JP3095884B2 - Photoelectric separated smoke detector - Google Patents

Photoelectric separated smoke detector

Info

Publication number
JP3095884B2
JP3095884B2 JP04161726A JP16172692A JP3095884B2 JP 3095884 B2 JP3095884 B2 JP 3095884B2 JP 04161726 A JP04161726 A JP 04161726A JP 16172692 A JP16172692 A JP 16172692A JP 3095884 B2 JP3095884 B2 JP 3095884B2
Authority
JP
Japan
Prior art keywords
light
monitoring
fire
amount
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04161726A
Other languages
Japanese (ja)
Other versions
JPH05334582A (en
Inventor
哲也 長島
義人 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP04161726A priority Critical patent/JP3095884B2/en
Priority to US08/066,909 priority patent/US5502434A/en
Priority to GB9310899A priority patent/GB2267342B/en
Priority to CH01602/93A priority patent/CH689271A5/en
Publication of JPH05334582A publication Critical patent/JPH05334582A/en
Application granted granted Critical
Publication of JP3095884B2 publication Critical patent/JP3095884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、一定距離を介して配置
した反射板に対して光線を発光し、反射板からの反射光
を受光し、監視領域内に侵入した煙により受光レベルが
予め設定した閾値以下となった場合に感知出力を行う光
電式分離型煙感知器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-emitting device which emits a light beam to a reflector disposed at a predetermined distance, receives reflected light from the reflector, and sets a light receiving level in advance by smoke entering a monitoring area. The present invention relates to a photoelectric separation type smoke detector that performs a sensing output when a value falls below a set threshold value.

【0002】[0002]

【従来の技術】従来、このような光電式分離型煙感知器
としては、次のようなものが知られている。即ち、発光
部から発せられる光の光軸上に反射板を配置し、反射板
による反射光を受光部で受光し、煙の侵入によって光が
遮られることにより、受光部での受光レベルの変化を検
出し、その検出した受光レベルにより火災の判断を行う
ものである。
2. Description of the Related Art Heretofore, the following is known as such a photoelectric separation type smoke detector. In other words, a reflection plate is arranged on the optical axis of the light emitted from the light-emitting unit, and the light reflected by the reflection plate is received by the light-receiving unit, and the light is blocked by the invasion of smoke. Is detected, and a fire is judged based on the detected light receiving level.

【0003】図6(a)に従来の光電式分離型煙感知器
の概略構成を示す。図6(a)よりわかるように従来の
光電式分離型煙感知器においては、感知器本体100の
発光素子102の光は、レンズ104によってコリメー
トされ投光ビーム106となって監視空間を横切る。そ
して、再帰ミラー(反射板)101により180°方向
転換したビーム107は、受光レンズ105で集光さ
れ、受光素子103で受光される。ここで、監視空間に
火災により発生した煙110が存在すれば、ビームが減
光されて受光される。例えば、通常100mvの受光信号
が50mvまで低下することで、火災信号を発するように
構成されていた。
FIG. 6A shows a schematic configuration of a conventional photoelectric separation type smoke detector. As can be seen from FIG. 6 (a), in the conventional photoelectric separation type smoke detector, the light of the light emitting element 102 of the sensor main body 100 is collimated by the lens 104 and becomes a light projection beam 106 to traverse the monitoring space. Then, the beam 107 whose direction has been changed by 180 ° by the recursive mirror (reflection plate) 101 is condensed by the light receiving lens 105 and received by the light receiving element 103. Here, if smoke 110 generated by the fire exists in the monitoring space, the beam is dimmed and received. For example, a fire signal is generated when the light receiving signal of 100 mv is reduced to 50 mv.

【0004】このような火災感知器にあっては、例えば
図6(b)に示すように、通常監視状態で監視領域に煙
以外の遮蔽物121が存在する場合、受光部側での受光
出力が落込むことから誤って火災検出を行ってしまうこ
とがある。このような場合、係員が火災感知器を設置し
てある現場に出向き、遮蔽の存在を確認して遮蔽物を取
除くことにより通常の監視状態に戻るといった対処がな
されていた。また、このような光が遮蔽物で遮られるこ
とで無監視状態になるのを避けるために、受光信号が極
端に小さくなった場合にトラブル信号を発して注意を促
すようにしたものもある。
In such a fire detector, for example, as shown in FIG. 6 (b), when a shield 121 other than smoke exists in the monitoring area in the normal monitoring state, the light receiving output on the light receiving section side Erroneous fire detection may occur due to dropping In such a case, a countermeasure has been taken to go to the site where the fire detector is installed, confirm the existence of the shield, remove the shield, and return to the normal monitoring state. In addition, in order to avoid such a situation that the light is not monitored and thus the light is not monitored, a trouble signal is issued when the light receiving signal becomes extremely small to call attention.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記従来の
光電式分離型煙感知器では、反射率の低い遮蔽物121
による遮蔽の場合には遮蔽物によって受光部の受光レベ
ルが低下しトラブル検出動作を行えば、上記した方法で
とりあえず対処することができる。しかしながら、遮蔽
物の反射率が高い場合には、発光部からの光が遮蔽物1
20で反射して受光部に戻ることにより感知器では正常
と判断してしまう問題があった。その場合、遮蔽物12
0と反射板101までの範囲においては監視が不能とな
り失報してしまうという問題があった。
In the above-mentioned conventional photoelectric separation type smoke detector, the shield 121 having a low reflectance is used.
In the case of the shielding by the above method, if the light receiving level of the light receiving unit is reduced by the shielding object and the trouble detecting operation is performed, it is possible to cope with the above-described method. However, when the reflectance of the shield is high, the light from the light emitting unit is
There is a problem in that the light is reflected at 20 and returns to the light receiving section, so that the sensor determines that it is normal. In that case, the shield 12
In the range from 0 to the reflection plate 101, there is a problem that monitoring becomes impossible and a report is lost.

【0006】また、本感知器は建物の天井近くに設置さ
れる場合も多い。しかしながら、建物の天井付近には配
管やダクト類が配されていることが多く、これらがいわ
ゆる限界半径内にある場合には、その反射光による失報
を避けるため、本感知器が有効であるにもかかわらず設
置できないという問題もあった。
In many cases, the detector is installed near the ceiling of a building. However, pipes and ducts are often arranged near the ceiling of the building, and when these are within the so-called critical radius, this sensor is effective to avoid false alarms due to the reflected light Nevertheless, there was a problem that it could not be installed.

【0007】本発明は、上記課題を解決するためになさ
れたものであり、監視領域における煙以外の遮蔽物の存
在を的確に判別でき、かつたとえ遮蔽物がある場合であ
ってもその反射率にかかわらずその影響を相殺して反射
板からの真の反射光量を求めることにより正確な火災判
断を行うことのできる光電式分離型煙感知器を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and it is possible to accurately determine the presence of a shield other than smoke in a monitoring area, and to reflect the reflectance even if a shield exists. Regardless of the above, an object of the present invention is to provide a photoelectric separation type smoke detector capable of making an accurate fire judgment by calculating the true reflected light amount from the reflection plate by canceling the influence.

【0008】[0008]

【課題を解決するための手段】上記従来の課題を解決す
るため請求項1の本発明は、一定距離を介して配置した
反射板に対して光線を発光する火災監視用発光部と、該
反射板からの反射光を受光する受光部と、該受光部の受
光出力が予め設定した閾値以下の場合に感知出力を行う
判断部を備えてなる光電式分離型煙感知器において、上
記火災監視用発光部と反射板、受光部とを結ぶ光軸より
外れた位置に上記火災監視用発光部と所定距離をおいて
配置した遮蔽物監視用発光部を備え、上記火災監視用発
光部と該遮蔽物監視用発光部とを交互に間欠点灯させ、
上記火災監視用発光部点灯時における受光量と上記遮蔽
物監視用発光部点灯時における受光量及び、予め定めら
れた遮蔽物が存在しない場合における上記火災監視用発
光部点灯時と遮蔽物監視用発光部点灯時の受光量の比よ
り、遮蔽物体による反射光量を求め、該反射光量と火災
監視用発光部点灯時における受光量の差と上記閾値とを
比較することにより火災判断を行う構成としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, a first aspect of the present invention is to provide a fire monitoring light emitting unit which emits a light beam to a reflector disposed at a fixed distance, In the photoelectric separation type smoke sensor comprising a light receiving unit for receiving light reflected from the plate and a determination unit for performing a sensing output when the light receiving output of the light receiving unit is equal to or less than a predetermined threshold value, A fire monitoring light emitting unit disposed at a predetermined distance from the fire monitoring light emitting unit at a position off the optical axis connecting the light emitting unit, the reflector, and the light receiving unit; Intermittently turn on and off the object monitoring light emitting unit,
The amount of light received when the fire monitoring light emitting unit is lit and the amount of light received when the shield monitoring light emitting unit is lit, and when the fire monitoring light emitting unit is illuminated and when a predetermined obstacle is not present From the ratio of the amount of light received when the light emitting part is lit, the amount of light reflected by the shielding object is determined, and the difference between the amount of reflected light and the amount of light received when the light emitting part for fire monitoring is lit is compared with the threshold value to make a fire judgment. I have.

【0009】また、請求項2の本発明は一定距離を介し
て配置した反射板に対して光線を発光する火災監視用発
光部と、該反射板からの反射光を受光する火災監視用受
光部と、該受光部の受光出力が予め設定した閾値以下の
場合に感知出力を行う判断部を備えてなる光電式分離型
煙感知器において、上記発光部と反射板、火災監視用受
光部とを結ぶ光軸より外れた位置に上記火災監視用受光
部と所定距離をおいて配置した遮蔽物監視用受光部を有
し、上記発光部を間欠点灯させ、上記火災監視用受光部
と該遮蔽物監視用受光部とにより交互に受光し、上記火
災監視用受光部受光時における受光量と上記遮蔽物監視
用受光部受光時における受光量及び、予め定められた遮
蔽物が存在しない場合における上記火災監視用受光部受
光時と遮蔽物監視用受光部受光時の受光量の比より、遮
蔽物体による反射光量を求め、該反射光量と火災監視用
受光部受光時における受光量の差と上記閾値とを比較す
ることにより火災判断を行う構成としている。
According to a second aspect of the present invention, there is provided a fire monitoring light emitting unit for emitting a light beam to a reflector disposed at a predetermined distance, and a fire monitoring light receiving unit for receiving light reflected from the reflector. And a photoelectric separation type smoke sensor comprising a determination unit that performs a sensing output when the light receiving output of the light receiving unit is equal to or less than a preset threshold, wherein the light emitting unit and the reflector, the fire monitoring light receiving unit A fire monitoring light receiving unit disposed at a predetermined distance from the fire monitoring light receiving unit at a position deviated from the optical axis to be connected, intermittently turning on the light emitting unit, the fire monitoring light receiving unit and the shield The light receiving unit alternately receives light by the monitoring light receiving unit, the light receiving amount when the fire monitoring light receiving unit receives the light, the light receiving amount when the shield monitoring light receiving unit receives the light, and the fire when the predetermined shielding object does not exist. Light receiving unit for monitoring and monitoring of shielding From the ratio of the amount of light received by the light receiving unit, the amount of light reflected by the shielding object is determined, and the difference between the amount of reflected light and the amount of light received by the fire monitoring light receiving unit is compared with the above threshold value to make a fire judgment. I have.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を用いて
説明する。図1は本発明の光電式分離型煙感知器の第1
の実施例の全体構成を示す斜視図である。本光電式分離
型煙感知器は、図1に示すように感知器本体1から一定
距離を介して配置した反射板2に対して光線を発し、そ
の反射板2からの反射光を受光することにより、受光出
力が予め設定した閾値以下の場合に火災の感知出力を行
うものである。本実施例は特に、反射板2に用いられる
再帰ミラーの性質を利用して、発光部を所定間隔をおい
て2個設け、それぞれの反射板2への入射角度の違いに
基づく反射光の受光部における受光量の相違をもとに反
射板2による真の反射光量を求め遮蔽物による影響を取
除くものである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a photoelectric separation type smoke detector according to the present invention.
FIG. 3 is a perspective view showing the overall configuration of the example. As shown in FIG. 1, the photoelectric separation type smoke detector emits a light beam to a reflector 2 disposed at a certain distance from the sensor body 1 and receives reflected light from the reflector 2. Accordingly, when the light reception output is equal to or less than a preset threshold, a fire detection output is performed. In this embodiment, two light-emitting portions are provided at predetermined intervals by utilizing the property of a retroreflective mirror used for the reflection plate 2, and the reflected light is received based on the difference in the angle of incidence on each reflection plate 2. The true reflected light amount by the reflection plate 2 is obtained based on the difference in the amount of received light in the sections, and the influence of the shield is removed.

【0011】最初に感知器本体1の構成から説明する。
図2は、感知器本体1の構成を示す構成ブロック図であ
る。感知器本体1は、大きく発光部4,受光部5及び判
断部6とに大別される。先ず、発光部4は、近赤外光を
発する発光ダイオード等の火災監視用発光素子10及び
遮蔽物監視用発光素子30と、火災監視用発光素子10
及び遮蔽物監視用発光素子30の発光を切換える発光切
換制御部31、これらの切換えを制御する切換制御部3
2、発光切換制御部31を介して火災監視用発光素子1
0及び遮蔽物監視用発光素子30を駆動する発光駆動部
11、発光と受光動作の制御を行う受発光制御部12、
火災監視用発光素子10及び遮蔽物監視用発光素子30
の切換時間や発光周期等を設定するタイマ33とから構
成されている。なお、火災監視用発光素子10と遮蔽物
監視用発光素子30は反射板2とは同距離の平面上に所
定距離(例えば300mm)をおいて配置されている。
First, the configuration of the sensor body 1 will be described.
FIG. 2 is a configuration block diagram illustrating the configuration of the sensor main body 1. The sensor body 1 is roughly divided into a light emitting unit 4, a light receiving unit 5, and a determination unit 6. First, the light emitting unit 4 includes a fire monitoring light emitting element 10 such as a light emitting diode emitting near-infrared light, a shielding object monitoring light emitting element 30, and a fire monitoring light emitting element 10.
And a light emission switching control unit 31 for switching the light emission of the shielding object monitoring light emitting element 30, and a switching control unit 3 for controlling these switching.
2. Light emitting element 1 for fire monitoring via light emission switching control unit 31
0, a light emission drive unit 11 that drives the shield monitoring light emitting element 30, a light emission / reception control unit 12 that controls light emission and light reception operations,
Fire monitoring light emitting element 10 and shield monitoring light emitting element 30
And a timer 33 for setting a switching time, a light emission cycle, and the like. The fire monitoring light emitting element 10 and the shield monitoring light emitting element 30 are arranged at a predetermined distance (for example, 300 mm) on the same plane as the reflector 2.

【0012】次に、受光部5は、反射板2で反射した光
を受光する受光素子13と、受光素子13からの出力を
増幅する増幅回路15、増幅回路15からのアナログ信
号をデジタル信号の受光データに変換するA/D変換部
16とから構成されている。ここで、受光素子13は火
災監視用発光素子10の近傍に配され(例えば20m
m)、遮蔽物監視用発光素子30とは離れて配置され
る。
Next, the light receiving section 5 includes a light receiving element 13 for receiving the light reflected by the reflector 2, an amplification circuit 15 for amplifying an output from the light reception element 13, and an analog signal from the amplification circuit 15 for converting a digital signal into a digital signal. An A / D converter 16 converts the received light data. Here, the light receiving element 13 is disposed near the fire monitoring light emitting element 10 (for example, 20 m).
m), it is arranged away from the shielding object monitoring light emitting element 30.

【0013】また、判断部6は、受光素子13の出力を
火災監視用発光素子10からの光の受光か遮蔽物監視用
発光素子30からの光の受光かによりそのデータ格納場
所を切換える切換スイッチ34と、火災監視用発光素子
10からの光の受光データを蓄える受光データ記憶部1
7、遮蔽物監視用発光部30からの光の受光データを蓄
える受光データ記憶部37、両受光データを用いて遮蔽
物からの反射光量を演算する演算部39、予め火災感知
を行う閾値を設定する閾値設定部18、該閾値に基づい
て火災判断を行う火災判断部19とから構成されてい
る。なお、切換スイッチ34による受光データの切換え
は、切換制御部32が火災監視用発光素子10と遮蔽物
監視用発光素子30の発光を切換えるときに同時に行わ
れる。
The judging section 6 switches a data storage location of the output of the light receiving element 13 depending on whether the light from the fire monitoring light emitting element 10 or the light from the shield monitoring light emitting element 30 is received. 34, and a light reception data storage unit 1 for storing light reception data of light from the fire monitoring light emitting element 10.
7. A light reception data storage unit 37 for storing light reception data of light from the shielding object monitoring light emitting unit 30, a calculation unit 39 for calculating the amount of reflected light from the shielding object using both the reception light data, and setting a threshold value for fire detection in advance. And a fire determining unit 19 for making a fire determination based on the threshold. The switching of the light reception data by the changeover switch 34 is performed simultaneously when the switching control unit 32 switches the light emission of the fire monitoring light emitting element 10 and the light emission of the shield monitoring light emitting element 30.

【0014】一方、本実施例においては火災監視用発光
素子10及び遮蔽物監視用発光素子30の前面には、光
をコリメートするコリメートレンズ51が設けられ、受
光素子13の前面には、反射板2からの反射光を集光す
る集光レンズ52が設けられている。
On the other hand, in the present embodiment, a collimating lens 51 for collimating light is provided on the front surface of the fire monitoring light emitting element 10 and the shielding object monitoring light emitting element 30, and a reflecting plate is provided on the front surface of the light receiving element 13. A condensing lens 52 for condensing the reflected light from 2 is provided.

【0015】また、反射板2は、いわゆる再帰性ミラー
を使用し、火災監視用発光素子10から発せられた光
は、コリメートレンズ51によりコリメートされ反射板
2によって180°方向を変え感知器本体1の受光部5
へと戻ってくるが、遮蔽物監視用発光素子30から発せ
られた光は、反射板2への入射角の相違から直接受光部
5へは戻らない。
The reflector 2 uses a so-called retro-reflective mirror, and the light emitted from the fire monitoring light emitting element 10 is collimated by the collimating lens 51 and changes its direction by 180 ° by the reflector 2 so as to change the direction of the sensor body 1. Light receiving unit 5
However, the light emitted from the shielding object monitoring light emitting element 30 does not directly return to the light receiving unit 5 due to a difference in the incident angle to the reflector 2.

【0016】次に、上記のように構成される第1の実施
例の動作について説明する。本実施例においては、火災
監視用発光素子10と、遮蔽物監視用発光素子30は所
定周期をもって交互に間欠点灯される。
Next, the operation of the first embodiment configured as described above will be described. In this embodiment, the fire monitoring light emitting element 10 and the shield monitoring light emitting element 30 are intermittently turned on alternately at a predetermined cycle.

【0017】先述のように本実施例においては火災監視
用発光素子10から発せられた光のみが反射板2から直
接受光素子13まで戻り、遮蔽物監視用発光素子30か
ら発せられた光はほとんど受光素子13には受光されな
い。この関係を示したものが図3である。即ち、再帰ミ
ラーはその反射光がほぼ入射光の方向へ反射されるとい
う性質を有する。従って、火災監視用発光素子10から
発せられた光は図3(a)に示すようにほぼ正面に反射
され、入射光と角度θ1 (例えば、監視距離50mで火
災監視用発光素子10と受光素子13との間隔が20mm
であれば0.02°)の方向に配された受光素子13に
は直接反射光が届くことになる。
As described above, in this embodiment, only the light emitted from the fire monitoring light emitting element 10 returns directly from the reflection plate 2 to the light receiving element 13, and almost all the light emitted from the shielding object monitoring light emitting element 30 is emitted. The light receiving element 13 does not receive light. FIG. 3 shows this relationship. That is, the retro-reflective mirror has a property that the reflected light is substantially reflected in the direction of the incident light. Therefore, the light emitted from the fire monitoring light emitting element 10 is substantially reflected to the front as shown in FIG. 3A, and the incident light is reflected by the fire monitoring light emitting element 10 at an angle θ 1 (for example, at a monitoring distance of 50 m). 20mm distance from element 13
In this case, the reflected light directly reaches the light receiving element 13 arranged in the direction of 0.02 °).

【0018】一方、遮蔽物監視用発光素子30から発せ
られた光は、当該素子が火災監視用発光素子10と反射
板2及び受光素子13を結ぶ光軸からずれた位置に配さ
れているため、図3(b)に示すように反射板2に対し
て斜めに入射し、その方向に反射されるため、その光軸
と角度θ2 (先の例によると0.37°)の方向に配さ
れた受光素子13には反射光はごくわずかしか届かない
ことになる。
On the other hand, the light emitted from the shielding object monitoring light emitting element 30 is located at a position shifted from the optical axis connecting the fire monitoring light emitting element 10 with the reflector 2 and the light receiving element 13. As shown in FIG. 3B, the light obliquely enters the reflecting plate 2 and is reflected in that direction, so that it is directed in the direction of the angle θ 2 (0.37 ° in the above example) with respect to the optical axis. Very little reflected light reaches the arranged light receiving element 13.

【0019】このように通常時(煙も遮蔽物もない状
態)においては、受光素子13には主として火災監視用
発光素子10から発せられた光の反射光のみが入射する
ことになる。この発光素子10と受光素子13間の距離
(レンズ間の距離)と受光素子13における受光量を示
す実験データを図4に示す。図4からわかるように発光
素子10と受光素子13間の距離と受光量の関係はほぼ
一次式の関係にある。また、この両発光素子10,30
による受光量の比は監視距離の長さによっても変わり、
これは次の表1に示すような関係となる。従って、感知
器本体1を設置する際に両者の受光量の比をあらかじめ
定めて例えば10:1となるように監視距離の長さを考
慮して決定する。
As described above, in normal times (when there is no smoke and no obstruction), only the reflected light of the light mainly emitted from the fire monitoring light emitting element 10 enters the light receiving element 13. FIG. 4 shows experimental data indicating the distance between the light emitting element 10 and the light receiving element 13 (distance between lenses) and the amount of light received by the light receiving element 13. As can be seen from FIG. 4, the relationship between the distance between the light emitting element 10 and the light receiving element 13 and the amount of received light is substantially linear. In addition, the two light emitting elements 10, 30
The ratio of the amount of received light depends on the length of the monitoring distance,
This has the relationship shown in Table 1 below. Therefore, when the sensor body 1 is installed, the ratio of the amount of received light between the two is determined in advance and determined in consideration of the length of the monitoring distance so as to be, for example, 10: 1.

【表1】 (火災監視用発光素子、受光素子間:20mm) (遮蔽物監視用発光素子、受光素子間:300mm)[Table 1] (Between light emitting element for fire monitoring and light receiving element: 20 mm) (Between light emitting element for shielding object and light receiving element: 300 mm)

【0020】次に、監視領域内に図1に示すような遮蔽
物9が存在する場合を考える。この場合、遮蔽物9へは
両発光素子10,30から発せられた光はこの遮蔽物9
に照射されかつ反射される。そして、その反射光は反射
板2からの反射光と共に受光素子13に入射する。即
ち、正しい火災判断を行うためには、この遮蔽物からの
反射光を受光量から差し引いて判断を行う必要がある。
Next, consider a case where a shield 9 as shown in FIG. 1 exists in the monitoring area. In this case, the light emitted from both light emitting elements 10 and 30 is applied to the shield 9.
Illuminated and reflected. Then, the reflected light enters the light receiving element 13 together with the reflected light from the reflection plate 2. That is, in order to make a correct fire judgment, it is necessary to make a judgment by subtracting the light reflected from the shield from the received light amount.

【0021】そこで、本発明においては次のようにして
遮蔽物からの反射光量を決定する。まず、前提として遮
蔽物が存在しない場合において火災監視用発光素子10
が点灯したときの受光素子13の受光量χ1 と、同じく
遮蔽物監視用発光素子30が発光したときの受光量χ2
との比を設定する。これは先述のように両発光素子1
0,30と受光素子13との距離により定まる値であ
り、本実施例においては仮に監視距離50mと想定し、
χ1 :χ2 =10:1とする。
Therefore, in the present invention, the amount of reflected light from the shield is determined as follows. First, it is assumed that the fire monitoring light emitting element 10 is used when no shield exists.
Received light amount chi 2 when but a light receiving amount chi 1 of the light receiving element 13 when lit, which also shield the monitoring light emitting element 30 emits light
Set the ratio with This is because the two light emitting elements 1
This value is determined by the distance between 0, 30 and the light receiving element 13. In this embodiment, it is assumed that the monitoring distance is 50 m.
χ 1 : χ 2 = 10: 1.

【0022】次に、遮蔽物が存在する場合における各発
光素子10,30点灯時の受光素子13の受光量をそれ
ぞれA1 ,A2 とすると、このA1 ,A2 は上記受光量
χ1,χ2 に遮蔽物による反射光の受光量を加えた値と
なる。即ち、各発光素子10,30の点灯による遮蔽物
からの反射光量をB1 ,B2 とすると、A1 ,A2 は次
のように表わすことができる。
Next, assuming that the light receiving amounts of the light receiving elements 13 when the light emitting elements 10 and 30 are turned on in the presence of the shielding object are A 1 and A 2 , respectively, A 1 and A 2 are the above light receiving amounts χ 1 , a value obtained by adding the amount of received reflected light by the obstacle to the chi 2. That is, assuming that the amounts of light reflected from the shield by the lighting of the light emitting elements 10 and 30 are B 1 and B 2 , A 1 and A 2 can be expressed as follows.

【数1】A1 =B1 +χ1 ・X[Equation 1] A 1 = B 1 + χ 1 · X

【数2】A2 =B2 +χ2 ・X[Equation 2] A 2 = B 2 + χ 2 · X

【0023】ここで、遮蔽物からの反射光は散乱光とな
り、その光量に対し各発光素子10,30からの距離の
影響は少なく、B1 =B2 =Bとすることができる。従
って、実測されたA1 ,A2 のデータから数1,数2の
式を連立して解くことによってBを求めることができ
る。
Here, the reflected light from the shield becomes scattered light, and the amount of the reflected light is less affected by the distance from each of the light emitting elements 10 and 30, so that B 1 = B 2 = B. Therefore, B can be obtained by simultaneously solving equations 1 and 2 from the actually measured data A 1 and A 2 .

【0024】本実施例においては上記の演算は演算部3
9が行う。即ち、受光データ記憶部17,37からデー
タを読み込み、これに予め定められたχ1 とχ2 の比を
適用することによって遮蔽物からの反射光量(B)を求
める。このように遮蔽物からの反射光量が求まれば、火
災監視用発光素子10の点灯時における受光量と反射光
量との差をとることによって反射板2からの真の反射光
量を得ることができる。そして、火災判断部19におい
てその値と閾値設定部18に予め設定された閾値とを比
較することにより火災判断が行われることになる。
In this embodiment, the above operation is performed by the operation unit 3
9 does. That is, read data from the receiving data storage unit 17 and 37, determine the amount of reflected light (B) from shield by applying a predetermined chi 1 and chi 2 ratio thereto. If the amount of light reflected from the shield is obtained in this way, the difference between the amount of light received when the fire monitoring light emitting element 10 is turned on and the amount of reflected light can be obtained to obtain the true amount of reflected light from the reflector 2. . Then, the fire judgment is made by comparing the value in the fire judgment unit 19 with a threshold value preset in the threshold value setting unit 18.

【0025】なお、これらの一連の演算は、各発光素子
10,30が間欠点灯するたび毎に実施される。即ち、
直前のデータとの比較を行うことにより火災判断を行
う。従って、遮蔽物が新たに増えた場合や、遮蔽物によ
る反射光量が変化した場合でも正確な火災判断がなし得
る。
These series of calculations are performed every time each of the light emitting elements 10 and 30 is turned on and off intermittently. That is,
A fire judgment is made by comparing with the immediately preceding data. Accordingly, accurate fire determination can be made even when the number of shields newly increases or the amount of light reflected by the shields changes.

【0026】図5は、本発明に係る第2の実施例の感知
器本体1を示す斜視図である。本実施例の場合には、先
の実施例においては発光素子が2個設けられていたのに
対し、受光素子を2個設けた構成となっている。本実施
例の感知器本体1の構成は、図2に示す第1の実施例と
ほぼ同様の構成であり、第1の実施例とは受光素子13
に代りに受光素子が火災監視用受光素子53及び遮蔽物
監視用受光素子54の2個設けられている点、発光素子
は1個(発光素子50)のみである点が異なる。また、
この場合切換制御部32は、いずれの受光素子によって
受光するか、そして受光データをいずれのデータ記憶部
に入力するかを切換えることになる。
FIG. 5 is a perspective view showing a sensor main body 1 according to a second embodiment of the present invention. In the case of the present embodiment, two light-emitting elements are provided in the previous embodiment, whereas two light-receiving elements are provided. The configuration of the sensor main body 1 of the present embodiment is almost the same as that of the first embodiment shown in FIG.
Instead, two light receiving elements are provided: a fire monitoring light receiving element 53 and a shielding object monitoring light receiving element 54, and only one light emitting element (light emitting element 50) is provided. Also,
In this case, the switching control unit 32 switches which of the light receiving elements receives light and which of the data storage units receives the received light data.

【0027】本実施例においては、発光素子50は間欠
点灯する。そして、その点灯に同期して、その反射光を
受光する受光素子が切換えられる。この場合、火災監視
用受光素子53には第1の実施例において述べた原理に
より反射板2からの反射光が直接に入射する。また、遮
蔽物監視用受光素子54には、反射板2からの反射光は
ほとんど入射しない。そして、その入射光量の比は第1
の実施例と同様に予め定めた値となるように両受光素子
53,54と発光素子50との距離は設定されている。
In this embodiment, the light emitting element 50 is intermittently lit. Then, in synchronization with the lighting, the light receiving element that receives the reflected light is switched. In this case, the reflected light from the reflector 2 is directly incident on the fire monitoring light receiving element 53 according to the principle described in the first embodiment. Also, the reflected light from the reflector 2 hardly enters the light receiving element 54 for monitoring the shield. And the ratio of the incident light amount is the first
The distance between the light receiving elements 53 and 54 and the light emitting element 50 is set so as to be a predetermined value as in the embodiment.

【0028】従って、本実施例においても第1の実施例
と同様に、得られたデータに基づき演算部39において
連立方程式を解くことにより遮蔽物による反射光量を求
め、これより真の反射光量を決定し、火災判断部19に
おいて閾値と比較することにより火災判断を行う。
Therefore, in this embodiment, similarly to the first embodiment, the arithmetic unit 39 solves the simultaneous equations based on the obtained data to obtain the amount of light reflected by the shield, and the true amount of reflected light is calculated from this. The fire is determined by making a decision and comparing it with a threshold value in the fire determination unit 19.

【0029】[0029]

【発明の効果】以上説明したように請求項1の本発明に
よれば受光部に近接した火災監視用発光部を配す一方、
受光部とは離れた位置に遮蔽物監視用発光部を配し、こ
れらを交互に間欠点灯させてその受光量に基づき所定演
算を行って遮蔽物による反射光の量を求めることにより
受光量に対する遮蔽物の影響を相殺することができ、反
射板からの真の反射光量を求めることができるという効
果がある。これにより、遮蔽物が監視領域内にある場合
であっても正確な火災判断を行うことができる。
As described above, according to the first aspect of the present invention, while the fire monitoring light emitting unit is arranged close to the light receiving unit,
Dispose the shielding object monitoring light emitting units at a position distant from the light receiving unit, alternately intermittently illuminate them, perform a predetermined calculation based on the received light amount, and obtain the amount of light reflected by the shielding object to obtain the amount of reflected light. There is an effect that the influence of the shield can be canceled and the true reflected light amount from the reflector can be obtained. Thus, accurate fire determination can be performed even when the shield is in the monitoring area.

【0030】また、請求項2の本発明にあっては、発光
部に近接した火災監視用受光部を配す一方、受光部とは
離れた位置に遮蔽物監視用受光部を配し、これらにより
交互に反射光を受光し、その受光量に基づき所定演算を
行って遮蔽物による反射光の量を求めることにより受光
量に対する遮蔽物の影響を相殺することができ、反射板
からの真の反射光量を求めることができるという効果が
ある。これにより、遮蔽物が監視領域内にある場合であ
っても正確な火災判断を行うことができる。
According to the second aspect of the present invention, a fire monitoring light receiving unit is provided in proximity to the light emitting unit, and a shield monitoring light receiving unit is provided at a position distant from the light receiving unit. The reflected light is received alternately, and a predetermined calculation is performed based on the received light amount to obtain the amount of the reflected light by the shield. There is an effect that the amount of reflected light can be obtained. Thus, accurate fire determination can be performed even when the shield is in the monitoring area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例による光電式分離型煙感
知器の全体構成を示す斜視図である。
FIG. 1 is a perspective view showing an overall configuration of a photoelectric separation type smoke detector according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の光電式分離型煙感知器
の感知器本体の構成ブロック図である。
FIG. 2 is a configuration block diagram of a sensor main body of the photoelectric separation type smoke sensor according to the first embodiment of the present invention.

【図3】再帰ミラーを用いた反射板での光線の反射の様
子を示す説明図である。
FIG. 3 is an explanatory diagram showing how light rays are reflected by a reflector using a recursive mirror;

【図4】発光素子と受光素子との間の距離と受光量の関
係を示すグラフである。
FIG. 4 is a graph showing a relationship between a distance between a light emitting element and a light receiving element and an amount of received light.

【図5】本発明の第2の実施例による光電式分離型煙感
知器の感知器本体側の構成を示す斜視図である。
FIG. 5 is a perspective view showing a configuration of a photoelectric separation type smoke detector according to a second embodiment of the present invention on a sensor main body side.

【図6】従来の光電式分離型煙感知器の例を示す説明図
である。
FIG. 6 is an explanatory diagram showing an example of a conventional photoelectric separation type smoke detector.

【符号の説明】[Explanation of symbols]

1 感知器本体 2 反射板 4 発光部 5 受光部 6 判断部 9 遮蔽物 10 火災監視用発光素子 13 受光素子 30 遮蔽物監視用発光素子 39 演算部 50 発光素子 53 火災監視用受光素子 54 遮蔽物監視用受光素子 DESCRIPTION OF SYMBOLS 1 Sensor main body 2 Reflector 4 Light emitting part 5 Light receiving part 6 Judgment part 9 Shielding object 10 Fire monitoring light emitting element 13 Light receiving element 30 Shielding object monitoring light emitting element 39 Operation part 50 Light emitting element 53 Fire monitoring light receiving element 54 Shielding object Monitoring light receiving element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−184041(JP,A) 特開 昭59−91340(JP,A) 実開 昭63−143996(JP,U) 実開 昭57−99290(JP,U) (58)調査した分野(Int.Cl.7,DB名) G08B 17/103 G01N 21/59 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-184041 (JP, A) JP-A-59-91340 (JP, A) Fully open 63-143996 (JP, U) Really open Showa 57- 99290 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) G08B 17/103 G01N 21/59

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一定距離を介して配置した反射板に対し
て光線を発光する火災監視用発光部と、該反射板からの
反射光を受光する受光部と、該受光部の受光出力が予め
設定した閾値以下の場合に感知出力を行う判断部を備え
てなる光電式分離型煙感知器において、 上記火災監視用発光部と反射板、受光部とを結ぶ光軸よ
り外れた位置に上記火災監視用発光部と所定距離をおい
て配置した遮蔽物監視用発光部を備え、上記火災監視用
発光部と該遮蔽物監視用発光部とを交互に間欠点灯さ
せ、上記火災監視用発光部点灯時における受光量と上記
遮蔽物監視用発光部点灯時における受光量及び、予め定
められた遮蔽物が存在しない場合における上記火災監視
用発光部点灯時と遮蔽物監視用発光部点灯時の受光量の
比より、遮蔽物体による反射光量を求め、該反射光量と
火災監視用発光部点灯時における受光量の差と上記閾値
とを比較することにより火災判断を行うことを特徴とす
る光電式分離型煙感知器。
1. A fire monitoring light-emitting unit that emits a light beam to a reflector disposed at a predetermined distance, a light-receiving unit that receives light reflected from the reflector, and a light-receiving output of the light-receiving unit is set in advance. In a photoelectric separation type smoke detector including a determination unit that performs a sensing output when the value is equal to or less than a set threshold value, the fire detection device is provided at a position off an optical axis connecting the fire monitoring light emitting unit, the reflector, and the light receiving unit. A light-emitting unit for monitoring a shield disposed at a predetermined distance from the light-emitting unit for monitoring, the intermittent lighting of the light-emitting unit for fire monitoring and the light-emitting unit for shield monitoring alternately, and the lighting of the fire-monitoring light-emitting unit And the amount of light received when the shield monitoring light-emitting unit is turned on, and the amount of light received when the fire monitoring light-emitting unit is turned on and when the shield monitoring light-emitting unit is turned on when there is no predetermined shield. From the ratio of Because, photoelectric separated smoke sensor and performs fire determination by comparing the received light amount of the difference and the threshold value in the amount of reflected light and fire monitoring emission portion during lighting.
【請求項2】 一定距離を介して配置した反射板に対し
て光線を発光する発光部と、該反射板からの反射光を受
光する火災監視用受光部と、該火災監視用受光部の受光
出力が予め設定した閾値以下の場合に感知出力を行う判
断部を備えてなる光電式分離型煙感知器において、 上記発光部と反射板、火災監視用受光部とを結ぶ光軸よ
り外れた位置に上記火災監視用受光部と所定距離をおい
て配置した遮蔽物監視用受光部を有し、上記発光部を間
欠点灯させ、上記火災監視用受光部と該遮蔽物監視用受
光部とにより交互に受光し、上記火災監視用受光部受光
時における受光量と上記遮蔽物監視用受光部受光時にお
ける受光量及び、予め定められた遮蔽物が存在しない場
合における上記火災監視用受光部受光時と遮蔽物監視用
受光部受光時の受光量の比より、遮蔽物体による反射光
量を求め、該反射光量と火災監視用受光部受光時におけ
る受光量の差と上記閾値とを比較することにより火災判
断を行うことを特徴とする光電式分離型煙感知器。
2. A light emitting unit for emitting a light beam to a reflector disposed at a certain distance, a fire monitoring light receiving unit for receiving reflected light from the reflector, and a light receiving unit for the fire monitoring light receiving unit. In a photoelectric separation type smoke detector including a determination unit that performs a sensing output when an output is equal to or less than a preset threshold value, a position deviated from an optical axis connecting the light emitting unit, the reflector, and the fire monitoring light receiving unit. A light-shielding object monitoring light receiving unit disposed at a predetermined distance from the fire monitoring light-receiving unit. The light-emitting unit is intermittently lit, and the fire-monitoring light-receiving unit and the shielding object monitoring light-receiving unit are alternately turned on. And the amount of light received at the time of receiving the fire monitoring light receiving unit and the amount of light received at the time of receiving the shielding object monitoring light receiving unit, and at the time of receiving the fire monitoring light receiving unit when there is no predetermined shielding object. Amount of light received when receiving light from the receiver Determining the amount of light reflected by the shielding object from the ratio, and comparing the difference between the amount of reflected light and the amount of light received when receiving the light for fire monitoring with the threshold value to determine whether a fire has occurred. sensor.
JP04161726A 1992-05-29 1992-05-29 Photoelectric separated smoke detector Expired - Fee Related JP3095884B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04161726A JP3095884B2 (en) 1992-05-29 1992-05-29 Photoelectric separated smoke detector
US08/066,909 US5502434A (en) 1992-05-29 1993-05-21 Smoke sensor
GB9310899A GB2267342B (en) 1992-05-29 1993-05-26 Smoke sensor
CH01602/93A CH689271A5 (en) 1992-05-29 1993-05-27 photoelectric smoke sensor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04161726A JP3095884B2 (en) 1992-05-29 1992-05-29 Photoelectric separated smoke detector

Publications (2)

Publication Number Publication Date
JPH05334582A JPH05334582A (en) 1993-12-17
JP3095884B2 true JP3095884B2 (en) 2000-10-10

Family

ID=15740722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04161726A Expired - Fee Related JP3095884B2 (en) 1992-05-29 1992-05-29 Photoelectric separated smoke detector

Country Status (1)

Country Link
JP (1) JP3095884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113519017A (en) * 2019-03-19 2021-10-19 能美防灾株式会社 Smoke detector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973864A (en) * 1997-10-21 1999-10-26 Trustees Of Princeton University High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster's angle prism retroreflectors
JP4585966B2 (en) * 2005-12-27 2010-11-24 ホーチキ株式会社 Dimmable smoke detector
GB2450132B (en) * 2007-06-13 2012-06-20 Hochiki Co Position specifiying system
CN110726700B (en) * 2019-11-06 2022-03-25 北京环境特性研究所 Smoke transmittance distribution measurement and acquisition method and device
CN115506600B (en) * 2022-09-22 2024-02-09 滁州学院 PC component assembly method capable of visually detecting grouting fullness

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113519017A (en) * 2019-03-19 2021-10-19 能美防灾株式会社 Smoke detector

Also Published As

Publication number Publication date
JPH05334582A (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US5502434A (en) Smoke sensor
EP1313222A1 (en) Method and apparatus for self-monitoring of proximity sensors
US20050207619A1 (en) Device for monitoring an area of coverage on a work tool
JP5666870B2 (en) Optical distance measuring device, electronic apparatus, and optical distance measuring device calibration method
JP4979366B2 (en) Photoelectric device and method of operating photoelectric device
JP3095884B2 (en) Photoelectric separated smoke detector
JPH0324636B2 (en)
JP3196975B2 (en) Photoelectric separated smoke detector
JP3093035B2 (en) Photoelectric separated smoke detector
JP2613655B2 (en) Photoelectric switch
JP3196976B2 (en) Photoelectric separated smoke detector
JP3233985B2 (en) Photoelectric separated smoke detector
KR100339255B1 (en) infrared sensor and managing method thereof
JP2741981B2 (en) Object position detection device
JP2006019939A (en) Photoelectric sensor and water detector
JP2562948B2 (en) Optical proximity sensor
JPH10177688A (en) Smoke sensor for moving robot
JP2000208012A (en) Object detecting sensor
JP6755451B2 (en) Distance measurement type intrusion detection sensor using a reflective member and its optical axis adjustment method
JP3088043B2 (en) Dimmable separated smoke detector
JPH08292260A (en) Photoelectric sensor having self-diagnostic function
JP3088023B2 (en) Reflective integrated beam detector
JPH0536733B2 (en)
JPH033914B2 (en)
CN116794664A (en) Detection device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080804

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees