JPS6140459B2 - - Google Patents

Info

Publication number
JPS6140459B2
JPS6140459B2 JP51085697A JP8569776A JPS6140459B2 JP S6140459 B2 JPS6140459 B2 JP S6140459B2 JP 51085697 A JP51085697 A JP 51085697A JP 8569776 A JP8569776 A JP 8569776A JP S6140459 B2 JPS6140459 B2 JP S6140459B2
Authority
JP
Japan
Prior art keywords
manufacturing
support material
catalytic metal
polycrystalline graphite
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51085697A
Other languages
Japanese (ja)
Other versions
JPS5213490A (en
Inventor
Dagurasu Makunikooru Buraian
Pininton Kuraiu
Terensu Shooto Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB3060575A external-priority patent/GB1547162A/en
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JPS5213490A publication Critical patent/JPS5213490A/en
Publication of JPS6140459B2 publication Critical patent/JPS6140459B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electrochemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は担持触媒の改良に関する。本発明は担
持触媒の改良された製法および該製法によつて製
造された改良された担持触媒に関する。本発明に
関連する特定の担持触媒材料は、炭素含有担体材
料上の表面層の形にて触媒金属を含むものであ
り、最も特定的には燃料電池等の電極として有用
な、炭素に担持された貴金属触媒である。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to improvements in supported catalysts. The present invention relates to an improved process for making a supported catalyst and an improved supported catalyst made by the process. Particular supported catalytic materials relevant to the present invention are those that include a catalytic metal in the form of a surface layer on a carbon-containing support material, most particularly supported catalyst materials useful as electrodes such as fuel cells. It is a noble metal catalyst.

元素状炭素は2種の異なる同素体の形にてダイ
ヤモンドとしておよびグラフアイトとして得られ
る。ダイヤモンドにおいては個々の炭素原子は四
面体の形にそして1.54Åの当距離に配置されてい
る。これはsp3混成体の重複によつて形成される
局限分子軌道を占める電子対によつて共有結合し
ている。この構造によつて結晶は大きな硬度を有
するが、充分に明らかにされる4つの劈開が可能
である。グラフアイトにおいては、炭素の原子
は、広く配列した原子が炭素−炭素距離1.42Åの
6員炭素環からなるメツシユを形成している板状
層を形成している。層内の全ての炭素原子は、
各々2つの電子を有した重複sp2混成体によつて
つくられる局限分子軌道に等しい共有結合によつ
て層内の他の3つの炭素原子に結合している。混
成されないp軌道内の電子は可動の金属系を形成
する。層は弱いフアンデルワールス力によつて結
合されていて面間距離は可変であり、そして結晶
内のシートの面積が減少するにつれて増加する。
グラフアイトは実際は最も安定な炭素の同素体で
あり、そしてダイヤモンドは熱の作用によつて容
易にグラフアイトに変換され得る。ダイヤモンド
以外の炭素の全ての形態は、グラフアイトの性質
を有する。例えば木炭の、性質の変化および明ら
かに非晶質の性質は、単位微結晶のサイズ変化お
よびそれらが粒子内で配列される度合が異なるこ
とによつて生ずる。メタンの如き短鎖炭化水素蒸
気の熱分解によつて、ガス不透過性の、通常のグ
ラフアイトよりもはるかに強い、そして熱および
電気伝導性に対して高度に異方性の、多結晶質の
密な層が加熱基体上に生ずる。a−軸内の伝導度
は銅よりも大であることができ、一方c−軸にお
いては100倍小であることができる。この材料は
熱分解グラフアイトまたはピログラフアイトとし
て知られている。炭素繊維はその性質が多結晶質
であり、そして多数の小さな密に詰まつた円筒状
微結晶からなり、各々約30の層の面を有し直径約
250Åでありそして未知であるがより一層長い長
さを有し、フイブリルと呼ばれる。これらは塊状
グラフアイト結晶におけるよりも大の中間層間隔
と共に群をなす平行層の面を有し、層の面内の原
子は、塊状グラフアイト結晶におけるように平行
面内の他の原子と特別の間隔関係を有しない。こ
の構造はターボストラテイツク(turbostratic)
であると言われる。
Elemental carbon is obtained in two different allotropic forms, as diamond and as graphite. In diamond, the individual carbon atoms are arranged in a tetrahedral manner and at an equidistant distance of 1.54 Å. It is covalently bonded by electron pairs occupying confined molecular orbitals formed by overlapping sp 3 hybrids. This structure gives the crystal great hardness, but allows four well-defined cleavages. In graphite, carbon atoms form plate-like layers in which widely arranged atoms form a mesh of six-membered carbon rings with a carbon-carbon distance of 1.42 Å. All carbon atoms in the layer are
It is attached to the other three carbon atoms in the layer by covalent bonds equivalent to confined molecular orbitals created by overlapping sp 2 hybrids with two electrons each. Electrons in the unhybridized p orbitals form a mobile metallic system. The layers are held together by weak van der Waals forces and the interplanar distance is variable and increases as the area of the sheets within the crystal decreases.
Graphite is actually the most stable allotrope of carbon, and diamond can be easily converted to graphite by the action of heat. All forms of carbon other than diamond have graphite properties. The varying properties and apparently amorphous nature of charcoal, for example, result from variations in the size of the unit crystallites and the degree to which they are arranged within the grain. Thermal decomposition of short-chain hydrocarbon vapors such as methane produces polycrystalline materials that are gas impermeable, much stronger than regular graphite, and highly anisotropic in their thermal and electrical conductivity. A dense layer of is formed on the heated substrate. The conductivity in the a-axis can be greater than copper, while in the c-axis it can be 100 times lower. This material is known as pyrolytic graphite or pyrographite. Carbon fibers are polycrystalline in nature and consist of a large number of small, closely packed cylindrical crystallites, each with about 30 layers of faces and about a diameter.
250 Å and has an unknown, even longer length, called a fibril. They have planes of parallel layers clustered together with larger interlayer spacings than in massive graphite crystals, and atoms in the planes of the layers are distinct from other atoms in the parallel planes as in massive graphite crystals. has no interval relationship. This structure is turbostrategic.
It is said that

本発明は、炭素含有担体材料を酸化処理にか
け、処理された担体材料を金属含有溶液と接触さ
せそして乾燥させることにより改良された担持触
媒の製法において、担体材料が多結晶質グラフア
イトの形の少なくとも一部分の炭素を含有するこ
と、表面酸化によつて多結晶質グラフアイト上に
酸性またはアルカリ性の酸化物基を生ぜしめるこ
と、酸性の表面酸化された担体材料に触媒金属の
カチオンを含有する溶液を含浸させまたはアルカ
リ性の表面酸化された担体材料に触媒金属のアニ
オンを含有する溶液を含浸させてそれと塩を形成
させること、および含浸させた担体材料を乾燥お
よび還元してその表面上に触媒金属の層を形成さ
せることを特徴とする製法を提供する。
The present invention provides a method for preparing an improved supported catalyst by subjecting a carbon-containing support material to an oxidative treatment, contacting the treated support material with a metal-containing solution and drying the support material in the form of polycrystalline graphite. a solution containing at least a portion of carbon; producing acidic or alkaline oxide groups on the polycrystalline graphite by surface oxidation; impregnating or alkaline surface oxidized support material with a solution containing the anion of the catalytic metal to form a salt therewith, and drying and reducing the impregnated support material to deposit the catalytic metal on its surface. Provided is a manufacturing method characterized by forming a layer of.

炭素含有担体材料に触媒金属塩溶液を含浸さ
せ、次に塩を乾燥および還元することは、炭素に
担持された貴金属触媒の製法として既知である。
しかし、従来担体として一般に開示される炭素含
有材料が少なくとも多結晶質グラフアイトの形で
あるべき炭素の比率を規定されることはなく、ま
たこれらの材料がいずれかの形態の表面酸化処理
にかけられたこともない。さらに担体材料に含浸
させるために好適に用いられる溶液が、後に触媒
金属に還元され得る金属塩を酸化表面との反応に
よつて生ずるのに適切な形の触媒金属のイオンを
含むように選択されたこともなかつた。
Impregnation of a carbon-containing support material with a catalytic metal salt solution, followed by drying and reduction of the salt, is a known method for preparing noble metal catalysts supported on carbon.
However, it is not specified that the carbon-containing materials conventionally disclosed as carriers should be at least in the form of polycrystalline graphite, nor are these materials subjected to any form of surface oxidation treatment. Never before. Furthermore, the solution preferably used to impregnate the support material is selected to contain ions of the catalytic metal in a suitable form to generate a metal salt which can be subsequently reduced to the catalytic metal by reaction with the oxidized surface. Never before.

今本発明による方法を用いると、酸化段階中に
多結晶質グラフアイトの炭素微結晶の表面にイオ
ン性酸化物基が生じ、次いで反対電荷の金属イオ
ンを含む対応する塩の溶液を含浸させる時にこれ
らの金属イオンがイオン性酸化物基と反応して化
学的に表面に結合し表面上に広く分布すると考え
られる。斯くの如き荷電基が炭素表面上に存在す
ることによつて、触媒金属の効力も高められると
思われる。引続き乾燥および還元されることによ
つて金属は最初に結合した位置で炭素表面上に直
接的に結合されるようになると考えられる。
Now, using the method according to the invention, ionic oxide groups are created on the surface of the carbon microcrystals of polycrystalline graphite during the oxidation step, and then upon impregnation with a solution of the corresponding salt containing metal ions of opposite charge. It is believed that these metal ions react with the ionic oxide groups, chemically bond to the surface, and are widely distributed on the surface. The presence of such charged groups on the carbon surface also appears to enhance the effectiveness of the catalytic metal. It is believed that subsequent drying and reduction causes the metal to become directly bonded onto the carbon surface at the initial bonding site.

実験によつて、同じ炭素含有担体および同じ触
媒金属を用いるが本発明の方法を用いないと、本
発明の改良された方法を用いた場合に得られるも
のと同じく有用な材料は生じないことが示され
た。
Experiments have shown that using the same carbon-containing support and the same catalytic metal but not using the method of the present invention does not result in materials as useful as those obtained using the improved method of the present invention. Shown.

本発明に用いるのに適切な担体材料は、酸化の
ために利用され得る多結晶質グラフアイトの形の
少なくともある比率の炭素を含むことを条件に、
担持触媒のための担体として使用され得るいずれ
の材料であつてもよい。多結晶質グラフアイトは
担体材料に構造的に組込まれることができ、また
は所望の形に変換されたバインダまたは表面層の
形で存在することができる。好適な担体材料は、
レーヨン前駆体から得られる炭素繊維、例えばユ
ニオンカーバイド社により製造される炭素繊維で
あつてよく、これらは特に高い含量の多結晶質グ
ラフアイトを有し、そしてマツトまたはペーパー
の形にて効果的に用いられてよく、またはこれら
はより一層低い多結晶質グラフアイト含量を有し
中に多結晶質グラフアイトの形に変換されたバイ
ンダを含む他の材料から得られた炭素繊維のマツ
トはペーパーであつてもよい。前記の種類の炭素
繊維材料はいずれも、引続き多結晶質グラフアイ
トの形に変換され得る適切な充填材料の添加によ
つてさらに改質されてよい。適切な充填材料の例
としては、コールタールまたは石油ピツチ、エチ
レン分解装置残渣、およびポリフエニレンまたは
種々のエピコート(Epikote)樹脂が挙げられ
る。炭素繊維ペーパーのために好適な充填材料は
サラン(Saran)粉として工業的に入手可能なポ
リビニリデンクロリドであり、これは炭素繊維の
ペーパーの表面内に押圧されることができ次に焼
成および熱分解されて、実質的に巨孔を有せず非
常に大きな表面積を有し非常に高い多結晶質グラ
フアイト含量を有しそして液体またはガス拡散電
極の基体として特に適切な充填された材料を生ず
る。
Support materials suitable for use in the present invention include at least a proportion of carbon in the form of polycrystalline graphite which can be utilized for oxidation.
It can be any material that can be used as a support for supported catalysts. The polycrystalline graphite can be structurally incorporated into the carrier material or can be present in the form of a binder or surface layer converted into the desired shape. Suitable carrier materials are:
Carbon fibers obtained from rayon precursors, such as those produced by Union Carbide, may have a particularly high content of polycrystalline graphite and can be effectively processed in the form of matte or paper. Carbon fiber mats may be used in paper, or they may be obtained from other materials having a lower polycrystalline graphite content and containing a binder converted into polycrystalline graphite form. It's okay to be hot. Any of the above types of carbon fiber materials may be further modified by the addition of suitable filler materials which can subsequently be converted into the form of polycrystalline graphite. Examples of suitable filler materials include coal tar or petroleum pitch, ethylene cracker residue, and polyphenylene or various Epikote resins. A suitable filler material for carbon fiber paper is polyvinylidene chloride, commercially available as Saran powder, which can be pressed into the surface of the carbon fiber paper and then calcined and heated. Decomposed to yield a filled material with virtually no macropores, a very large surface area, a very high polycrystalline graphite content, and particularly suitable as a substrate for liquid or gas diffusion electrodes. .

酸性酸化物基を生ずるための炭素含有担体材料
の表面酸化は好適には例えば電気化学的酸化例え
ば硫酸中の陽極酸化〔エレクトロケミカル・オキ
シデーシヨン(Electrochemical Oxidation)、N.
L.WeinburgおよびReddy、ジヤーナル・オブ・
アプライド・エレクトロケミストリ(Journal of
Applied Electrochemistry)、第3巻、第73頁
(1973)参照〕により、ガス状酸素の存在下での
イオン衝撃により、または濃酸または濃硝酸と重
クロム酸カリウムとの混合物を用いた処理の如き
化学的酸化によつて実施される。
The surface oxidation of the carbon-containing support material to produce acidic oxide groups is preferably carried out by, for example, electrochemical oxidation, e.g. anodic oxidation in sulfuric acid (Electrochemical Oxidation, N.
L. Weinburg and Reddy, Journal of
Applied Electrochemistry (Journal of
Applied Electrochemistry, Volume 3, Page 73 (1973)], by ion bombardment in the presence of gaseous oxygen, or by treatment with concentrated acids or mixtures of concentrated nitric acid and potassium dichromate. Performed by chemical oxidation.

同様に、多結晶質グラフアイト炭素表面に塩基
性酸化物基を生ずるために知られる方法のいずれ
も用いられ得るが、本発明者が最も適切であると
して見出した1つの方法は、担体材料を窒素雰囲
気中で高められた温度(例えば900℃)に加熱し
次に室温に冷却しそして酸素に暴露する方法であ
る。
Similarly, although any of the methods known for producing basic oxide groups on polycrystalline graphite carbon surfaces can be used, one method that the inventors have found to be most suitable is to The method involves heating to an elevated temperature (eg 900°C) in a nitrogen atmosphere, then cooling to room temperature and exposure to oxygen.

本発明に使用するのに最も適切な触媒金属に
は、通常貴金属と呼ばれる白金族金属が含まれ
る。これらとしては周期表の第族金属、即ち白
金、パラジウム、ロジウム、オスミウム、イリジ
ウムおよびルテニウムが含まれ、これらは単独ま
たは2つまたはそれ以上の組合せにて用いられて
もよい。他の触媒金属例えば周期表の第a族お
よび第b族からの金属即ち錫、鉛、ゲルマニウ
ムまたはチタンもまた、貴金属の作用を高めるた
めに用いられてよい。
Catalytic metals most suitable for use in the present invention include platinum group metals, commonly referred to as noble metals. These include the group metals of the periodic table, namely platinum, palladium, rhodium, osmium, iridium and ruthenium, which may be used alone or in combinations of two or more. Other catalytic metals, such as metals from groups a and b of the periodic table, ie tin, lead, germanium or titanium, may also be used to enhance the action of the noble metals.

酸化された多結晶質グラフアイト含有担体材料
の含浸は、好適な金属の適切なカチオンまたはア
ニオンを含む塩の希溶液を用いて実施される。表
面に酸性酸化物基を有する多結晶質グラフアイト
材料に用いるための金属カチオン含有の適切な溶
液は例えば、白金金属触媒を生ずるための白金テ
トラミンヒドロキシドPt(NH34(OH)2の水溶
液、白金テトラミンクロリドPt(NH34Cl2の水
溶液、白金ジアミンジニトリツトPt(NH32
(NO22の濃硝酸溶液、または混合白金金属/ル
テニウム金属触媒を生ずるための白金ジアミンジ
ニトリツトおよびルテニウムニトロシルニトレー
トRuNO(NO32またはルテニウムニトレートRu
(NO33の濃硝酸溶液である。
Impregnation of the oxidized polycrystalline graphite-containing support material is carried out using a dilute solution of a salt containing the appropriate cation or anion of a suitable metal. Suitable solutions containing metal cations for use in polycrystalline graphite materials having acidic oxide groups on the surface include, for example, platinum tetramine hydroxide Pt(NH 3 ) 4 (OH) 2 to yield platinum metal catalysts. Aqueous solution, platinum tetramine chloride Pt (NH 3 ) 4 Cl 2 aqueous solution, platinum diamine dinitrate Pt (NH 3 ) 2
Concentrated nitric acid solution of (NO 2 ) 2 or platinum diamine dinitrate and ruthenium nitrosyl nitrate RuNO (NO 3 ) 2 or ruthenium nitrate Ru to produce a mixed platinum metal/ruthenium metal catalyst.
(NO 3 ) 3 in concentrated nitric acid solution.

同様に塩基性酸化物基を表面に有する多結晶質
グラフアイトの含浸は、好適な金属のアニオンを
含む塩の希溶液のいずれを用いても実施でき、本
発明者は白金含有触媒を製造するためには、塩化
白金酸H2PtOCl6が特に有用であることを見出し
た。
Similarly, the impregnation of polycrystalline graphite with basic oxide groups on the surface can be carried out using any dilute solution of salts containing anions of suitable metals, and the inventors have demonstrated the ability to produce platinum-containing catalysts. We have found chloroplatinic acid H 2 PtOCl 6 to be particularly useful for this purpose.

含浸後に担体材料は適切な温度例えば120℃に
て乾燥され、そして担体材料上の塩は触媒金属に
分解する。分解が実施される条件は得られる触媒
の活性に影響を及ぼす。単金属白金触媒について
好適な方法は乾燥した含浸担体を空気中で200℃
−500℃の温度にて加熱する方法であることが判
明した。300℃の温度が特に適切である。代り
に、担体を窒素雰囲気中で200℃−500℃の温度特
には400℃の温度に加熱することもできる。同じ
温度にて水素ガス雰囲気中で加熱を実施すること
もできるが、しかしこの条件下では金属の凝集が
起つてより一層活性の劣る触媒が得られる。二次
金属触媒例えば白金/ルテニウム触媒について
は、最も好適な方法は単金属触媒の場合と同じで
あり空気中で200℃−500℃特に300℃に加熱する
方法である。窒素雰囲気中での加熱は200℃−500
℃好適には300℃で実施できる。同じ温度にて水
素ガス雰囲気を用いると、他の方法のいずれより
も一層活性の劣る触媒が生じ、これは担体表面の
二次金属材料の白金の豊富化に起因する。
After impregnation, the support material is dried at a suitable temperature, for example 120° C., and the salt on the support material decomposes into the catalytic metal. The conditions under which the cracking is carried out affect the activity of the resulting catalyst. For monometallic platinum catalysts, the preferred method is to heat the dry impregnated support in air at 200°C.
It turned out that the method involves heating at a temperature of -500°C. A temperature of 300°C is particularly suitable. Alternatively, the support can be heated in a nitrogen atmosphere to a temperature of 200°C to 500°C, in particular to a temperature of 400°C. Heating can also be carried out in a hydrogen gas atmosphere at the same temperature, but under these conditions agglomeration of the metal occurs and a less active catalyst is obtained. For secondary metal catalysts, such as platinum/ruthenium catalysts, the most preferred method is the same as for single metal catalysts, which is heating in air to 200°C-500°C, especially 300°C. Heating in nitrogen atmosphere is 200℃-500℃
It can be carried out preferably at 300°C. Using a hydrogen gas atmosphere at the same temperature results in a less active catalyst than any of the other methods, which is due to the platinum enrichment of the secondary metal material on the support surface.

本発明に従つて製造された触媒材料と本発明の
範囲外である他の方法を用いて得られた触媒材料
とを比較した例に関連して本発明をさらに説明す
る。本発明の担持触媒材料の製法の有用性および
該製法により製造された触媒が、特にメタノール
電解酸化反応のための触媒として、有用であるこ
とは種々の材料の比較により理解されるであろ
う。
The invention will be further explained with reference to examples comparing catalyst materials produced according to the invention with catalyst materials obtained using other methods outside the scope of the invention. The usefulness of the method for producing a supported catalyst material of the present invention and the usefulness of the catalyst produced by the method, particularly as a catalyst for methanol electrooxidation reaction, will be understood by comparing various materials.

次の方法を用いて種々の担持触媒を製造した。 Various supported catalysts were prepared using the following method.

例 A (a) 酸化段階なしに1枚の未充填の炭素繊維ペー
パーに、白金ジアミンジニトリツト Pt(NH32(NO22およびルテニウムニトロ
シルニトレートRuNO(NO32を30%硝酸中に
溶かした溶液を含浸させ、120℃で乾燥し、塩
を400℃にて2時間流動窒素中で分解させた。
最終還元を水素下に400℃にて行ない、または
3硫酸中で電気化学的に行なつた。
Example A (a) Platinum diamine dinitrate Pt(NH 3 ) 2 (NO 2 ) 2 and ruthenium nitrosyl nitrate RuNO(NO 3 ) 2 at 30% on a sheet of unfilled carbon fiber paper without an oxidation step. The solution in nitric acid was impregnated and dried at 120°C, and the salt was decomposed at 400°C for 2 hours in flowing nitrogen.
The final reduction was carried out under hydrogen at 400°C or electrochemically in trisulfuric acid.

(b) さらに1枚の未充填炭素繊維ペーパーを濃硝
酸中で100℃にて2時間酸化し、次に同じ溶液
を含浸させ、120℃で乾燥し、そして塩を流動
窒素中で400℃にて2時間分解させた。最終還
元は水素下に400℃で行ない、または3硫酸
中で電気化学的に行なつた。
(b) Another piece of unfilled carbon fiber paper was oxidized in concentrated nitric acid at 100°C for 2 hours, then impregnated with the same solution, dried at 120°C, and the salt was heated to 400°C in flowing nitrogen. and allowed to decompose for 2 hours. The final reduction was carried out under hydrogen at 400°C or electrochemically in trisulfuric acid.

例 B 数枚の前記の未充填炭素繊維ペーパーに、室温
にてピツチ(即ちエチレン分解装置残渣を用い
た)を含浸させ、窒素雰囲気中にて計画されたサ
イクルを通じて800℃に加熱した。数枚のピツチ
含浸材料を次に1000℃−2500℃の温度に30分加熱
することによつて黒鉛化した。充填剤の黒鉛化の
後に濃硝酸中で100℃にて1時間−20時間処理す
ることによつて酸化して、酸性酸化物基を表面に
形成した。酸化後に次の貴金属塩を含浸させた。
Example B Several sheets of the unfilled carbon fiber paper described above were impregnated with pitch (i.e., using ethylene cracker residue) at room temperature and heated to 800° C. through a planned cycle in a nitrogen atmosphere. Several sheets of pitch-impregnated material were then graphitized by heating to a temperature of 1000°C-2500°C for 30 minutes. After graphitization of the filler, it was oxidized by treatment in concentrated nitric acid at 100 DEG C. for 1 to 20 hours to form acidic oxide groups on the surface. After oxidation, the following noble metal salts were impregnated.

(a) Pt(NH32(NO22水溶液; (b) Pt(NH34Cl2水溶液; (c) H2PtCl6水溶液; (d) Pt(NH34Cl2+SnCl4水溶液; (e) H2PtCl6+SnCl4水溶液: (f) PtCl4+SnCl4水溶液; (g) Pt(NH32(NO22+RuNO(NO3230%硝酸
中溶液; (h) H2PtCl6+RuCl3水溶液。
(a) Pt(NH 3 ) 2 (NO 2 ) 2 aqueous solution; (b) Pt(NH 3 ) 4 Cl 2 aqueous solution; (c) H 2 PtCl 6 aqueous solution; (d) Pt(NH 3 ) 4 Cl 2 +SnCl 4 aqueous solution; (e) H 2 PtCl 6 +SnCl 4 aqueous solution: (f) PtCl 4 +SnCl 4 aqueous solution; (g) Pt(NH 3 ) 2 (NO 2 ) 2 + RuNO(NO 3 ) 2 30% solution in nitric acid; ( h) H 2 PtCl 6 + RuCl 3 aqueous solution.

次に120℃にて乾燥しそして塩を流動窒素中に
て400℃で2時間分解した。
It was then dried at 120°C and the salt was decomposed in flowing nitrogen at 400°C for 2 hours.

例 C さらに1枚の未充填炭素繊維ペーパーを乾燥室
素中で900℃に2時間加熱し、次に尚乾燥窒素雰
囲気中で室温に冷却し、次に空気に暴露した。次
に担体に塩化白金酸溶液を含浸させ、120℃で乾
燥しそして塩を流動窒素中で400℃で分解した。
Example C An additional sheet of unfilled carbon fiber paper was heated to 900° C. for 2 hours in a drying chamber, then cooled to room temperature still in a dry nitrogen atmosphere, and then exposed to air. The support was then impregnated with a chloroplatinic acid solution, dried at 120°C and the salt decomposed at 400°C in flowing nitrogen.

上記の全ての場合において最終還元を、水素中
にて400℃でまたは3モル硫酸中で電気化学的に
実施した。
In all the above cases the final reduction was carried out electrochemically in hydrogen at 400°C or in 3 molar sulfuric acid.

例 D 数枚の未充填炭素繊維ペーパーに、30Kg/cm2
圧力を用いて表面にサラン粉(300−400メツシ
ユ)を押圧することによつて充填し、粉を200℃
で焼成しそして処理を繰返した。充填された炭素
繊維ペーパーを窒素下に950℃で1時間加熱する
ことによつて黒鉛化し、黒鉛化後に重クロム酸カ
リウム(K2Cr2O7)/硝酸混合物を用いて100℃で
0.5−20時間酸化し、そして洗浄した。H2PtCl6
水溶液を含浸させることによつてアニオン形態に
て、またはPt(NH32(NO22の酸性溶液を含浸
させることによつてカチオン形態にて、活性化担
体に白金を添加し、そして乾燥後に塩を流動窒素
(水素または空気)中で400℃にて2時間分解し
た。
Example D Several sheets of unfilled carbon fiber paper are filled by pressing Saran powder (300-400 mesh) onto the surface using a pressure of 30 Kg/ cm2 , and the powder is heated to 200°C.
and the process was repeated. The filled carbon fiber paper was graphitized by heating at 950 °C for 1 h under nitrogen, and after graphitization at 100 °C with a potassium dichromate (K 2 Cr 2 O 7 )/nitric acid mixture.
Oxidized for 0.5-20 hours and washed. Platinum is added to the activated support in anionic form by impregnation with an aqueous solution of H 2 PtCl 6 or in cationic form by impregnation with an acidic solution of Pt(NH 3 ) 2 (NO 2 ) 2 . was added and after drying the salt was decomposed in flowing nitrogen (hydrogen or air) for 2 hours at 400°C.

例 E 同様の未充填炭素繊維ペーパーに次のものを充
填した。
Example E A similar unfilled carbon fiber paper was filled with:

(a) 炭化によつて黒鉛化可能な炭素を生ずるポリ
フエニレン樹脂、および (b) 黒鉛化不可能な炭素を生ずるベークライト樹
脂。
(a) polyphenylene resins that yield graphitizable carbon upon carbonization; and (b) bakelite resins that yield non-graphitizable carbon.

ベークライト樹脂はメチルエチルケトン中の粉
末の飽和溶液として採用された。
Bakelite resin was employed as a saturated solution of powder in methyl ethyl ketone.

ポリフエニレン初期重合体、硬化剤および触媒
を全てクロロホルム中に溶解し、そしてペーパー
をこれに浸し乾燥した。両方の場合において充填
されたペーパーを計画されたサイクルを通じて窒
素雰囲気中で800℃に加熱し、次に100℃で硝酸で
20時間処理した。該処理後にペーパーにPt
(NH32(NO22の濃硝酸溶液を含浸させ、120℃
で乾燥しそして窒素中で400℃で2時間活性化し
た。
The polyphenylene prepolymer, curing agent and catalyst were all dissolved in chloroform and the paper soaked and dried. The filled paper in both cases was heated to 800 °C in a nitrogen atmosphere through a planned cycle and then heated with nitric acid at 100 °C.
Treated for 20 hours. Pt on the paper after the treatment
(NH 3 ) 2 (NO 2 ) 2 impregnated with concentrated nitric acid solution and heated at 120℃.
and activated in nitrogen at 400° C. for 2 hours.

例 F 工業的な担持触媒の製造において担体として用
いられる種類の純粋な非晶質炭素の試料を100℃
にて濃硝酸中で1時間〜20時間処理し、Pt
(NH32(NO22の酸性溶液を含浸させ、120℃で
乾燥しそして塩を400℃で流動窒素中で2時間分
解した。最終の還元を水素中で400℃で行ない、
または3硫酸中で電気化学的に行なつた。
Example F A sample of pure amorphous carbon of the type used as a support in the production of industrial supported catalysts was heated to 100°C.
Pt was treated in concentrated nitric acid for 1 to 20 hours.
It was impregnated with an acidic solution of (NH 3 ) 2 (NO 2 ) 2 , dried at 120° C. and the salt was decomposed at 400° C. in flowing nitrogen for 2 hours. The final reduction was carried out in hydrogen at 400°C,
or electrochemically in sulfuric acid.

例 G 比較のためにメタノール電解酸化反応に用いる
のに適切な最も工業的に入手可能な担持触媒の試
料を得た。次のものが選択された。
Example G A sample of the most commercially available supported catalyst suitable for use in methanol electrooxidation reactions was obtained for comparison. The following were selected:

(a) 白金アダムス(Adams)触媒、 (b) 白金/ルテニウムアダムス触媒、 (c) 細孔活性性化〔エンゲルハード
(Engelhard)〕炭素上の白金触媒、 (d) 不活性担体上に電気メツキされた白金/錫、 (e) 不活性担体上に電気メツキされた白金/錫/
鉛。
(a) Platinum Adams catalyst; (b) Platinum/Ruthenium Adams catalyst; (c) Pore-activated [Engelhard] platinum catalyst on carbon; (d) Electroplated onto an inert support. (e) platinum/tin/electroplated on an inert support;
lead.

A、B、C、DおよびEに記載の製法の全てに
おいて用いられる未充填炭素繊維ペーパーは、ユ
ニオンカーバイド社製造のピログラフアイト−被
覆炭素繊維材料であり、かようにある比率の多結
晶質グラフアイトを含み、そして本発明に従う担
体材料の1例である。Fに記載の製法において用
いられる非晶質炭素は多結晶質グラフアイトを全
く含まず、従つてこれは本発明に従う担体材料で
はなく、そして同様にGに記載の工業的に入手可
能な触媒の製法において用いられる担体は多結晶
質グラフアイト材料を含まず、従つて本発明の範
囲外である。
The unfilled carbon fiber paper used in all of the processes described in A, B, C, D, and E is a pyrographite-coated carbon fiber material manufactured by Union Carbide, and thus has a certain proportion of polycrystalline 1 is an example of a carrier material comprising graphite and according to the invention. The amorphous carbon used in the process according to point F does not contain any polycrystalline graphite, so it is not a support material according to the invention and likewise the industrially available catalyst according to point G. The carrier used in the process does not contain polycrystalline graphite material and is therefore outside the scope of the present invention.

例A(a)に記載の製法は、本発明に従う担体材料
を用いるが、貴金属塩の溶液を含浸させる前に表
面を酸化することは省略している。例A(b)の製法
は同様であるが、本発明の方法全体が用いられ、
そして表面が濃硝酸で酸化されて、溶液の含浸の
前に酸性酸化物基を生ずる。メタノール電解酸化
反応における活性を試験すると、第1の材料はそ
の表面に白金およびルテニウム金属が存在する故
にある程度効力を有するが、しかし第2の材料は
大幅に改良された活性を有し、表面酸化が本発明
の方法において必要な段階であることが示され
る。
The process described in Example A(a) uses a support material according to the invention, but omits the oxidation of the surface before impregnation with the solution of the noble metal salt. The preparation of Example A(b) is similar, but the entire method of the invention is used;
The surface is then oxidized with concentrated nitric acid to generate acidic oxide groups prior to solution impregnation. When tested for activity in the methanol electrooxidation reaction, the first material has some efficacy due to the presence of platinum and ruthenium metals on its surface, but the second material has significantly improved activity and surface oxidation. is shown to be a necessary step in the method of the invention.

例Bに記載の製法は、例Aに記載されるのと同
じ担体材料を用い、炭化された時に多結晶質グラ
フアイト材料を形成するピツチを該担体材料に充
填する。充填後に担体材料およびその充填剤は、
種々の時間のあいだ酸化されて、その酸化による
酸性基を生ずる効果を示した。酸化段階後に担体
材料はある種の貴金属塩を含浸され、そのいくつ
かはカチオン性であり従つて本発明に従う酸性基
と反応性であり、そのいくつかはアニオン性であ
り従つて酸性基に対してより一層反応性でない。
The process described in Example B uses the same carrier material as described in Example A and fills the carrier material with pitches that form a polycrystalline graphite material when carbonized. After filling, the carrier material and its filler are
It was oxidized for various times and showed the effect of its oxidation to produce acidic groups. After the oxidation step, the support material is impregnated with certain noble metal salts, some of which are cationic and therefore reactive with acidic groups according to the invention, some of which are anionic and therefore reactive with acidic groups. even less reactive.

形成された種々の触媒の活性をメタノール電解
酸化反応について測定すると、酸化段階の激しさ
の増加即ち濃硝酸との接触時間の増加によつて、
製造される触媒の適切性が増し、但し選択された
条件下にて最適時間を決定することができ、その
最適時間は最大約20時間であり、この時間を越え
て時間が増加しても大きな効果は得られなかつ
た。
When the activity of the various catalysts formed was determined for the methanol electrooxidation reaction, it was found that by increasing the intensity of the oxidation step, i.e. increasing the contact time with concentrated nitric acid,
The suitability of the catalysts produced increases, but under selected conditions it is possible to determine the optimum time, which is up to about 20 hours, and any increase in time beyond this time will result in significant No effect was obtained.

さらに、この例において用いられ表面上に酸性
酸化物基を有する担体の場合には、使用さるアニ
オン性溶液即ちH2PtCl6およびH2PtCl6+RuCl3
は、触媒金属のカチオンを含む溶液例えば30%
HNO3に溶かしたPt(NH32(NO2)+RuNO
(NO32の溶液を用いて製造されたものよりもは
るかに劣つた最終生成物を生じた。製造された最
良の白金/錫/触媒は、Pt(NH34Cl4の水溶液
を用いたものであり、次に良好であるものは
H2PtCl6+SnCl4の水溶液を用いたものである。
Furthermore, in the case of the supports used in this example and having acidic oxide groups on the surface, the anionic solutions used, namely H 2 PtCl 6 and H 2 PtCl 6 +RuCl 3
is a solution containing catalytic metal cations e.g. 30%
Pt(NH 3 ) 2 (NO 2 ) + RuNO dissolved in HNO 3
This resulted in a final product that was much inferior to that produced using a solution of ( NO3 ) 2 . The best platinum/tin/catalyst produced was with an aqueous solution of Pt(NH 3 ) 4 Cl 4 , the next best was
It uses an aqueous solution of H 2 PtCl 6 +SnCl 4 .

例Cは、塩基性酸化物基を表面に有する担体材
料をつくり、次にこれに触媒金属のアニオン含有
の溶液を含浸させ形成された塩を分解する方法を
記載している。
Example C describes a method of preparing a support material having basic oxide groups on its surface and then impregnating it with a solution containing an anion of the catalytic metal to decompose the salt formed.

例Dに記載の製法は、本発明に従う充填剤とし
てサラン粉を用いる方法である。種々の酸化時間
が用いられ、そして充填された担体に含浸させる
ために種々の貴金属溶液が用いられた。この場合
もまた、メタノール電解酸化反応における触媒と
しての活性の測定によつて、含浸前に酸化段階を
行なうことが重要であること、および用いられた
担体材料が酸性酸化物基を有する時に最適な結果
を得るためにカチオン性塩溶液を用いることが重
要であることが示された。Pt(NH32(NO22
たはPt(NH34(OH)2の溶液を用いて製造され
た触媒は、H2PtCl6の溶液を用いて得られたもの
よりもはるかに活性であつた。サラン粉を用いて
得られた炭素充填物が非常に均質でありそしてピ
ンホールを有しないことも判明した。充填された
担体の(水中での)ブローアウト(blow−out)
圧力も測定され、これらが液体またはガス拡散電
極として効果的に用いられ、特に高温メタノール
蒸気電極または空気電極に用いるのに適切な完全
に炭素に基づいた基体として用いるのに効果的で
あることが判明した。
The process described in Example D is a process using Saran powder as a filler according to the invention. Different oxidation times were used and different noble metal solutions were used to impregnate the loaded support. Again, the determination of the catalytic activity in the methanol electrooxidation reaction shows that it is important to carry out the oxidation step before impregnation and that it is optimal when the support material used has acidic oxide groups. It has been shown that it is important to use cationic salt solutions to obtain results. Catalysts prepared using solutions of Pt( NH3 ) 2 ( NO2 ) 2 or Pt( NH3 ) 4 (OH) 2 are much more active than those obtained using solutions of H2PtCl6 . It was active. It was also found that the carbon filling obtained using Saran powder was very homogeneous and free of pinholes. Blow-out (in water) of filled carriers
Pressures were also measured to demonstrate that they are effective for use as liquid or gas diffusion electrodes, particularly as fully carbon-based substrates suitable for use in high temperature methanol vapor electrodes or air electrodes. found.

例Eに記載の製法は、炭化によつて多結晶質グ
ラフアイトを生ずる材料の添加による効果を、こ
れを生じない材料の添加と比較して示す。
The process described in Example E shows the effect of adding a material that produces polycrystalline graphite upon carbonization compared to the addition of a material that does not.

ポリフエニレン−充填ペーパーから得られた高
活性触媒と対照的に、ベークライト−充填基体に
基づく触媒は酸化および貴金属カチオン溶液含浸
後に、未処理基体自体よりもわずかに高い活性を
示した。
In contrast to the highly active catalyst obtained from polyphenylene-filled paper, the catalyst based on Bakelite-filled substrate showed slightly higher activity after oxidation and impregnation with noble metal cation solution than the untreated substrate itself.

例Fに記載の方法に従つて製造された触媒は、
工業的に入手可能な触媒の例として例Gに列設さ
れた材料と等しい活性を示した。使用された基体
は多結晶質グラフアイトを全く含まず、従つて濃
硝酸を用いた処理は認め得る有益な効果を有しな
かつた。
The catalyst prepared according to the method described in Example F is
It showed an activity equal to that of the materials listed in Example G as examples of commercially available catalysts. The substrate used did not contain any polycrystalline graphite, so treatment with concentrated nitric acid had no appreciable beneficial effect.

本発明の方法に従つて製造されたメタノール電
解酸化反応にて評価された前記の種々の触媒は全
て例Gに列記される工業的に入手可能な触媒より
も改良された活性および有用性を示した。
The various catalysts described above that were evaluated in methanol electrooxidation reactions prepared according to the method of the present invention all exhibited improved activity and utility over the commercially available catalysts listed in Example G. Ta.

次のさらに特定的な例は、本発明の触媒を用い
て製造された電極と先行技術によるものとをさら
に直接的に個々に比較するものであり、本発明の
方法の種々の段階の重要性を示すものである。
The following more specific examples provide a more direct individual comparison of electrodes produced using the catalyst of the invention with those according to the prior art, and illustrate the importance of the various steps of the process of the invention. This shows that.

例 H (a) 1枚の未充填ピログラフアイト被覆炭素繊維
ペーパーを特別な前処理段階にかけずに、これ
に白金テトラミンヒドラキシド即ちPt(NH34
(OH)2または白金ジアミンジニトリツトの水溶
液(5mgPt/ml)を赤外線ランプ(基体温度150
℃)下にて単に含浸させた。0.35mg/cm2の白金
装入量が得られた。含浸触媒は400℃にて窒素
雰囲気中で1時間活性化した。メタノール1
を含む硫酸3中における60℃での活性は、泡
立ち水素電極に関して0.52Vにて10A/gであつ
た。工業的に入手可能な触媒は同一条件下で
0.52Vにて20A/gの活性を有した。
Example H (a) A sheet of unfilled pyrographite-coated carbon fiber paper is treated with platinum tetramine hydroxide, Pt(NH 3 ) 4 without any special pretreatment steps.
(OH) 2 or an aqueous solution of platinum diamine dinitrate (5 mgPt/ml) was heated with an infrared lamp (substrate temperature 150
℃). A platinum charge of 0.35 mg/cm 2 was obtained. The impregnated catalyst was activated at 400° C. for 1 hour in a nitrogen atmosphere. methanol 1
The activity at 60° C. in sulfuric acid 3 containing 10 A/g at 0.52 V with respect to the bubbling hydrogen electrode. Commercially available catalysts under the same conditions
It had an activity of 20A/g at 0.52V.

(b) 1枚の未充填ピログラフアイト被覆炭素繊維
ペーパーを特別な前処理段階にかけずに、赤外
線ランプ下に加熱(基体温度150℃)しながら
これに白金5mg/ml含有の30%硝酸溶液中の白
金ジアミンジニトリツトの溶液を単に含浸させ
た。0.4mg/cm2の白金装入量が得られた。含浸触
媒を窒素雰囲気中にて400℃にて1時間活性化
した。メタノール1含有の硫酸電解質3中
での60℃における活性は泡立ち水素電極に関連
して0.47Vにて20A/gであつた。工業的に入手
可能なPtアダムス触媒は同一条件下で0.52Vに
て20A/gの活性を有した。
(b) A sheet of unfilled pyrographite-coated carbon fiber paper is exposed to a 30% nitric acid solution containing 5 mg/ml of platinum while being heated under an infrared lamp (substrate temperature 150°C) without any special pretreatment steps. It was simply impregnated with a solution of platinum diamine dinitrate. A platinum charge of 0.4 mg/cm 2 was obtained. The impregnated catalyst was activated at 400° C. for 1 hour in a nitrogen atmosphere. The activity at 60° C. in sulfuric acid electrolyte 3 containing 1 methanol was 20 A/g at 0.47 V associated with a bubbling hydrogen electrode. The commercially available Pt Adams catalyst had an activity of 20 A/g at 0.52 V under the same conditions.

(c) 同様の未充填ピログラフアイト被覆炭素繊維
ペーパーを、濃硝酸40g、重クロム酸カリウム
5gおよび水6gの溶液で70℃で2時間処理し
た。酸化されたペーパーを重クロム酸イオンが
無くなるまで蒸留水で洗浄し次に120℃で乾燥
した。含浸は、カチオン性白金5mg/ml含有の
白金ジアミンジニトリツトの30%硝酸溶液を用
いて実施した。0.4mg/cm2の白金装入量が得られ
た。含浸材料を120℃で乾燥し次に窒素雰囲気
中で400℃にて1時間活性化した。メタノール
1含有の硫酸電解質3中の80℃での活性は
0.42Vにて20A/gであつた。工業的に入手可能
なPtアダムス触媒は同一条件下で0.48Vにて20
A/gの活性を有した。
(c) A similar unfilled pyrographite-coated carbon fiber paper was treated with a solution of 40 g concentrated nitric acid, 5 g potassium dichromate and 6 g water at 70° C. for 2 hours. The oxidized paper was washed with distilled water until free of dichromate ions and then dried at 120°C. Impregnation was carried out using a 30% solution of platinum diamine dinitrate in nitric acid containing 5 mg/ml of cationic platinum. A platinum charge of 0.4 mg/cm 2 was obtained. The impregnated material was dried at 120°C and then activated for 1 hour at 400°C in a nitrogen atmosphere. The activity at 80℃ in sulfuric acid electrolyte 3 containing 1 methanol is
It was 20A/g at 0.42V. The commercially available Pt Adams catalyst is 20 at 0.48V under the same conditions.
It had an activity of A/g.

(d) 前記の如き1枚の未充填ピログラフアイト被
覆炭素繊維ペーパーを前記の酸/重クロム酸塩
溶液で70℃で2時間処理し、洗浄し120℃にて
乾燥した。含浸は白金テトラミンヒドロキシド
の水溶液(5mgPt/ml)で実施した。0.1mg/cm2
の白金装入量が得られた。含浸材料を120℃で
乾燥し次に空気中で300℃で1時間活性化し
た。0.48Vにて60℃で20A/gの活性が得られ、
一方工業的に入手可能なPtアダムス触媒は同一
条件下で0.52Vにて20A/gの活性を示した。
(d) A sheet of unfilled pyrographite coated carbon fiber paper as described above was treated with the acid/dichromate solution described above at 70°C for 2 hours, washed and dried at 120°C. Impregnation was carried out with an aqueous solution of platinum tetramine hydroxide (5 mg Pt/ml). 0.1mg/ cm2
A platinum charge of . The impregnated material was dried at 120°C and then activated in air at 300°C for 1 hour. An activity of 20A/g was obtained at 60℃ at 0.48V,
On the other hand, the commercially available Pt Adams catalyst exhibited an activity of 20 A/g at 0.52 V under the same conditions.

(e) さらに1枚の未充填ピログラフアイト被覆炭
素繊維ペーパーを別個の前処理段階にかけない
で、これに白金ジアミンジニトリツトおよびル
テニウムニトレートの酸性水溶液(70重量%
Pt30重量%Ru5mg/ml)を含浸させて、0.45mg/
cm2の金属装入量を得た。含浸触媒を120℃で乾
燥し次に空気中で300℃で1時間活性化した。
60℃で0.4Vにて100A/gの活性が得られた。工
業的なPt/Ruアダムス触媒は同一条件下で
0.51Vにて100A/gの活性を有した。
(e) An additional piece of unfilled pyrographite-coated carbon fiber paper is treated with an acidic aqueous solution of platinum diamine dinitrate and ruthenium nitrate (70% by weight) without subjecting it to a separate pretreatment step.
Impregnated with Pt30wt% Ru5mg/ml), 0.45mg/
A metal charge of cm 2 was obtained. The impregnated catalyst was dried at 120°C and then activated in air at 300°C for 1 hour.
An activity of 100A/g was obtained at 60°C and 0.4V. The industrial Pt/Ru Adams catalyst under the same conditions
It had an activity of 100A/g at 0.51V.

(f) 第3の未充填ピログラフアイト被覆炭素繊維
ペーパーを、3硫酸電解質を用いて炭素棒陰
極に対して25℃にて電解槽内で陽極として電気
化学的酸化にかけ、30分間標準電流密度10m
A/電極表面cm2を用いた。酸化されたペーパー
を含浸せしめ、洗浄し、乾燥しそして前記の如
くに活性化して0.5mg/cm2の白金装入量が得られ
た。80℃にて0.42Vで10A/gの活性が得られ、
工業的なPtアダムス触媒は同一条件下で0.45V
にて10A/gの活性を示した。
(f) A third unfilled pyrographite-coated carbon fiber paper was subjected to electrochemical oxidation as an anode in an electrolytic cell at 25°C against a carbon rod cathode using a trisulfuric acid electrolyte at a standard current density for 30 min. 10m
A/electrode surface cm 2 was used. The oxidized paper was impregnated, washed, dried and activated as described above to obtain a platinum loading of 0.5 mg/cm 2 . An activity of 10A/g was obtained at 0.42V at 80℃,
Industrial Pt Adams catalyst is 0.45V under the same conditions
showed an activity of 10A/g.

(g) 第4の同じ未充填炭素繊維ペーパーを前記の
例H(c)と同様に酸化し次にアニオン性白金5
mg/ml含有の塩化白金酸(H2PtCl66H2O)の水
溶液を含浸させた。0.7mg/cm2の白金装入量が得
られた。含浸材料を120℃で乾燥し窒素雰囲気
中で400℃で活性化した。60℃にて0.57Vで20
A/gの活性が得られ、一方市販のPtアダムス
触媒は同一条件下で0.52Vで20A/gの活性を示
した。
(g) A fourth identical unfilled carbon fiber paper was oxidized as in Example H(c) above and then anionic platinum 5
It was impregnated with an aqueous solution of chloroplatinic acid (H 2 PtCl 6 6H 2 O) containing mg/ml. A platinum charge of 0.7 mg/cm 2 was obtained. The impregnated material was dried at 120°C and activated at 400°C in a nitrogen atmosphere. 20 at 0.57V at 60℃
An activity of A/g was obtained, while the commercially available Pt Adams catalyst showed an activity of 20 A/g at 0.52 V under the same conditions.

(h) 第5の未充填ピログラフアイト被覆炭素繊維
ペーパーを窒素雰囲気中で900℃で5時間加熱
し、同じ雰囲気中で室温に冷却した。次に基体
を室温にて酸素に暴露した。含浸はアニオン性
白金5mg/ml含有の塩化白金酸の水溶液を用い
て実施した。0.9mg/cm2の白金装入量が得られ
た。含浸ペーパーを次に120℃で乾燥し窒素雰
囲気中で400℃で1時間活性化した。60℃にて
0.50Vで20A/gの活性が得られた。
(h) A fifth unfilled pyrographite-coated carbon fiber paper was heated at 900° C. for 5 hours in a nitrogen atmosphere and cooled to room temperature in the same atmosphere. The substrate was then exposed to oxygen at room temperature. Impregnation was carried out using an aqueous solution of chloroplatinic acid containing 5 mg/ml of anionic platinum. A platinum charge of 0.9 mg/cm 2 was obtained. The impregnated paper was then dried at 120°C and activated for 1 hour at 400°C in a nitrogen atmosphere. At 60℃
An activity of 20A/g was obtained at 0.50V.

(i) 第6の同様の炭素繊維ペーパーを濃硝酸40
g、重クロム酸カリウム5gおよび水6gの溶
液で70℃で2時間処理し、次に洗浄し120℃で
乾燥した。この基体に次に白金ジアミンジニト
リツトPt(NH32(NO22およびルテニウムニ
トロシルニトレートRuNO(NO32の50%硝酸
溶液中の溶液(金属比:白金80重量%、ルテニ
ウム20重量%)を含浸させ、120℃で乾燥し次
に窒素雰囲気中で400℃にて活性化した。得ら
れた触媒の活性は、80℃にて0.36Vで50A/gで
あり、市販の類似組成の白金/ルテニウム触媒
は0.45Vにて50A/gの活性を示した。
(i) 6th similar carbon fiber paper with concentrated nitric acid 40%
g, 5 g of potassium dichromate and 6 g of water at 70°C for 2 hours, then washed and dried at 120°C. This substrate was then coated with a solution of platinum diamine dinitrate Pt(NH 3 ) 2 (NO 2 ) 2 and ruthenium nitrosyl nitrate RuNO(NO 3 ) 2 in 50% nitric acid solution (metal ratio: 80% by weight platinum, ruthenium 20% by weight), dried at 120°C and then activated at 400°C in a nitrogen atmosphere. The activity of the obtained catalyst was 50 A/g at 0.36 V at 80° C., and a commercially available platinum/ruthenium catalyst with a similar composition showed an activity of 50 A/g at 0.45 V.

(j) さらに1枚の炭素繊維ペーパーを0.2mmHgの
圧力および0.5Aの電流にて2時間イオン衝撃
処理した。次にこの基体に前記の白金/ルテニ
ウム溶液を含浸させ、乾燥および活性化した。
80℃にて0.36Vにて50A/gの活性が得られた。
(j) Another sheet of carbon fiber paper was subjected to ion bombardment treatment for 2 hours at a pressure of 0.2 mmHg and a current of 0.5 A. This substrate was then impregnated with the platinum/ruthenium solution described above, dried and activated.
An activity of 50 A/g was obtained at 0.36 V at 80°C.

(k) 市販の活性化炭素粉を濃硝酸で100℃にて48
時間処理し洗浄し乾燥した。この基体に次に白
金ジアミンジニトリツトの酸性水溶液を含浸さ
せて0.5mg/cm2の白金装入量を得、120℃で乾燥
し窒素雰囲気中で400℃にて活性化した。この
触媒は80℃にて0.55Vにて20A/gの活性を有
し、これは工業的に入手可能な触媒よりも劣る
ものであつた。
(k) Commercially available activated carbon powder was diluted with concentrated nitric acid at 100℃ for 48 hours.
It was treated for some time, washed and dried. The substrate was then impregnated with an acidic aqueous solution of platinum diamine dinitrate to obtain a platinum loading of 0.5 mg/cm 2 , dried at 120°C and activated at 400°C in a nitrogen atmosphere. This catalyst had an activity of 20 A/g at 0.55 V at 80°C, which was inferior to commercially available catalysts.

(l) 前記の如くに酸処理された基体に前記の白
金/ルテニウム溶液を含浸させ、120℃にて乾
燥し次に400℃にて窒素中で活性化した。80℃
における活性は0.40Vにて50A/gであつた。
(l) The acid treated substrate as described above was impregnated with the platinum/ruthenium solution described above, dried at 120°C and then activated in nitrogen at 400°C. 80℃
The activity was 50A/g at 0.40V.

(m) 1枚の未充填ピログラフアイト被覆炭素繊
維ペーパーを高温の200℃−トツプド(200℃−
topped)エチレン分解装置残渣中に浸漬し、
排出させて乾燥した。この充填材料を次に、窒
素下に300℃から徐々に温度上昇させアルゴン
雰囲気中で1500℃で0.5時間最終熱処理するこ
とを含む8時間温度プログラム化サイクルにて
炭化した。ペーパーを充填および炭化した後に
濃硝酸で80℃にて72時間処理し、次に洗浄し、
120℃にて乾燥した。含浸は白金ジアミンジニ
トリツトの酸性水溶液を用いて実施し1mg/cm2
の白金装入量を得た。次に触媒を120℃にて乾
燥し窒素雰囲気中で400℃にて活性化した。80
℃にて得られる活性は0.44Vにて20A/gであつ
た。
(m) A sheet of unfilled pyrographite-coated carbon fiber paper is heated to 200°C.
(topped) immersed in ethylene cracker residue;
Drained and dried. The fill material was then carbonized in an 8 hour temperature programmed cycle that included a gradual temperature increase from 300°C under nitrogen and a final heat treatment at 1500°C for 0.5 hour in an argon atmosphere. After filling and carbonizing the paper, it was treated with concentrated nitric acid at 80°C for 72 hours, then washed,
It was dried at 120°C. Impregnation was carried out using an acidic aqueous solution of platinum diamine dinitrate at 1 mg/cm 2
A platinum charge of . The catalyst was then dried at 120°C and activated at 400°C in a nitrogen atmosphere. 80
The activity obtained at °C was 20A/g at 0.44V.

(n) さらに1枚の未充填炭素繊維ペーパーに同
様にしてエチレン分解装置残渣を充填し次いで
炭化および酸化し、次にこれに白金ジアミンジ
ニトリツトおよびルテニウムニトロシルニトレ
ート含有の溶液を含浸させて1mg/cm2の金属装
入量を得、乾燥し活性化した。80℃における活
性は0.35Vにて50A/gであつた。
(n) An additional sheet of unfilled carbon fiber paper is similarly filled with ethylene cracker residue, then carbonized and oxidized, and then impregnated with a solution containing platinum diamine dinitrate and ruthenium nitrosyl nitrate. A metal charge of 1 mg/cm 2 was obtained, dried and activated. The activity at 80°C was 50A/g at 0.35V.

(o) さらに1枚の未充填炭素繊維ペーパーの表
面に30g/cm2の圧力でサラシ粉(300−400メツ
シユ)を押圧して充填した。生成物を200℃で
焼成し処理を繰返した。充填された炭素ペーパ
ーを窒素雰囲気下で1時間加熱することによつ
て黒鉛化し、次に硝酸、重クロム酸カリウム溶
液で70℃で3時間処理して酸性酸化物基を生ぜ
しめた。含浸は水性白金テトラミンヒドロキシ
ド〔Pt(NH34(OH)2〕を用いて実施して白金
0.1mg/cm2の金属装入量を得、次に触媒を120℃
で乾燥し空気中で300℃で活性化した。60℃に
て0.50Vで60A/gの活性が得られ、これは工業
的に入手可能な触媒の同一条件下の活性より優
れていた。
(o) Furthermore, the surface of a sheet of unfilled carbon fiber paper was pressed and filled with dry powder (300-400 mesh) at a pressure of 30 g/cm 2 . The product was calcined at 200°C and the process was repeated. The filled carbon paper was graphitized by heating under a nitrogen atmosphere for 1 hour and then treated with nitric acid, potassium dichromate solution at 70° C. for 3 hours to generate acidic oxide groups. Impregnation was carried out using aqueous platinum tetramine hydroxide [Pt(NH 3 ) 4 (OH) 2 ] to remove platinum.
Obtain a metal loading of 0.1mg/ cm2 and then heat the catalyst to 120℃
and activated at 300°C in air. An activity of 60 A/g at 0.50 V at 60° C. was obtained, which was superior to the activity of commercially available catalysts under the same conditions.

これらの例から次のことが示される。 These examples show that:

(i) 例H(a)、(b)および(c)を比較すると、多結晶質
グラフアイト含有担体材料に、酸性酸化物基の
存在下においておよび不在下において、触媒金
属のカチオン含有の溶液を含浸させる効果が示
される。(a)において酸性酸化物基は全く形成さ
れない。(c)においては含浸前に酸性酸化物基を
生ずるために基体の酸前処理が行なわれ、(b)に
おいては触媒金属溶液のための溶剤として用い
られた酸の作用によつて酸性酸化物基がその場
に生成する。
(i) Comparing Examples H(a), (b) and (c), a cation-containing solution of a catalytic metal is applied to a polycrystalline graphite-containing support material in the presence and absence of acidic oxide groups. The effect of impregnation is shown. In (a) no acidic oxide groups are formed. In (c) an acid pretreatment of the substrate is carried out to generate acidic oxide groups before impregnation, and in (b) acidic oxides are formed by the action of the acid used as a solvent for the catalytic metal solution. groups are generated on the spot.

(ii) 例H(d)はこの特徴を示す。何故ならこの場合
には基体が酸で前処理されて酸性酸化物基を生
ずるが、使用された含浸溶液自体は酸を含まな
いからである。
(ii) Example H(d) illustrates this feature. This is because in this case the substrate is pretreated with acid to produce acidic oxide groups, but the impregnating solution used itself is acid-free.

(iii) 例H(e)は本発明に従う混合金属触媒の製法を
示す。基体は酸で前処理されそして含浸のため
に用いられる溶液は酸性溶液である。得られた
触媒は非常に良好なものである。
(iii) Example H(e) shows the preparation of a mixed metal catalyst according to the invention. The substrate is pretreated with acid and the solution used for impregnation is an acidic solution. The obtained catalyst is of very good quality.

(iv) 例H(f)は電気化学的酸化を用いて酸性酸化物
基を生ずる代りの方法を示す。得られた触媒は
化学的酸化H(b)、(c)および(d)によつて得られた
ものに等しく、そして全てが、多結晶質グラフ
アイト基体に酸性酸化物基を生ぜしめずに製造
されたものよりも著しく優れている。
(iv) Example H(f) shows an alternative method of generating acidic oxide groups using electrochemical oxidation. The catalysts obtained are equivalent to those obtained by chemical oxidation H(b), (c) and (d), and all without producing acidic oxide groups on the polycrystalline graphite substrate. Significantly better than the manufactured one.

(v) 例H(g)は、多結晶質グラフアイト表面に酸性
酸化物基を形成するために酸化された多結晶質
グラフアイト含有担体に、本発明の構成要件と
は反対に触媒金属のアニオンを含む溶液を含浸
させることによつて触媒を製造しようとする試
みを示す。得られた触媒は、多結晶質グラフア
イトを含まない担体材料〔例H(f)、(k)および
(l)〕に含浸させて得られたものよりも劣る。
(v) Example H(g) is a method of applying catalytic metals to a polycrystalline graphite-containing support that has been oxidized to form acidic oxide groups on the surface of the polycrystalline graphite, contrary to the requirements of the present invention. Figure 2 shows an attempt to produce a catalyst by impregnating a solution containing anions. The catalysts obtained were prepared using polycrystalline graphite-free support materials [Examples H(f), (k) and
(l)] is inferior to that obtained by impregnation.

例H(h)は、多結晶質グラフアイト表面に塩基
性酸化物基を生ずる方法によつて酸化され次い
で同じアニオン含有溶液を含浸せしめられた同
様の担体材料を示す。本発明に従うこの方法
は、有用な触媒を生ずる。
Example H(h) shows a similar support material that has been oxidized in a manner that produces basic oxide groups on the polycrystalline graphite surface and then impregnated with the same anion-containing solution. This process according to the invention yields useful catalysts.

(vi) 例H(i)および(j)は本発明の方法に従う二元金
属電極の製法を示し、担体上に酸性酸化物基を
生じそしてこれらと所要の金属の両方のカチオ
ン含有の溶液とを反応させる2つの異なる方法
を示す。得られた触媒は、工業的に入手可能な
炭素−担持二元金属触媒よりも優れていた。
(vi) Examples H(i) and (j) illustrate the preparation of bimetallic electrodes according to the method of the invention, producing acidic oxide groups on the support and forming a solution containing cations of both these and the metal of interest. Two different ways of reacting are shown. The resulting catalyst was superior to commercially available carbon-supported bimetallic catalysts.

(vii) 例H(k)および(e)において担体材料として用い
られた活性炭素粉は多結晶質グラフアイトを含
まず引続き行なわれた濃硝酸を用いた酸化およ
び触媒金属のカチオン含有の溶液の含浸によつ
て、前処理なしに非多結晶質炭素含有の担体材
料に可溶性金属塩の溶液を含浸させ次に生成物
を乾燥および活性化することによつて得られた
工業的に入手可能な触能と等しい触媒が生ずる
のみであつた。
(vii) The activated carbon powder used as support material in Examples H(k) and (e) did not contain polycrystalline graphite and was subjected to subsequent oxidation with concentrated nitric acid and cation-containing solutions of the catalytic metals. By impregnation, the industrially available Only a catalyst with the same tactility was formed.

(viii) 例H(m)、(n)および(o)は、形成され
る触媒の有用性をもたらす多孔性担体のための
充填剤として多結晶質グラフアイトに変換可能
な材料の有用性を示す。斯くの如き充填は恐ら
く、形成される電極の物理的性質を変えるのに
必要であろう。これらの例は、実際に充填剤中
に多結晶質グラフアイトが存在することが得ら
れる触媒の活性を高める傾向を有することを示
す。
(viii) Examples H(m), (n) and (o) demonstrate the utility of materials convertible to polycrystalline graphite as fillers for porous supports resulting in the utility of catalysts formed. show. Such filling is likely necessary to change the physical properties of the electrode being formed. These examples demonstrate that the presence of polycrystalline graphite in the filler does indeed tend to enhance the activity of the resulting catalyst.

Claims (1)

【特許請求の範囲】 1 炭素含有担体材料を酸化処理にかけ、処理さ
れた担体材料を金属含有溶液と接触させそして乾
燥させることによる改良された担持触媒の製法に
おいて、担体材料が多結晶質グラフアイトの形の
少なくとも一部分の炭素を含有すること、表面酸
化によつて多結晶質グラフアイト上に酸性または
アルカリ性の酸化物基を生ぜしめること、酸性表
面酸化された担体材料に触媒金属のカチオンを含
有する溶液を含浸させまたはアルカリ性の表面酸
化された担体材料に触媒金属のアニオンを含有す
る溶液を含浸させてそれと塩を形成させること、
および含浸させた担体材料を乾燥および還元して
その表面上に触媒金属の層を形成させることを特
徴とする前記製法。 2 多結晶質グラフアイトが担体材料に構造的に
組込まれる、特許請求の範囲第1項記載の製法。 3 多結晶質グラフアイトが、担体材料を結合す
るバインダとして担体材料に組込まれる特許請求
の範囲第1項記載の製法。 4 多結晶質グラフアイトが充填剤として担体材
料に組込まれる、特許請求の範囲第1項記載の製
法。 5 多結晶質グラフアイトが表面層として担体材
料に組込まれる、特許請求の範囲第1項記載の製
法。 6 担体材料が炭素繊維を含む、特許請求の範囲
第1−5項のいずれかに記載の製法。 7 炭素繊維がマツトの形である、特許請求の範
囲第6項記載の製法。 8 炭素繊維がペーパーの形である、特許請求の
範囲第6項記載の製法。 9 充填剤がピツチである、特許請求の範囲第4
項記載の製法。 10 充填剤がエチレン分解装置残渣である、特
許請求の範囲第4項記載の製法。 11 充填剤がポリフエニレンである、特許請求
の範囲第4項記載の製法。 12 充填剤がポリビニリデンクロリドである、
特許請求の範囲第4項記載の製法。 13 充填剤がエポキシ樹脂組成物である、特許
請求の範囲第4項記載の製法。 14 表面酸化によつて多結晶質グラフアイト上
に酸性酸化物が生ずる、特許請求の範囲第1−1
3項のいずれかに記載の製法。 15 表面酸化によつて多結晶質グラフアイト上
に塩基性酸化物が生ずる、特許請求の範囲第1−
13項のいずれかに記載の製法。 16 表面酸化が電気化学的酸化である、特許請
求の範囲第14項記載の製法。 17 表面酸化が化学的酸化である、特許請求の
範囲第14項記載の製法。 18 表面酸化がイオン衝撃処理である、特許請
求の範囲第14項記載の製法。 19 窒素雰囲気中で多結晶質グラフアイト含有
担体材料を高められた温度に加熱し次にこれを室
温にて酸素に暴露することにより塩基性酸化物基
が形成される、特許請求の範囲第15項記載の製
法。 20 触媒金属が貴金属または斯くの如き金属の
組合せである、特許請求の範囲第1−19項のい
ずれかに記載の製法。 21 元素周期表第a族または第b族の金属
から選択された金属または貴金属または貴金属の
組合せと共に存在する、特許請求の範囲第20項
記載の製法。 22 含浸溶液が触媒金属のアニオンを含む、特
許請求の範囲第1−14項、第16−18項また
は第20−21項のいずれかに記載の製法。 23 含浸溶液が触媒金属のカチオンを含む、特
許請求の範囲第1−13項、第15項または第1
9−21項のいずれかに記載の製法。 24 含浸担体材料が空気中で200℃−500℃の温
度に加熱されて該材料上の触媒金属塩が分触せし
められる、特許請求の範囲第1−23項のいずれ
かに記載の製法。 25 温度が300℃である、特許請求の範囲第2
4項記載の製法。 26 含浸担体材料が窒素中で200℃−550℃の温
度に加熱されて該材料上の触媒金属塩が分解せし
められる、特許請求の範囲第1−23項のいずれ
かに記載の製法。 27 温度が400℃である、特許請求の範囲第2
6項記載の製法。 28 含浸担体材料が水素中で200℃−500℃の温
度に加熱されて該材料上の金属塩が分解せしめら
れる、特許請求の範囲第1−23項のいずれかに
記載の製法。 29 含浸担体材料が引続き水素中で400℃に加
熱されて該材料上の触媒金属が活性化される、特
許請求の範囲第24−28項のいずれかに記載の
製法。 30 含浸担体材料が引続き3モルの硫酸中で電
気化学的に処理されて該材料上の触媒金属が活性
化される、特許請求の範囲第24−28項のいず
れかに記載の製法。
Claims: 1. An improved method for preparing a supported catalyst by subjecting a carbon-containing support material to an oxidative treatment, contacting the treated support material with a metal-containing solution, and drying the support material, wherein the support material is polycrystalline graphite. producing acidic or alkaline oxide groups on the polycrystalline graphite by surface oxidation; containing cations of the catalytic metal in the acidic surface oxidized support material; impregnating the alkaline surface-oxidized support material with a solution containing an anion of the catalytic metal to form a salt therewith;
and drying and reducing the impregnated carrier material to form a layer of catalytic metal on its surface. 2. The method of claim 1, wherein the polycrystalline graphite is structurally incorporated into the carrier material. 3. Process according to claim 1, in which polycrystalline graphite is incorporated into the carrier material as a binder that binds the carrier material. 4. Process according to claim 1, in which polycrystalline graphite is incorporated into the carrier material as a filler. 5. Process according to claim 1, wherein the polycrystalline graphite is incorporated into the carrier material as a surface layer. 6. The manufacturing method according to any one of claims 1 to 5, wherein the carrier material contains carbon fibers. 7. The manufacturing method according to claim 6, wherein the carbon fiber is in the form of a pine. 8. The manufacturing method according to claim 6, wherein the carbon fiber is in the form of paper. 9 Claim 4, wherein the filler is pitch
Manufacturing method described in section. 10. The manufacturing method according to claim 4, wherein the filler is ethylene cracker residue. 11. The manufacturing method according to claim 4, wherein the filler is polyphenylene. 12 The filler is polyvinylidene chloride,
The manufacturing method according to claim 4. 13. The manufacturing method according to claim 4, wherein the filler is an epoxy resin composition. 14 Claim 1-1, in which acidic oxides are produced on polycrystalline graphite by surface oxidation
The manufacturing method described in any of Item 3. 15 Claim 1-- in which a basic oxide is formed on the polycrystalline graphite by surface oxidation.
The manufacturing method according to any one of Item 13. 16. The manufacturing method according to claim 14, wherein the surface oxidation is electrochemical oxidation. 17. The manufacturing method according to claim 14, wherein the surface oxidation is chemical oxidation. 18. The manufacturing method according to claim 14, wherein the surface oxidation is an ion bombardment treatment. 19. Claim 15, wherein the basic oxide groups are formed by heating the polycrystalline graphite-containing support material to an elevated temperature in a nitrogen atmosphere and then exposing it to oxygen at room temperature. Manufacturing method described in section. 20. A process according to any of claims 1-19, wherein the catalytic metal is a noble metal or a combination of such metals. 21. The method of claim 20, wherein the method is present with a metal or a noble metal or a combination of noble metals selected from metals of groups a or b of the periodic table of the elements. 22. The method of any of claims 1-14, 16-18, or 20-21, wherein the impregnating solution contains an anion of a catalytic metal. 23 Claims 1-13, 15 or 1, wherein the impregnating solution contains cations of the catalytic metal
The manufacturing method according to any one of Items 9-21. 24. A process according to any of claims 1 to 23, wherein the impregnated carrier material is heated in air to a temperature of 200°C to 500°C to partition the catalytic metal salts on the material. 25 Claim 2 in which the temperature is 300°C
The manufacturing method described in Section 4. 26. A process according to any of claims 1-23, wherein the impregnated support material is heated in nitrogen to a temperature of 200C to 550C to decompose the catalytic metal salt on the material. 27 Claim 2 where the temperature is 400°C
The manufacturing method described in Section 6. 28. A process according to any of claims 1-23, wherein the impregnated carrier material is heated in hydrogen to a temperature of 200C to 500C to decompose the metal salts on the material. 29. A process according to any of claims 24-28, wherein the impregnated support material is subsequently heated to 400<0>C in hydrogen to activate the catalytic metal on the material. 30. A process according to any of claims 24-28, wherein the impregnated support material is subsequently treated electrochemically in 3 molar sulfuric acid to activate the catalytic metal on the material.
JP51085697A 1975-07-22 1976-07-20 Manufacture of improved carried catalyst Granted JPS5213490A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB3060575A GB1547162A (en) 1975-07-22 1975-07-22 Supported catalysts for fuel cells
GB3877875 1975-09-22

Publications (2)

Publication Number Publication Date
JPS5213490A JPS5213490A (en) 1977-02-01
JPS6140459B2 true JPS6140459B2 (en) 1986-09-09

Family

ID=26260520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51085697A Granted JPS5213490A (en) 1975-07-22 1976-07-20 Manufacture of improved carried catalyst

Country Status (7)

Country Link
JP (1) JPS5213490A (en)
AU (1) AU502398B2 (en)
CA (1) CA1084477A (en)
DE (1) DE2632623A1 (en)
FR (1) FR2318680A1 (en)
NL (1) NL7608012A (en)
SE (1) SE7608262L (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025947A (en) * 2003-06-30 2005-01-27 Mitsubishi Heavy Ind Ltd Electrode catalyst and production method therefor, and solid polymer fuel cell using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028274A (en) * 1976-06-01 1977-06-07 United Technologies Corporation Support material for a noble metal catalyst and method for making the same
EP0865315A2 (en) * 1995-04-21 1998-09-23 M And K Patent Company, Inc. Enhanced adsorbent and room temperature catalyst particle and method of making and using therefor
US5955393A (en) * 1995-04-21 1999-09-21 Project Earth Industries, Inc. Enhanced adsorbent and room temperature catalyst particle and method of making therefor
FR2788168A1 (en) * 1998-12-30 2000-07-07 Messier Bugatti GAS DIFFUSION ELECTRODE SUPPORTING AN ELECTROCHEMICAL REACTION CATALYST
FR2809103A1 (en) * 2000-05-22 2001-11-23 Messier Bugatti Preformed component for use in e.g. absorber of ammonia cycle refrigeration circuit, has a reagent dispersed through a porous substrate formed from connected stacked thin layers of carbon fibers
JP2004022346A (en) * 2002-06-17 2004-01-22 Norio Tsubokawa Electrode catalyst for fuel cell, electrode for fuel cell and fuel cell using same
JP5008167B2 (en) * 2003-02-19 2012-08-22 国立大学法人 筑波大学 Catalyst loading method on fibrous carbon
JP2006172865A (en) * 2004-12-15 2006-06-29 Konica Minolta Holdings Inc Electrode for fuel cell, and fuel cell
ITMI20061947A1 (en) * 2006-10-11 2008-04-12 Industrie De Nora Spa CATHODE FOR ELECTROLYTIC PROCESSES
JP5121290B2 (en) * 2007-04-17 2013-01-16 新日鐵住金株式会社 Catalyst for polymer electrolyte fuel cell electrode
DE102007044171A1 (en) * 2007-09-15 2009-03-19 Bayer Materialscience Ag Process for the production of graphite electrodes for electrolytic processes
CN104115319B (en) * 2012-02-15 2017-05-03 凸版印刷株式会社 Carbon fiber composite, process for producing same, catalyst-carrying body and polymer electrolyte fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079494A (en) * 1973-11-16 1975-06-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3736265A (en) * 1970-11-06 1973-05-29 Texaco Inc Stabilized palladium-carbon catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5079494A (en) * 1973-11-16 1975-06-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005025947A (en) * 2003-06-30 2005-01-27 Mitsubishi Heavy Ind Ltd Electrode catalyst and production method therefor, and solid polymer fuel cell using same

Also Published As

Publication number Publication date
NL7608012A (en) 1977-01-25
SE7608262L (en) 1977-01-23
FR2318680A1 (en) 1977-02-18
DE2632623A1 (en) 1977-02-10
AU1605376A (en) 1978-01-26
FR2318680B1 (en) 1981-09-25
AU502398B2 (en) 1979-07-26
JPS5213490A (en) 1977-02-01
CA1084477A (en) 1980-08-26
DE2632623C2 (en) 1987-07-30

Similar Documents

Publication Publication Date Title
Xing et al. Fluorographdiyne: a metal‐free catalyst for applications in water reduction and oxidation
Ban et al. Efficient Co–N/PC@ CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal–organic frameworks
US3291753A (en) Catalyst preparation
Patil et al. Atomic layer deposition of NiOOH/Ni (OH) 2 on PIM‐1‐based N‐doped carbon nanofibers for electrochemical water splitting in alkaline medium
Pattabiraman Electrochemical investigations on carbon supported palladium catalysts
US7670582B2 (en) Mesoporous carbon and method of producing the same
Li et al. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction
US3212930A (en) Porous carbon electrode preparation
JPS6140459B2 (en)
Wang et al. Ammonia modification of high-surface-area activated carbons as metal-free electrocatalysts for oxygen reduction reaction
EP3445894A1 (en) Oxygen evolution electrocatalysts with carbon coated cobalt (ii, iii) oxide layers
WO2020115758A1 (en) Fe/Fe3C ENCAPSULATED N-CNT ELECTRODE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD OF PREPARATION THEREOF
WO2021262323A2 (en) Electrocatalysts and electrolyzers
US4614692A (en) Fuel cell electrode, process for producing the same and fuel cell using the same
Wang et al. In situ simultaneous synthesis of WC/graphitic carbon nanocomposite as a highly efficient catalyst support for DMFC
Nsabimana et al. Simple synthesis of nitrogen-doped porous carbon from Chinese steamed bread flour and its catalytic application for hydrogen evolution reaction
Shi et al. Spiral effect of helical carbon nanorods boosting electrocatalysis of oxygen reduction reaction
US3320093A (en) Method of forming a carbon containing fuel cell electrode
Rey-Raap et al. Carbons for fuel cell energy generation
Jang et al. Effect of Fe content on nonprecious cathodic catalysts derived from a metal–organic framework for direct ammonia fuel cells
US3198667A (en) Method of impregnating porous electrode with catalyst
CN114600283B (en) High stability catalysts for electrochemical cells
KR102266893B1 (en) Metal phosphide nanostructure, preparing method of the same, and electrode including the same
JIA et al. Oxidation of formic acid over palladium catalyst supported on activated carbon derived from polyaniline and modified lignosulfonate composite
Pushkarev et al. Heteroatom-Modified Carbon Materials and Their Use as Supports and Electrocatalysts in Proton Exchange Membrane Fuel Cells (A Review)