に行う。
When the electric resistance of the activated carbon is large, it is preferable to increase the conductivity by heat treatment. The heat treatment is performed before carrying the catalyst.

【0015】電気抵抗の大きな活性炭は異方導電性を示
す黒鉛に類似した無定形炭素構造を有し、図2(a) に模
式的に示すように、乱層構造で非黒鉛化炭素が多い。こ
れに対して、熱処理を施して黒鉛化した炭素の場合、図
3(a) に示すように、黒鉛化炭素が成長したものほど、
その成長方向に導電性が高くなる。この黒鉛化した炭素
の割合が多い活性炭ほど、電気的抵抗が高くなる傾向が
あることが分かっている。
Activated carbon having a large electric resistance has an amorphous carbon structure similar to graphite exhibiting anisotropic conductivity, and as shown schematically in FIG. 2 (a), has a turbostratic structure and a large amount of non-graphitized carbon. . On the other hand, in the case of graphitized carbon that has been subjected to heat treatment, as shown in FIG.
The conductivity increases in the growth direction. It has been found that an activated carbon having a higher ratio of graphitized carbon tends to have a higher electric resistance.

【0016】黒鉛における電気伝導は、図3(b) に示す
ような多環芳香族結晶のsp2 混成軌道のπ電子の波動で
伝わると考えられている。これに対して、図2(b) に示
すように、活性炭の組織には導電を阻害する官能基が表
面に多く存在しているので、多環芳香族結晶のπ電子の
活動が阻害されていると考えられる。
It is considered that the electric conduction in graphite is transmitted by the wave of π electrons in the sp 2 hybrid orbital of the polycyclic aromatic crystal as shown in FIG. 3 (b). On the other hand, as shown in FIG. 2 (b), the activated carbon structure has a large number of functional groups on the surface that inhibit conductivity, so that the activity of π electrons in the polycyclic aromatic crystal is inhibited. It is thought that there is.

【0017】従って、π電子の活動を阻害する官能基を
極力低減させて、π電子間で発生する波動を効率よく伝
わらせるために、活性炭を黒鉛化することにより多環芳
香族結晶を成長させることが電気導電性の向上に有効で
ある。
Therefore, in order to minimize the number of functional groups that inhibit the activity of π electrons and efficiently transmit the wave generated between π electrons, the activated carbon is graphitized to grow polycyclic aromatic crystals. This is effective for improving electric conductivity.

【0018】すなわち、電気抵抗を所望のレベルに低下
した活性炭を触媒担持用担体に用いることにより、通電
による発熱で急速に燃料改質触媒を昇温することがで
き、もって水素生成までの時間を短縮することができ
る。また、燃料電池の始動時間を短縮化できることに伴
い、燃料電池システムが立ち上がるまでに走行に必要と
なる電気供給器(バッテリー、キャパシタ)の小型化が
可能であり、エンジンルーム内のスペース効率が向上す
る。また走行中の加速時の過渡応答性に対しても反応を
早めることができる。以下、活性炭の熱処理方法につい
て詳細に説明する。
That is, by using activated carbon whose electric resistance has been reduced to a desired level for the carrier for supporting the catalyst, the temperature of the fuel reforming catalyst can be rapidly raised by the heat generated by energization, thereby reducing the time until hydrogen generation. Can be shortened. In addition, since the start-up time of the fuel cell can be shortened, it is possible to reduce the size of the electric supply (battery, capacitor) required for running before the fuel cell system starts up, and to improve the space efficiency in the engine room. I do. Further, the response to the transient response during acceleration during traveling can be accelerated. Hereinafter, the heat treatment method for activated carbon will be described in detail.

【0019】(i) 原料活性炭 活性炭は特に限定されず、各種市販の活性炭をそのまま
使用できる。活性炭の原料として、木材、石炭、石油ピ
ッチ、オリーブ、ヤシ殻、特殊フェノール等が挙げられ
る。
(I) Raw material activated carbon The activated carbon is not particularly limited, and various commercially available activated carbons can be used as they are. Raw materials for activated carbon include wood, coal, petroleum pitch, olives, coconut shells, special phenols, and the like.

【0020】活性炭は通常加熱を伴う乾留及び賦活工程
を経て製造される。活性炭の賦活法として、リン酸、塩
化亜鉛、アルカリ薬品等を使用した薬品賦活法や、水蒸
気賦活法等が挙げられる。賦活処理時の最高加熱温度は
約600 〜800 ℃である。
Activated carbon is usually produced through a carbonization and activation step involving heating. Examples of the activated carbon activation method include a chemical activation method using phosphoric acid, zinc chloride, an alkali chemical, or the like, and a steam activation method. The maximum heating temperature during the activation treatment is about 600 to 800 ° C.

【0021】このうち、木材、オリーブ等の原料から作
られた活性炭の電気抵抗は通常103〜106 Ω/125cm3
あり、そのままでは通電加熱に適さない。一方、石炭、
ヤシ殻等の原料から作られた活性炭の電気抵抗は数十Ω
/125cm3 と木材由来の活性炭より低いものの、抵抗発熱
に適する電気抵抗より大きい。従って、いずれの活性炭
も熱処理により電気抵抗を低下させることが好ましい。
なお活性炭の電気抵抗は、図4に示す容器2(50mm×50
mm×50mm、内容積125cm 3 )に充填して測定した値であ
る。表1に原料活性炭の具体例を示す。
Of these, activated carbon made from raw materials such as wood and olive has an electric resistance of usually 10 3 to 10 6 Ω / 125 cm 3 , and is not suitable for electric heating as it is. Meanwhile, coal,
Activated carbon made from raw materials such as coconut shells has an electrical resistance of several tens of ohms
/ 125cm 3 lower than wood-derived activated carbon, but higher than the electrical resistance suitable for resistance heating. Therefore, it is preferable to reduce the electric resistance of any of the activated carbons by heat treatment.
The electric resistance of the activated carbon was measured using the container 2 (50 mm × 50 mm) shown in FIG.
It is a value measured by filling the sample into an mm × 50 mm and an internal volume of 125 cm 3 ). Table 1 shows specific examples of the raw material activated carbon.

【0022】 表1 原料活性炭 電気抵抗 記号 原料 賦活方法 max ( Ω/125cm3 ) a 木 リン酸 650 5×105 b 木 リン酸 650 5×104 c オリーブ 塩化亜鉛 650 2.5 ×104 d 木 塩化亜鉛 650 2×103 e 石油コークス アルカリ 750 50 f ヤシ殻 水蒸気 800 40 g 石炭 水蒸気 800 20 注:Tmax =活性炭の製造時最高加熱温度(℃)。Table 1 Raw material activated carbon Electric resistance symbol Raw material activation method T max (Ω / 125 cm 3 ) a wood phosphoric acid 650 5 × 10 5 b wood phosphoric acid 650 5 × 10 4 c olive zinc chloride 650 2.5 × 10 4 d wood Zinc chloride 650 2 × 10 3 e Petroleum coke Alkaline 750 50 f Coconut shell Steam 800 40 g Coal steam 800 20 Note: T max = maximum heating temperature (° C.) during production of activated carbon.

【0023】(ii)熱処理 導電性活性炭は、不活性ガス雰囲気中で熱処理により製
造する。熱処理により、活性炭の組織中の黒鉛結晶が成
長し、電気抵抗が低減する。熱処理温度は活性炭の黒鉛
化温度以上である必要がある。黒鉛化温度未満の熱処理
温度では、短時間で黒鉛結晶が十分に成長せず、電気抵
抗の顕著な低下が得られない。活性炭の黒鉛化温度は一
般に700 〜1200℃程度である。
(Ii) Heat treatment Conductive activated carbon is produced by heat treatment in an inert gas atmosphere. By the heat treatment, graphite crystals in the structure of the activated carbon grow, and the electric resistance decreases. The heat treatment temperature needs to be higher than the graphitization temperature of the activated carbon. At a heat treatment temperature lower than the graphitization temperature, graphite crystals do not grow sufficiently in a short time, and a remarkable decrease in electric resistance cannot be obtained. The graphitization temperature of activated carbon is generally about 700 to 1200 ° C.

【0024】熱処理時間(最高温度での保持時間)は一
般に3時間以下が好ましい。熱処理時間が3時間超であ
ると、活性炭の機械的強度が低下するだけでなく、その
吸着能も低下するので好ましくない。より好ましい熱処
理時間は0.25〜2時間である。
Generally, the heat treatment time (holding time at the maximum temperature) is preferably 3 hours or less. If the heat treatment time is longer than 3 hours, not only the mechanical strength of the activated carbon decreases, but also the adsorptivity thereof decreases, which is not preferable. A more preferred heat treatment time is 0.25 to 2 hours.

【0025】黒鉛結晶の成長は熱処理温度の上昇に応じ
て速くなるので、熱処理時間を短縮するには、熱処理温
度を高くすればよい。従って、熱処理温度は活性炭の製
造温度+100 ℃以上であるのが好ましい。活性炭の製造
温度は通常600 〜800 ℃であるので、熱処理温度を700
〜900 ℃以上に設定すれば良い。熱処理温度までの昇温
速度及び熱処理後の冷却速度については特に制限はな
く、活性炭の熱応力による破損を防止するために、昇温
時間を0.5 時間以上とし、250 ℃までの冷却時間を2時
間以上とするのが好ましい。
Since the growth of graphite crystal becomes faster as the heat treatment temperature rises, the heat treatment temperature can be shortened by increasing the heat treatment temperature. Therefore, the heat treatment temperature is preferably equal to or higher than the production temperature of activated carbon + 100 ° C. Since the production temperature of activated carbon is usually 600 to 800 ° C, the heat treatment temperature should be 700
The temperature may be set to 900 ° C or higher. There is no particular limitation on the heating rate to the heat treatment temperature and the cooling rate after the heat treatment. To prevent damage to the activated carbon due to thermal stress, the heating time is 0.5 hours or more, and the cooling time to 250 ° C is 2 hours. It is preferable to make the above.

【0026】熱処理中における活性炭の酸化反応を抑え
るために、熱処理を窒素ガス雰囲気等の不活性ガス雰囲
気中で行う。使用可能な不活性ガスとしては、窒素、ア
ルゴン等が挙げられる。
In order to suppress the oxidation reaction of the activated carbon during the heat treatment, the heat treatment is performed in an inert gas atmosphere such as a nitrogen gas atmosphere. Examples of usable inert gas include nitrogen, argon and the like.

【0027】(iii) 導電性活性炭の特性 上記方法により製造した導電性活性炭は、元の活性炭よ
り低い電気抵抗を有するとともに、硬さ及び機械的強度
も向上している。
(Iii) Characteristics of conductive activated carbon The conductive activated carbon produced by the above method has lower electric resistance than the original activated carbon, and also has improved hardness and mechanical strength.

【0028】熱処理後の活性炭の電気抵抗は、活性炭の
種類及び熱処理条件(温度及び時間等)により異なる
が、特に800 ℃以上の温度で熱処理した場合、100 Ω/
125cm 3 以下になる。例えば、木材又はオリーブを原料
とする活性炭を900 ℃の温度で熱処理すると、電気抵抗
は熱処理前の103 〜106 Ω/125cm 3 から約100 Ω/12
5cm 3 以下に低下する。また石炭やコークス等を原料と
する活性炭の電気抵抗も熱処理前より20%以上低下す
る。
The electric resistance of the activated carbon after the heat treatment is
Depends on type and heat treatment conditions (temperature, time, etc.)
However, especially when heat-treated at a temperature of 800 ° C or more, 100 Ω /
125cm ThreeIt becomes below. For example, wood or olive
When activated carbon is heat-treated at a temperature of 900 ° C, its electrical resistance
Is 10 before heat treatmentThree~Ten6Ω / 125cmThreeFrom about 100 Ω / 12
5cmThreeIt falls below. In addition, coal and coke are used as raw materials.
Electrical resistance of activated carbon is reduced by more than 20% than before heat treatment.
You.

【0029】具体例として表1に示す原料活性炭(φ2
mmの造粒炭)を、(a) アルミナ容器に充填し、(b) 焼
成炉(KDF75 、(株)デンケン製)内にセットし、(c)
窒素ガスを5リットル/分の速度で流しながら、表2に
記載の熱処理温度まで1時間かけて昇温し、表2に記載
の熱処理時間で保持した後、(d) 3〜4時間かけて25
0℃以下に冷却し、(e) 熱処理した活性炭を焼成炉から
取り出し、室温に3時間以上放置したときの電気抵抗を
表2に示す。
As a specific example, the raw material activated carbon (φ2
(a) Alumina container, (b) set in a firing furnace (KDF75, manufactured by Denken Co., Ltd.), and (c)
While flowing nitrogen gas at a rate of 5 L / min, the temperature was raised to the heat treatment temperature shown in Table 2 over 1 hour, and maintained for the heat treatment time shown in Table 2, (d) over 3 to 4 hours. 25
Table 2 shows the electrical resistance when the activated carbon cooled to 0 ° C. or lower and (e) heat-treated was taken out of the firing furnace and left at room temperature for 3 hours or more.

【0030】 表2 活性炭の熱処理条件及び電気抵抗 原料 熱処理 熱処理時間 電気抵抗No. 活性炭 温度℃ (時間) ( Ω/125cm3 ) 1 a 900 2 16 2 a 900 1 16 3 a 650 2 2×105 4 b 900 2 1 5 c 900 2 2 6 d 900 2 2.7 7 e 900 2 10 8 f 900 2 30 9 g 900 2 9 10 e 750 2 46.5 11 f 800 2 38[0030] Table 2 heat treatment conditions of the activated carbon and electrical resistance materials heat treatment heat treatment time electrical resistance No. Activated carbon Temperature ° C. (time) (Ω / 125cm 3) 1 a 900 2 16 2 a 900 1 16 3 a 650 2 2 × 10 5 4 b 900 2 1 5 c 900 2 2 6 d 900 2 2.7 7 e 900 2 10 8 f 900 2 309 g 900 2 9 10 e 750 2 46.5 11 f 800 238

【0031】熱処理により得られた高導電性活性炭は優
れた機械的強度及び硬さを有するので、改質器に密に充
填した場合でも破損する恐れが著しく小さい。そのた
め、本発明の改質器は良好な耐久性を有する。
Since the highly conductive activated carbon obtained by the heat treatment has excellent mechanical strength and hardness, the possibility of breakage even when densely packed in a reformer is extremely small. Therefore, the reformer of the present invention has good durability.

【0032】活性炭は用途に応じてペレット状、ブロッ
ク状、ハニカム状、パウダー状、破砕状、球状等の適当
な形状に成形加工して用いる。
The activated carbon is used after being formed into an appropriate shape such as a pellet, a block, a honeycomb, a powder, a crushed or a sphere according to the use.

【0033】[0033]

【実施例】本発明を以下の実施例によりさらに詳細に説
明するが、本発明はそれらに限定されるものではない。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0034】実施例1 ヤシガラ活性炭を900 ℃で2時間熱処理することによ
り、電気抵抗30Ω/125cm 3 のモレキュラシーブカーボ
ンを作成し、これをφ2mm、長さ4mmのペレット状に成
形した(以下MC)。
Example 1 A molecular sieve carbon having an electrical resistance of 30 Ω / 125 cm 3 was prepared by heat-treating coconut husk activated carbon at 900 ° C. for 2 hours and formed into a pellet having a diameter of 2 mm and a length of 4 mm (hereinafter referred to as MC).

【0035】硝酸ニッケル・六水和物〔Ni(NO3 ) 2
H 2 O 〕145 重量部を溶解して硝酸ニッケル水溶液を調
整した。当該硝酸ニッケル水溶液に88重量部のMCを1時
間浸漬した後、ロータリーエバポレータにより減圧乾燥
によって水を除去し、硝酸ニッケルを含有するMCを得
た。当該硝酸ニッケルを含有するMCを200 ℃で1時間、
次いで420 ℃で2時間焼成した後、200 ℃の水素ガス中
で2時間還元を行いNiを担持したMC(以下Ni-MC )を得
た。
Nickel nitrate hexahydrate [Ni (NO 3 ) 2.
H 2 O] 145 parts by weight was dissolved to prepare an aqueous solution of nickel nitrate. After immersing 88 parts by weight of MC in the nickel nitrate aqueous solution for 1 hour, water was removed by drying under reduced pressure using a rotary evaporator to obtain MC containing nickel nitrate. MC containing nickel nitrate at 200 ° C. for 1 hour,
Next, after baking at 420 ° C. for 2 hours, reduction was carried out in hydrogen gas at 200 ° C. for 2 hours to obtain Ni-supported MC (hereinafter, Ni-MC).

【0036】比較例1 純度96%のアルミナをφ2mm、長さ4mmのペレット状に
成形し(以下PAl )、MCをPAl に変えた以外は、実施例
1と同様にして、Ni担持PAl を得た(以下Ni-PAl)。
Comparative Example 1 Ni-supported PAl was obtained in the same manner as in Example 1 except that alumina having a purity of 96% was formed into a pellet having a diameter of 2 mm and a length of 4 mm (hereinafter referred to as PAl), and MC was changed to PAl. (Hereinafter Ni-PAl).

【0037】物性評価 実施例1及び比較例1で得られたNi-MC 及びNi-PAlにつ
いて、比表面積、Ni含有量、及び平均細孔径を表3に示
す。また、TEM 分析の結果を図5、図6に示す。
Evaluation of Physical Properties Table 3 shows the specific surface area, Ni content and average pore diameter of Ni-MC and Ni-PAl obtained in Example 1 and Comparative Example 1. 5 and 6 show the results of the TEM analysis.

【0038】 表3 物性評価 実施例1 実施例2 Ni-MC Ni-PAl 比表面積 (BET 測定結果) 1200 m2 /g 230 m2 /g Ni含有量 (ICP 分析結果) 24 wt% 14 wt% 平均細孔径(XRD 分析結果) 30 Å 測定不能Table 3 Evaluation of physical properties Example 1 Example 2 Ni-MC Ni-PAl specific surface area (BET measurement result) 1200 m 2 / g 230 m 2 / g Ni content (ICP analysis result) 24 wt% 14 wt% Average pore size (XRD analysis result) 30 Å Measurement not possible

【0039】表3よりアルミナ(比較例1)では、比表
面積が小さいため、Ni担持量は14wt%が限界であり、ア
ルミナ表面のすべてをNiが覆って積層しているため、改
質に有効な微細結晶ができないことがわかる。これに対
し、高導電性活性炭(実施例1)では、アルミナよりも
比表面積が大きいため、Ni担持量が多く、且つ微細結晶
を保っていることがわかる。
According to Table 3, the specific surface area of alumina (Comparative Example 1) is small, so the amount of Ni supported is limited to 14 wt%. Since the alumina surface is entirely covered with Ni and laminated, it is effective for reforming. It can be seen that a fine crystal cannot be formed. In contrast, it can be seen that the highly conductive activated carbon (Example 1) has a larger specific surface area than alumina, so that the amount of supported Ni is large and fine crystals are maintained.

【0040】改質試験 図7に示すように試験管カラムI にNi-MC を50mL充填
し、図9の装置に取り付け、カラム内の電極によりNi-M
C に通電し、Ni-MC の温度を800 ±50℃とした。このと
きの加熱時間と温度との関係を図11に示す。ウォーター
バスを60℃一定に保ちながら、メタンガスをバブリング
して流量10L/min でカラムI に流し(温度を60℃を保つ
ことで湿度(98%)も一定に管理されている)、改質後
のガスをガスクロマトグラフにより分析した。分析結果
を表4に示す。
Reforming test As shown in FIG. 7, a test tube column I was filled with 50 mL of Ni-MC, attached to the apparatus shown in FIG.
C was energized, and the temperature of the Ni-MC was set to 800 ± 50 ° C. FIG. 11 shows the relationship between the heating time and the temperature at this time. While maintaining the water bath at a constant temperature of 60 ° C, bubbling methane gas through column I at a flow rate of 10 L / min (humidity (98%) is maintained at a constant temperature by maintaining the temperature at 60 ° C). Was analyzed by gas chromatography. Table 4 shows the analysis results.

【0041】図9に示すように試験管カラムIIにNi-PAl
を50mL充填し、図10の装置に取り付け、カラムの外部か
らヒーターにより加熱し、Ni-PAl温度を800 ±50℃とし
た。加熱伝導方式による昇温性を図11に示す。また、Ni
-PAlをNi-MC とした以外は同様の装置を組み立て、これ
についても昇温性の評価を行った。ウォーターバスを60
℃一定に保ちながら、メタンガスをバブリングして流量
10L/min でNi-PAlを充填したカラムIIに流し(温度を60
℃を保つことで湿度(98%)も一定に管理されてい
る)、改質後のガスをガスクロマトグラフにより分析し
た。分析結果を表4に示す。
As shown in FIG. 9, Ni-PAl was added to test tube column II.
Was charged to the apparatus of FIG. 10, and the column was heated by a heater from the outside of the column to set the Ni-PAl temperature to 800 ± 50 ° C. FIG. 11 shows the temperature rise by the heating conduction method. Also, Ni
A similar apparatus was assembled except that -PAl was changed to Ni-MC, and the temperature rise property was also evaluated. 60 water baths
Bubble methane gas while maintaining constant ℃
Flow through column II filled with Ni-PAl at 10 L / min (temperature 60
Humidity (98%) is also kept constant by keeping the temperature at ℃), and the reformed gas was analyzed by gas chromatography. Table 4 shows the analysis results.

【0042】 [0042]

【0043】表4よりNi-PAlと比較してNi-MC は水素ガ
ス濃度が高く、改質効率に優れている。また図11より、
直接通電方式により加熱する場合は、昇温性が著しく向
上することがわかる。したがってコンパクトな装置で、
燃料電池の始動時間を短縮化できる。
From Table 4, it can be seen that Ni-MC has a higher hydrogen gas concentration and is superior in reforming efficiency as compared with Ni-PAl. Also, from FIG.
It can be seen that when heating is performed by the direct energization method, the temperature rise is significantly improved. Therefore, with a compact device,
The starting time of the fuel cell can be reduced.

【0044】[0044]

【発明の効果】本発明によれば、燃料改質触媒の担体に
高導電性活性炭を用いているため、従来のアルミナ担体
と比較して触媒担持量を増加することができるので、改
質器の小型化が可能である。さらに通電による発熱で急
速に燃料改質触媒を昇温することができ、燃料電池の始
動時間を短縮化することができる。またこれに伴い、燃
料電池システムが立ち上がるまでに走行に必要となる電
気供給器(バッテリー、キャパシタ)の小型化が可能で
あり、エンジンルーム内のスペース効率が向上する。ま
た走行中の加速時の過渡応答性に対しても反応を早める
ことができる。
According to the present invention, since the highly conductive activated carbon is used for the carrier of the fuel reforming catalyst, the amount of catalyst carried can be increased as compared with the conventional alumina carrier. Can be reduced in size. Further, the temperature of the fuel reforming catalyst can be rapidly raised by the heat generated by the energization, and the starting time of the fuel cell can be shortened. Accordingly, it is possible to reduce the size of an electric supply device (battery, capacitor) required for traveling before the fuel cell system starts up, and space efficiency in the engine room is improved. Further, the response to the transient response during acceleration during traveling can be accelerated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の燃料電池用改質器の好ましい態様の
一例の概略断面図である。
FIG. 1 is a schematic sectional view of an example of a preferred embodiment of a reformer for a fuel cell of the present invention.

【図2】 熱処理前の活性炭の組織を示し、(a) は無定
形炭素構造を模式的に示し、(b) は活性炭中の多環芳香
族結晶の化学構造の例を示す。
FIG. 2 shows the structure of activated carbon before heat treatment, (a) schematically shows an amorphous carbon structure, and (b) shows an example of a chemical structure of a polycyclic aromatic crystal in the activated carbon.

【図3】 導電性活性炭中の黒鉛化結晶組織を示し、
(a) は黒鉛化炭素構造を模式的に示し、(b) は導電性活
性炭中の多環芳香族結晶の化学構造の例を示す。
FIG. 3 shows a graphitized crystal structure in conductive activated carbon;
(a) schematically shows a graphitized carbon structure, and (b) shows an example of a chemical structure of a polycyclic aromatic crystal in a conductive activated carbon.

【図4】 活性炭の電気抵抗を測定するのに使用する装
置を示す斜視図である。
FIG. 4 is a perspective view showing an apparatus used to measure the electric resistance of activated carbon.

【図5】 モレキュラシーブカーボンのNi担持後のTEM
写真(×800,000 )である。
FIG. 5: TEM of Ni after supporting molecular sieve carbon
It is a photograph (× 800,000).

【図6】 高純度アルミナのNi担持後のTEM 写真(×80
0,000 )である。
Fig. 6 TEM photograph of high-purity alumina after supporting Ni (× 80
0,000).

【図7】 触媒担持活性炭を充填した試験管カラムI の
断面図である。
FIG. 7 is a cross-sectional view of a test tube column I filled with a catalyst-supporting activated carbon.

【図8】 触媒担持アルミナを充填した試験管カラムII
の断面図である。
FIG. 8: Test tube column filled with catalyst-supported alumina II
FIG.

【図9】 改質試験装置の概略図である。FIG. 9 is a schematic diagram of a reforming test device.

【図10】 改質試験装置の概略図である。FIG. 10 is a schematic diagram of a reforming test device.

【図11】 加熱時間と触媒の温度との関係を示すグラ
フである。
FIG. 11 is a graph showing a relationship between a heating time and a temperature of a catalyst.

【符号の説明】[Explanation of symbols]

1・・・改質器 11・・・導入口 12・・・導出口 13・・・触媒担持活性炭 14・・・電極 2・・・容器 21・・・アルミニウム電極 22・・・絶縁板 23・・・電気抵抗計 3・・・試験管カラムI 31・・・触媒担持活性炭 32・・・電極 33・・・電極ライン 4・・・試験管カラムII 41・・・触媒担持アルミナ 51、61・・・メタンガスボンベ 52、62・・・流量計 53、63・・・加湿装置 54、64・・・水 55・・・電源 56、66・・・ガスクロマトグラフ 65・・・温度コントロール用外部ヒータ DESCRIPTION OF SYMBOLS 1 ... Reformer 11 ... Inlet 12 ... Outlet 13 ... Activated carbon carrying catalyst 14 ... Electrode 2 ... Container 21 ... Aluminum electrode 22 ... Insulating plate 23・ ・ Electrical resistance meter 3 ・ ・ ・ Test tube column I 31 ・ ・ ・ Catalyst-supported activated carbon 32 ・ ・ ・ Electrode 33 ・ ・ ・ Electrode line 4 ・ ・ ・ Test tube column II 41 ・ ・ ・ Catalyst-supported alumina 51,61 ・・ ・ Methane gas cylinder 52, 62 ・ ・ ・ Flow meter 53, 63 ・ ・ ・ Humidifier 54, 64 ・ ・ ・ Water 55 ・ ・ ・ Power supply 56, 66 ・ ・ ・ Gas chromatograph 65 ・ ・ ・ Temperature control external heater

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/06 B01J 23/755 C01B 3/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/04 H01M 8/06 B01J 23/755 C01B 3/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素系燃料を水素ガスに改質する燃
料電池用改質器であって、500 Ω/125cm3 以下の電気抵
抗を有する活性炭に担持した燃料改質触媒を有し、かつ
前記活性炭に担持した燃料改質触媒を挟んで少なくとも
一対の電極を設け、前記活性炭を直接通電することによ
り抵抗発熱することを特徴とする燃料電池用改質器。
1. A fuel cell reformer for reforming a hydrocarbon fuel into hydrogen gas, comprising a fuel reforming catalyst supported on activated carbon having an electric resistance of 500 Ω / 125 cm 3 or less, and A reformer for a fuel cell, wherein at least a pair of electrodes are provided with a fuel reforming catalyst supported on the activated carbon being interposed therebetween, and resistance heat is generated by directly energizing the activated carbon.
【請求項2】 請求項1に記載の燃料電池用改質器にお
いて、前記活性炭の表面積が700 m 2 /g以上であること
を特徴とする燃料電池用改質器。
2. The reformer for a fuel cell according to claim 1, wherein the activated carbon has a surface area of 700 m 2 / g or more.
【請求項3】 請求項1または2に記載の燃料電池用改
質器において、前記活性炭は、触媒担持前に熱処理する
ことにより、少なくとも部分的に黒鉛結晶を成長させ電
気抵抗を低下させた活性炭であることを特徴とする燃料
電池用改質器。
3. The reformer for a fuel cell according to claim 1, wherein the activated carbon is heat-treated before carrying a catalyst, thereby at least partially growing graphite crystals to reduce the electric resistance. A reformer for a fuel cell, characterized in that:
【請求項4】 請求項3に記載の燃料電池用改質器にお
いて、前記活性炭は不活性ガス中で黒鉛化温度以上で熱
処理されていることを特徴とする燃料電池用改質器。
4. The reformer for a fuel cell according to claim 3, wherein the activated carbon is heat-treated in an inert gas at a temperature higher than a graphitization temperature.
【請求項5】 請求項3又は4に記載の燃料電池用改質
器において、前記活性炭の熱処理時間が3時間以下であ
ることを特徴とする燃料電池用改質器。
5. The reformer for a fuel cell according to claim 3, wherein the heat treatment time of the activated carbon is 3 hours or less.
JP11204731A 1999-07-19 1999-07-19 Fuel cell reformer Expired - Fee Related JP3096686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11204731A JP3096686B1 (en) 1999-07-19 1999-07-19 Fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11204731A JP3096686B1 (en) 1999-07-19 1999-07-19 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP3096686B1 true JP3096686B1 (en) 2000-10-10
JP2001035522A JP2001035522A (en) 2001-02-09

Family

ID=16495391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11204731A Expired - Fee Related JP3096686B1 (en) 1999-07-19 1999-07-19 Fuel cell reformer

Country Status (1)

Country Link
JP (1) JP3096686B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5072200B2 (en) * 2005-07-01 2012-11-14 独立行政法人科学技術振興機構 Methane steam reforming catalyst, method for producing the same, and method for producing hydrogen using the same
KR102679769B1 (en) 2017-12-25 2024-06-28 주식회사 쿠라레 Activated carbon, metal-supported activated carbon using it, and hydrogenation reaction catalyst

Also Published As

Publication number Publication date
JP2001035522A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
EP2959970B1 (en) Carbon material for catalyst support use
TW299345B (en)
KR101320388B1 (en) Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same
EP1314213A1 (en) Graphite nanofiber catalyst systems for use in fuel cell electrodes
JP4994605B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
JP3643552B2 (en) Catalyst for air electrode of solid polymer electrolyte fuel cell and method for producing the catalyst
JP2004082007A (en) Catalyst particle and alcohol dehydrogenation catalyst particle
KR101828175B1 (en) Synthesis method of metal catalyst having carbon shell using metal-aniline complex
WO2001037988A1 (en) Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
JPH08117598A (en) Catalyst for high-molecular solid electrolytic type fuel cell
JP2008290062A (en) Catalytic carrier, catalyst, method for manufacturing the catalytic carrier and method for manufacturing the catalyst
JPS6140459B2 (en)
JPWO2005083818A1 (en) Fuel cell electrode catalyst and fuel cell using the same
CN113718269A (en) Electrocatalytic material and preparation method and application thereof
JP3096686B1 (en) Fuel cell reformer
KR101342605B1 (en) Hydrocarbon reforming catalyst, method for manufacturing the same and a fuel treatment device comprising the same
JP2003100308A (en) Cathode electrode catalyst for fuel cell and method of manufacturing the same
JP2009117381A (en) Manufacturing method of membrane electrode assembly for fuel cell, and manufacturing method of fuel cell system including the same
JP2013164929A (en) Method of producing electrode catalyst for fuel cell
TW200937722A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
JPH04141235A (en) Electrode catalyst for an anode pole
KR100570689B1 (en) Catalyst for fuel cell and fuel cell comprising same
JP2007029931A (en) Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell
JPH06196174A (en) Manufacture of carbon support for phosphoric acid type fuel cell catalyst
CN113422082B (en) Graphene-like carbon material electrocatalyst containing nitrogen-doped carbon five-membered ring structure, and preparation method and application thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees