JP2006019939A - Photoelectric sensor and water detector - Google Patents

Photoelectric sensor and water detector Download PDF

Info

Publication number
JP2006019939A
JP2006019939A JP2004194435A JP2004194435A JP2006019939A JP 2006019939 A JP2006019939 A JP 2006019939A JP 2004194435 A JP2004194435 A JP 2004194435A JP 2004194435 A JP2004194435 A JP 2004194435A JP 2006019939 A JP2006019939 A JP 2006019939A
Authority
JP
Japan
Prior art keywords
detection
light
threshold
threshold value
photoelectric sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004194435A
Other languages
Japanese (ja)
Inventor
Koshi Ito
耕嗣 伊藤
Masahiro Amita
正大 網田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2004194435A priority Critical patent/JP2006019939A/en
Publication of JP2006019939A publication Critical patent/JP2006019939A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric sensor and a wafer detector reliably detecting a light transmissive object to be detected. <P>SOLUTION: In a non-detection state, a first threshold Th1 having a large margin is compared with a photoreceptive volume level to be successively taken in. With a case when the photoreceptive volume level is smaller than the first threshold Th1 as a trigger, the detection of a wafer W is determined, based on the comparison with a second original threshold Th2. And the first and second thresholds Th1, Th2 are set, on the basis of the average value of 255 or 235 photoreceptive volume levels taken in immediately before. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、いわゆる透過型の光電センサ及びウエハ検出装置に関する。   The present invention relates to a so-called transmissive photoelectric sensor and a wafer detection apparatus.

従来から、投光手段と受光手段とを所定の検出領域を挟んで対向配置し、その検出領域内に存在する被検出物の遮光状態に応じて変化する受光手段での受光量レベルと所定の閾値との大小比較に基づき上記被検出物の検出を行う、いわゆる透過型の光電センサがある(下記特許文献1参照)。このような光電センサは、例えば光透過性を有するガラスウエハの製造工程においてそのガラスウエハを検出するために用いられることがある。ガラスウエハが検出領域内にないとき(以下、「非検出状態」という)の受光量レベルに対してガラスウエハが検出領域内にあるとき(以下、「検出状態」という)の受光量レベルが低下する。従って、これらの受光量レベルの間に上記閾値を設定するのである。
特開2003−87107公報
Conventionally, the light projecting means and the light receiving means are arranged opposite to each other with a predetermined detection area interposed therebetween, and the received light amount level at the light receiving means that changes according to the light shielding state of the detected object existing in the detection area There is a so-called transmissive photoelectric sensor that detects the detected object based on a comparison with a threshold value (see Patent Document 1 below). Such a photoelectric sensor may be used for detecting a glass wafer in a manufacturing process of a glass wafer having light transmittance, for example. The light reception level when the glass wafer is in the detection area (hereinafter referred to as “detection state”) is lower than the light reception level when the glass wafer is not within the detection area (hereinafter referred to as “non-detection state”). To do. Therefore, the threshold value is set between these received light amount levels.
JP 2003-87107 A

ところが、被検出物がガラスウエハのように光透過性を有する場合、上記検出状態と非検出状態とでの両受光量レベル差が極めて小さい。このため、非検出状態時において瞬間的にでも受光手段での受光量レベルを低下させる事態が生じた場合には、まだ非検出状態であるにもかかわらず、受光量レベルが閾値を下回って検出状態であると誤って判定してしまうおそれがあった。例えば製造ラインを移動中のガラスウエハの破片等が受光手段の前方に落下してきたりする場合があり、このような場合に上記の問題が生じる。   However, when the object to be detected has light transmittance like a glass wafer, the difference between both received light amount levels in the detection state and the non-detection state is extremely small. For this reason, if a situation occurs in which the light reception level at the light receiving means is lowered even in the non-detection state, even if it is still in the non-detection state, the light reception level is detected below the threshold value. There was a risk that it was erroneously determined to be in a state. For example, a piece of glass wafer moving on the production line may fall to the front of the light receiving means, and the above problem occurs in such a case.

本発明は上記のような事情に基づいて完成されたものであって、光透過性を有する被検出物をより確実に検出することが可能な光電センサ及びウエハ検出装置を提供することを目的とする。   The present invention has been completed based on the above-described circumstances, and an object thereof is to provide a photoelectric sensor and a wafer detection device capable of more reliably detecting a light-transmitted object to be detected. To do.

上記の目的を達成するための手段として、請求項1の発明に係る光電センサは、光透過性を有する被検出物が移動する所定の検出領域に光を出射する投光手段と、前記投光手段から出射され前記検出領域を透過した光を受光可能に配される受光手段と、閾値を設定する閾値設定手段と、前記被検出物の存在により変化する前記受光手段での受光量レベルと前記閾値設定手段に設定されている閾値とを大小比較し、この受光量レベルが、前記閾値以下のときは前記被検出物の検出状態と判定し、前記閾値を上回ったときは前記被検出物の非検出状態と判定する判定手段と、を備える光電センサであって、前記閾値設定手段は、前記判定手段での判定結果が前記非検出状態にあるときは、当該非検出状態のときの受光量レベルと前記検出領域に前記被検出物のエッジが位置するときの受光量レベルとの間の第1閾値を設定する一方で、前記判定手段での判定結果が前記非検出状態から前記検出状態に変化したことを条件に、前記非検出状態のときの受光量レベルと前記検出領域に前記被検出部の前記エッジ以外の部分が位置したときの受光量レベルとの間の第2閾値を設定することを特徴とする。
なお、「光透過性を有する被検出物」としては、例えばガラス製物体等のような透明物体に限らず、シリコン製物体等のような半透明物体も含まれる。
As means for achieving the above object, a photoelectric sensor according to the invention of claim 1 is characterized in that a light projecting means for emitting light to a predetermined detection area where a light-transmitting object to be detected moves, and the light projection A light receiving means arranged so as to be able to receive light emitted from the means and transmitted through the detection area, a threshold setting means for setting a threshold value, a received light amount level at the light receiving means that changes depending on the presence of the detected object, and Compared with the threshold value set in the threshold value setting means, when the received light amount level is equal to or lower than the threshold value, it is determined that the detected object is detected, and when the detected light level exceeds the threshold value, the detected object level is determined. A non-detection state determination unit, wherein the threshold value setting unit is configured to detect the amount of light received in the non-detection state when the determination result of the determination unit is in the non-detection state. Before level and said detection area While setting a first threshold value between the received light amount level when the edge of the detection object is located, on the condition that the determination result in the determination means has changed from the non-detection state to the detection state, A second threshold value is set between a received light amount level in the non-detection state and a received light amount level when a portion other than the edge of the detected portion is located in the detection region.
The “detectable object having optical transparency” is not limited to a transparent object such as a glass object, but also includes a translucent object such as a silicon object.

請求項2の発明は、請求項1に記載の光電センサにおいて、前記非検出状態において、前記受光手段での受光量レベルを読み取り、所定の期間内に読み取られた複数の受光量レベルの平均値を求める平均値測定手段を備え、前記閾値設定手段は、前記第1及び第2の閾値を、前記平均値測定手段で求められる平均値に基づいて設定することを特徴とする。   According to a second aspect of the present invention, in the photoelectric sensor according to the first aspect, in the non-detection state, a light reception amount level at the light receiving unit is read, and an average value of a plurality of light reception amount levels read within a predetermined period. The threshold value setting means sets the first and second threshold values based on the average value obtained by the average value measurement means.

請求項3の発明は、請求項2に記載の光電センサにおいて、前記第2閾値の設定時において、前記所定の期間は、前記非検出状態から前記検出状態に変化する直前の一定期間以前の期間であることを特徴とする。   According to a third aspect of the present invention, in the photoelectric sensor according to the second aspect, when the second threshold value is set, the predetermined period is a period before a certain period immediately before the non-detection state is changed to the detection state. It is characterized by being.

請求項4の発明は、請求項1〜請求項3のいずれかに記載の光電センサにおいて、前記受光手段での受光量レベルが前記第1閾値を下回った時点から所定の一定期間、前記判定手段における前記第2閾値との比較動作を無効化する無効化手段を有することを特徴とする。   According to a fourth aspect of the present invention, in the photoelectric sensor according to any one of the first to third aspects, the determination unit has a predetermined period from a time point when a light reception amount level at the light reception unit falls below the first threshold value. It has a invalidating means for invalidating the comparison operation with the second threshold value.

請求項5の発明は、請求項1〜請求項4のいずれかに記載の光電センサにおいて、前記判定手段は、前記第2閾値との比較動作においては前記受光手段での受光量レベルが前記第2閾値を上回った状態が所定時間継続したことを条件に前記非検出状態であると判定することを特徴とする。   According to a fifth aspect of the present invention, in the photoelectric sensor according to any one of the first to fourth aspects, in the comparison operation with the second threshold, the light receiving amount level at the light receiving unit is the first level. It is determined that it is the non-detection state on condition that a state exceeding 2 thresholds has continued for a predetermined time.

請求項6の発明に係るウエハ検出装置は、所定の検出領域を移動し、光透過性を有する被検出物としてのウエハを寸法を検出するウエハ検出装置であって、上記請求項1〜請求項5のいずれかの光電センサと、当該光電センサの判定手段において検出状態と判定された継続時間に基づき前記ウエハの寸法を検出する寸法検出手段とを備えることを特徴する。
なお、「寸法検出手段」は、継続時間に基づきウエハの寸法値を測定する構成以外に、その継続時間を基準時間と比較することで当該ウエハの寸法が所定の基準寸法に合致するかどうかを検出する構成であってもよい。
A wafer detection apparatus according to a sixth aspect of the present invention is a wafer detection apparatus for detecting a dimension of a wafer as a detected object having a light transmission property by moving in a predetermined detection region. 5. A photoelectric sensor according to claim 5, and a dimension detecting means for detecting a dimension of the wafer based on a duration time determined to be in a detection state by the determining means of the photoelectric sensor.
In addition to the configuration for measuring the dimension value of the wafer based on the duration time, the “dimension detection means” compares the duration time with a reference time to determine whether the dimension of the wafer matches a predetermined reference dimension. The structure to detect may be sufficient.

<請求項1の発明>
一般に、投光手段及び受光手段を対向配置してなる、いわゆる透過型光電センサにおいて、その検出領域内に光透過性を有する被検出物のうちエッジ部分以外の部分が位置する場合に比べて、エッジ部分が位置する場合の方が受光手段での受光量レベルが大きく低下する。
そこで、本構成では、例えば、被検出領域に被検出物がない非検出状態では、受光手段での受光量レベルを、正常時の非検出状態における受光量レベル(V1)と検出領域に被検出物のエッジが位置するときの受光量レベル(V2<V1)との間に設定された第1閾値と比較する。そして、被検出物のエッジ部分が検出領域内に位置したときにその受光量レベルが上記第1閾値を下回ることにより判定手段は検出状態と判定する。その後は、受光手段での受光量レベルを、正常時の非検出状態のときの受光量レベル(V1)と前記検出領域に前記被検出部の前記エッジ以外の部分が位置したときの受光量レベル(V3。V2<V3<V1。)との間の第2閾値と比較して判定を行う。つまり、非検出状態では比較的に余裕度の大きい第1閾値との比較し、この比較結果が非検出状態から検出状態に変化したことを条件に、比較的に余裕度の小さい第2閾値との比較動作に移行するのである。
従って、例えば非検出状態において被検出物の破片等が検出領域内に存在し、受光手段での受光量レベルが微小に低減するような場合、単に、受光手段での受光量レベルを、上記第1閾値に相当する閾値だけと比較して検出を行う構成に比べて誤検出の危険性を抑制できる。
<Invention of Claim 1>
In general, in a so-called transmissive photoelectric sensor formed by arranging a light projecting unit and a light receiving unit to face each other, compared to a case where a portion other than the edge portion is located in the detection region of the detected object having light transmittance, When the edge portion is located, the light receiving level at the light receiving means is greatly reduced.
Therefore, in this configuration, for example, in the non-detection state where there is no detection object in the detection region, the light reception level at the light receiving means is detected in the detection region in the detection region with the light reception level (V1) in the normal non-detection state. It compares with the 1st threshold value set between the received light quantity level (V2 <V1) when the edge of an object is located. And when the edge part of a to-be-detected object is located in a detection area, the determination means will determine with a detection state by the light-receiving-amount level falling below the said 1st threshold value. Thereafter, the received light amount level at the light receiving means is the received light amount level (V1) in the normal non-detection state and the received light amount level when a portion other than the edge of the detected portion is located in the detection region. The determination is made in comparison with the second threshold value between (V3. V2 <V3 <V1). That is, in the non-detection state, the second threshold value with a relatively small margin is compared with the first threshold value having a relatively large margin, and on the condition that the comparison result has changed from the non-detection state to the detection state. The comparison operation is shifted to.
Therefore, for example, in the non-detection state, if a detected object fragment or the like is present in the detection region and the light reception level at the light receiving unit is slightly reduced, the light reception level at the light receiving unit is simply The risk of erroneous detection can be suppressed compared to a configuration in which detection is performed by comparison with only a threshold corresponding to one threshold.

<請求項2の発明>
本構成によれば、前記第1及び第2の閾値を、前記平均値測定手段で求められる平均値の変化に応じた値に設定する構成であるから、素子劣化等による受光量レベルが経時的に変化する場合でもその変化に応じて第1及び第2の閾値が適切な値に設定され、受光量レベルの経時的な変化による影響を排除できる。
<Invention of Claim 2>
According to this configuration, since the first and second threshold values are set to values corresponding to changes in the average value obtained by the average value measuring means, the received light amount level due to element degradation or the like is changed over time. Even in the case of changing to, the first and second threshold values are set to appropriate values in accordance with the change, and the influence due to the temporal change in the received light amount level can be eliminated.

<請求項3の発明>
非検出状態から検出状態に変化するときは、受光手段での受光量レベルは第1閾値を下回るように大きく変化する。従って、このときの受光量レベルの平均値に基づき第2閾値を設定することは好ましくない。そこで、本構成では、平均値測定手段で非検出状態から検出状態に変化する直前の一定期間(受光量レベルが大きく変化する期間)以前のタイミングで複数の受光量レベルの平均値に基づき第2閾値を設定する構成とした。
<Invention of Claim 3>
When changing from the non-detection state to the detection state, the received light amount level at the light receiving means changes greatly so as to be lower than the first threshold value. Accordingly, it is not preferable to set the second threshold based on the average value of the received light amount level at this time. Therefore, in this configuration, the second value is calculated based on the average value of the plurality of received light amount levels at a timing before a certain period (period in which the received light amount level changes greatly) immediately before the average value measuring unit changes from the non-detected state to the detected state. The threshold is set.

<請求項4,5の発明>
第2閾値との比較動作においては当該第2閾値と受光手段での受光量レベルとの余裕度が小さいため、例えばノイズ(例えば被検出物の内面反射)等による微小なレベル変化によって誤検出を引き起こすおそれがある。そこで、請求項4の構成では、受光手段での受光量レベルが第1閾値を下回った時点から所定の一定期間は判定手段における比較動作を無効化する構成とした。また、請求項5の構成では、受光量レベルが単発的に第2閾値を上回るときは非検出状態であるとの判定を行わないようにした。
<Invention of Claims 4 and 5>
In the comparison operation with the second threshold value, since the margin between the second threshold value and the received light amount level at the light receiving means is small, for example, erroneous detection is performed by a minute level change due to noise (for example, internal reflection of the detected object). May cause. Therefore, in the configuration of claim 4, the comparison operation in the determination unit is invalidated for a predetermined period from the time when the received light amount level in the light receiving unit falls below the first threshold value. Further, in the configuration of claim 5, it is determined that the non-detection state is not performed when the received light amount level exceeds the second threshold on a single occasion.

<請求項6の発明>
上記請求項1〜請求項5のいずれかの発明を適用することにより、ウエハの寸法を正確に検出することができる。
<Invention of Claim 6>
By applying the invention according to any one of the first to fifth aspects, the dimensions of the wafer can be accurately detected.

本発明の一実施形態を図1〜図4を参照しつつ説明する。
本実施形態は、図1に示すように、例えばU字状の搬送アーム11によって搬送される光透過性を有するウエハW(例えばガラスウエハやシリコンウエハ。被検出物)を検出するためのウエハ検出装置10に本発明を適用したものである。
An embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, as shown in FIG. 1, for example, a wafer detection for detecting a light-transmitting wafer W (for example, a glass wafer or a silicon wafer; an object to be detected) transported by a U-shaped transport arm 11. The present invention is applied to the apparatus 10.

1.ハードウエア構成
本実施形態に係るウエハ検出装置10は、図2に示すように、投光素子12(例えばLED、レーザダイオード)及び受光素子13(例えばファトダイオードやフォトトランジスタ)等を備えるセンサ本体14から光ファイバF1,F2が導出された、いわゆるファイバセンサを有してなる。具体的には、光ファイバF1は、センサ本体14側の端面が投光素子12の前面に突き当てれており、この投光素子12からの光を伝送し上記ウエハWの通過経路側に配される先端面から出射する。投光素子12は、投光素子駆動回路15から駆動電流が与えられることで発光する。従って、光ファイバF1及び投光素子12が本発明の「投光手段」に相当する。
1. Hardware Configuration As shown in FIG. 2, the wafer detection apparatus 10 according to the present embodiment includes a sensor main body 14 including a light projecting element 12 (for example, an LED and a laser diode), a light receiving element 13 (for example, a photodiode and a phototransistor), and the like. The optical fibers F1 and F2 are derived from the above so-called fiber sensor. Specifically, the end face on the sensor body 14 side of the optical fiber F1 is abutted against the front surface of the light projecting element 12, and the light from the light projecting element 12 is transmitted and arranged on the passage path side of the wafer W. The light is emitted from the tip surface. The light projecting element 12 emits light when a drive current is applied from the light projecting element driving circuit 15. Therefore, the optical fiber F1 and the light projecting element 12 correspond to the “light projecting means” of the present invention.

一方、光ファイバF2は、センサ本体14側に端面が受光素子13の前面に突き当てられ、ウエハWの通過経路側に配される先端面から入光した光を受光素子13に導く役割を果たす。受光素子13は、受光した光の光量(受光量)に応じたレベルの受光信号を出力し、図示しないA/D変換器によってA/D変換されて制御回路16に取り込まれる。従って、光ファイバF2及び受光素子13が本発明の「受光手段」に相当する。なお、制御回路16には、上記投光素子駆動回路15、揮発性メモリ17(例えばRAMなど)、不揮発性メモリ18(例えばEPPROMなど)及び出力回路19がそれぞれ接続されている。   On the other hand, the end face of the optical fiber F2 is abutted against the front surface of the light receiving element 13 on the sensor main body 14 side, and plays a role of guiding light incident from the front end face disposed on the passing path side of the wafer W to the light receiving element 13. . The light receiving element 13 outputs a light receiving signal at a level corresponding to the amount of received light (light receiving amount), is A / D converted by an A / D converter (not shown), and is taken into the control circuit 16. Therefore, the optical fiber F2 and the light receiving element 13 correspond to the “light receiving means” of the present invention. The control circuit 16 is connected to the light projecting element drive circuit 15, the volatile memory 17 (for example, RAM), the nonvolatile memory 18 (for example, EPPROM), and the output circuit 19, respectively.

そして、各光ファイバF1,F2の先端部F1a,F2aがウエハWの通過経路を例えば上下で挟むように対向配置される。つまり、いわゆる透過型センサとして使用するのである。   And the front-end | tip parts F1a and F2a of each optical fiber F1 and F2 are opposingly arranged so that the passage route of the wafer W may be pinched | interposed vertically, for example. That is, it is used as a so-called transmission type sensor.

2.ソフトウエア構成
さて、図3に示すように、ウエハWが光ファイバF1,F2の先端部F1a,F2aの対向領域(以下、「検出領域X」という)内にないとき(同図(A)(E))には、受光素子13から高い受光量レベルV1の受光信号が出力される。一方、ウエハWが検出領域X内に完全に進入したとき(同図(C))には、このウエハWが光透過性を有するゆえに上記受光量レベルV1よりも僅かに低い受光量レベルV2(例えば受光量レベルV1の90%)の受光信号が出力される。従って、前述したように、単に両受光量レベルV1,V2の間に第2閾値Th2を設定して比較するだけの構成では、非検出状態(同図(A)(B))において破片等によって一時的に受光量レベルが低下すると、検出領域XにウエハWがないにもかかわらずウエハ有りとの検出を誤ってしてしまうおそれがある。
2. Software Configuration Now, as shown in FIG. 3, when the wafer W is not in the area opposite to the front ends F1a and F2a of the optical fibers F1 and F2 (hereinafter referred to as “detection area X”) (FIG. 3A) E)), a light reception signal having a high light reception level V1 is output from the light receiving element 13. On the other hand, when the wafer W has completely entered the detection region X (FIG. 3C), the light reception level V2 (slightly lower than the light reception level V1) because the wafer W is light transmissive. For example, a light reception signal of 90% of the light reception level V1) is output. Therefore, as described above, in the configuration in which the second threshold value Th2 is simply set and compared between the both received light amount levels V1 and V2, it is caused by fragments or the like in the non-detection state (FIGS. If the received light amount level temporarily decreases, there is a possibility that the detection of the presence of a wafer may be erroneously detected even though there is no wafer W in the detection region X.

ここで、図3の受光量レベルの変位をみると、検出領域XにウエハWのエッジ部分が介在したとき(同図(B)(D))には、一時的に受光量レベルが大きく低下する(このときの受光量レベルV3は上記受光量レベルV1の例えば50%とする)。これはウエハWの端面は実際には凸凹になっており、ここで光が屈折したりするからであると考えられる。   Here, looking at the displacement of the received light amount level in FIG. 3, when the edge portion of the wafer W is present in the detection region X (FIGS. (B) and (D)), the received light amount level temporarily decreases greatly. (The light reception level V3 at this time is, for example, 50% of the light reception level V1). This is probably because the end face of the wafer W is actually uneven, and light is refracted here.

そこで、制御回路16は、図4に示す制御を実行する。まず、S1で検出フラグが立っているかどうかを判断し、立っていなければ(S1で「N」)、S2で投光素子駆動回路15を駆動させて投光素子12を発光させるとともに、それに同期して受光素子13から受光信号を取り込んで揮発性メモリ17に記憶する。次いで、S3で不揮発性メモリ18に受光信号データが所定数(例えば255個)記憶されているかどうかを判断する。そして、255個記憶されていれば(S3で「Y」)、S4でこれら255個の受光信号データに基づき受光量レベルの平均値を算出する。具体的には、255個の受光信号データの合計受光量を255で除算する。そして、この平均値の例えば75%の値を第1閾値Th1として設定し、S5でこの算出した第1閾値Th1と現在取り込んだ受光量レベルとを比較する。なお、この第1閾値Th1は不揮発性メモリ18に記憶する。既に不揮発性メモリ18に以前設定した第1閾値Th1が記憶されていればこれを書換更新する。従って、この場合、255個の受光信号の取り込み期間が本発明の「所定の期間」に相当する。   Therefore, the control circuit 16 executes the control shown in FIG. First, it is determined whether or not the detection flag is set in S1, and if it is not set (“N” in S1), the light projecting element driving circuit 15 is driven in S2 to cause the light projecting element 12 to emit light, and in synchronization therewith. The light receiving signal is taken in from the light receiving element 13 and stored in the volatile memory 17. Next, in S3, it is determined whether or not a predetermined number (for example, 255) of received light signal data is stored in the nonvolatile memory 18. If 255 are stored (“Y” in S3), the average value of the received light amount level is calculated based on the 255 received light signal data in S4. Specifically, the total received light amount of 255 received light signal data is divided by 255. Then, for example, a value of 75% of the average value is set as the first threshold Th1, and the calculated first threshold Th1 is compared with the currently received light amount level in S5. The first threshold value Th1 is stored in the nonvolatile memory 18. If the previously set first threshold Th1 is already stored in the nonvolatile memory 18, it is rewritten and updated. Accordingly, in this case, the period of capturing 255 received light signals corresponds to the “predetermined period” of the present invention.

一方、255個未満であれば(S3で「N」)、S6で不揮発性メモリ18に既に第1閾値Th1が記憶されているかどうかを判断し、記憶されてなければ(S6で「N」)再びS1に戻る。記憶されていれば、S5でこの不揮発性メモリ18に記憶された第1閾値Th1と現在取り込んだ受光量レベルとを比較する。そして、受光量レベルが第1閾値Th1より大きいとき(S5で「N」)は、まだ検出領域XにウエハWがない(図3(A)の状態)ものとして再びS1に戻る。これに対して、受光量レベルが第1閾値Th1より小さいとき(S5で「Y」)は、S7で検出フラグを立てるとともに、第1カウントを開始してS1に戻る。ここで、第1閾値Th1は、検出領域XにウエハW全体が介在したときの受光量レベルV1より小さく、かつ、検出領域XにウエハWのエッジ部分が介在したときの受光量レベルV3よりも大きい値に設定される。従って、現在読み込まれた受光量レベルが第1閾値Th1よりも小さいときとは、検出領域XにウエハWのエッジ部分が進入してきた(図3(B)の状態)ことを意味する。   On the other hand, if it is less than 255 (“N” in S3), it is determined in S6 whether or not the first threshold Th1 is already stored in the nonvolatile memory 18, and if not stored (“N” in S6). Return to S1 again. If stored, the first threshold value Th1 stored in the nonvolatile memory 18 is compared with the currently received light amount level in S5. When the received light amount level is larger than the first threshold Th1 (“N” in S5), the process returns to S1 again assuming that there is no wafer W in the detection region X (state in FIG. 3A). On the other hand, when the received light amount level is smaller than the first threshold Th1 (“Y” in S5), the detection flag is set in S7, the first count is started, and the process returns to S1. Here, the first threshold Th1 is smaller than the received light amount level V1 when the entire wafer W is interposed in the detection region X, and is smaller than the received light amount level V3 when the edge portion of the wafer W is interposed in the detection region X. Set to a large value. Therefore, when the currently received light amount level read is smaller than the first threshold Th1, it means that the edge portion of the wafer W has entered the detection region X (the state shown in FIG. 3B).

次にS1に戻ってきたとき、検出フラグが立っていれば(S1で「Y」)、S8で投光素子駆動回路15を駆動させて投光素子12を発光させるとともに、それに同期して受光素子13から受光信号を取り込む。このとき、ウエハWは図3(C)の状態にある。そして、S9で揮発性メモリ17に記憶された受光信号データが255個記憶されているかどうかを判断する。255個記憶されていれば(S9で「Y」)、S10で現在不揮発性メモリ18に記憶された255個の受光信号データのうち、直近に取得した所定数(例えば20個)の受光信号データを除く235個の受光信号データに基づき受光量レベルの平均値を算出する。具体的には、235個の受光信号データの合計受光量を235で除算する。そして、この平均値の例えば90%の値を第2閾値Th2として設定し、不揮発性メモリ18に記憶する。既に不揮発性メモリ18に以前設定した第2閾値Th2が記憶されていればこれを書換更新する。従って、この場合、235個の受光信号の取り込み期間が本発明の「所定の期間」に相当する。   Next, when returning to S1, if the detection flag is set (“Y” in S1), the light projecting element drive circuit 15 is driven in S8 to cause the light projecting element 12 to emit light, and light is received in synchronization with it. A light reception signal is taken from the element 13. At this time, the wafer W is in the state shown in FIG. Then, in S9, it is determined whether 255 received light signal data stored in the volatile memory 17 are stored. If 255 signals are stored (“Y” in S9), a predetermined number (for example, 20) of light reception signal data acquired most recently among the 255 light reception signal data currently stored in the nonvolatile memory 18 in S10. The average value of the received light amount level is calculated based on the 235 received light signal data excluding. Specifically, the total received light amount of 235 received light signal data is divided by 235. Then, for example, a value of 90% of this average value is set as the second threshold value Th <b> 2 and stored in the nonvolatile memory 18. If the previously set second threshold Th2 is already stored in the nonvolatile memory 18, it is rewritten and updated. Therefore, in this case, the period for capturing 235 received light signals corresponds to the “predetermined period” of the present invention.

ここで、このとき不揮発性メモリ18に記憶されている255個の受光信号データは、S5で受光量レベルが第1閾値Th1を下回ったとき、つまり、非検出状態から検出状態に変化したとき以前に記憶されたものである。そして、このうち直近の20個の受光信号データは、図3に示すように、受光量レベルが大きく変化する時間T内に取得されたものであり、これらも含めて平均値を算出すべきでないからである。
一方、255個未満であれば(S9で「N」)、S11で不揮発性メモリ18に既に第2閾値Th2が記憶されていれば(S11で「Y」)S12に進み、記憶されてなければ(S11で「N」)S1に戻る。
Here, the 255 received light signal data stored in the nonvolatile memory 18 at this time is the time when the received light amount level is lower than the first threshold Th1 in S5, that is, before the change from the non-detection state to the detection state. Is remembered. Of the 20 most recent received light signal data, as shown in FIG. 3, the data is acquired within the time T when the received light amount level greatly changes, and the average value including these should not be calculated. Because.
On the other hand, if it is less than 255 (“N” in S9), if the second threshold Th2 is already stored in the nonvolatile memory 18 in S11 (“Y” in S11), the process proceeds to S12, and if not stored. ("N" in S11) Return to S1.

次にS12で上記第1カウントが所定時間t1経過しているかどうかを判断し、経過していなければ(S12で「N」)S1に戻り、経過していれば(S12で「Y」)、S13で上記第2閾値Th2と現在取り込んだ受光量レベルとを比較する。このように、受光量レベルが第1閾値Th1を下回ってから所定時間t1経過するまで第2閾値Th2との比較を行わない(無効化)ようにしたのは、前述したように、検出領域XにウエハW全体が介在したとき(図3(C)の状態)の受光量レベルV2は、第2閾値Th2との差が小さいためノイズによる影響を受けやすいからである。   Next, in S12, it is determined whether or not the predetermined time t1 has elapsed. If it has not elapsed ("N" in S12), the process returns to S1, and if it has elapsed ("Y" in S12), In S13, the second threshold value Th2 is compared with the currently received light amount level. As described above, as described above, the comparison with the second threshold Th2 is not performed until the predetermined time t1 elapses after the received light amount level falls below the first threshold Th1. This is because the received light amount level V2 when the entire wafer W intervenes (the state in FIG. 3C) is easily affected by noise because the difference from the second threshold Th2 is small.

続いてS13で受光量レベルが第2閾値Th2を下回ったとき(S13で「Y」)は、S14で第2カウントを開始し、S15でその第2カウントが所定時間t2経過していなければ(S15で「N」)再びS1に戻る。次のS8での投受光動作で読み込まれた受光量レベルが第2閾値Th2を上回ったときは(S13で「N」)は、S16で第2カウントをクリアしてS1に戻る。これに対して、受光量レベルが第2閾値Th2を下回った状態(S13で「Y」)が所定時間t2継続したとき(S15で「Y」)に初めて検出動作を実行する(S17)。例えば図2に示す出力回路19から検出信号を出力させたり、動作表示灯20を点灯させたりするのである。なお、上記検出フラグは、一旦検出動作が実行された後に、受光量レベルが第2閾値Th2を上回ったとき(図3(D))にクリアする。   Subsequently, when the received light amount level falls below the second threshold Th2 in S13 (“Y” in S13), the second count is started in S14, and if the second count has not passed the predetermined time t2 in S15 ( ("N" in S15)) Return to S1 again. If the received light amount level read in the next light projecting / receiving operation in S8 exceeds the second threshold Th2 (“N” in S13), the second count is cleared in S16 and the process returns to S1. On the other hand, the detection operation is executed for the first time (S17) when the light reception level is below the second threshold Th2 (“Y” in S13) continues for a predetermined time t2 (“Y” in S15). For example, a detection signal is output from the output circuit 19 shown in FIG. 2 or the operation indicator lamp 20 is turned on. The detection flag is cleared when the light reception level exceeds the second threshold Th2 after the detection operation is once executed (FIG. 3D).

3.本実施形態の効果
(1)本実施形態によれば、非検出状態(図3(A))においては、順次取り込まれる受光量レベルに対して余裕度が大きい第1閾値Th1との比較を行い、この第1閾値Th1を下回ったことをトリガーとして、本来の第2閾値Th2との比較に基づくウエハWの検出の判定を行う構成とした。従って、非検出状態時における受光量レベルに微小な変動による誤検出を防止できる。
(2)また、第1閾値Th1及び第2閾値Th2は、直前に取り込まれた255個或いは235の受光量レベルの平均値に基づき設定する構成とした。従って、直近の受光量レベル状態に応じて適切な閾値を設定でき、例えば受光量レベルの経時的変化に対しても対応できる。
3. Effects of the present embodiment (1) According to the present embodiment, in the non-detection state (FIG. 3A), a comparison is made with the first threshold Th1 having a large margin with respect to the sequentially received light amount level. The detection of the wafer W is determined based on the comparison with the original second threshold value Th2 with the fact that it is below the first threshold value Th1 as a trigger. Accordingly, it is possible to prevent erroneous detection due to a slight fluctuation in the light reception level in the non-detection state.
(2) Further, the first threshold value Th1 and the second threshold value Th2 are set based on the average value of 255 or 235 received light amount levels acquired immediately before. Therefore, an appropriate threshold value can be set according to the most recent light reception level state, and for example, it is possible to cope with a temporal change in the light reception level.

(3)更に、第2閾値Th2については、非検出状態から検出状態に変化したときの直前に取り込まれた20個の受光信号データを除いた235個の受光信号データに基づき平均値を算出して設定する構成とした。直近の20個の受光信号データは、図3に示すように、受光量レベルが大きく変化する時間T内に取得されたものであり、これらも含めて平均値を算出すべきでないからである。
(4)また、検出状態(図3(C))では、余裕度の小さい第2閾値Th2との比較を行うため、例えばノイズ等による影響を受けやすい。そこで、所定時間t1経過までは第2閾値Th2との比較を無効化したり、受光量レベルが第2閾値Th2を下回った状態が所定時間t2継続したことを条件に検出動作を行う構成とした。
(3) Further, with respect to the second threshold Th2, an average value is calculated based on 235 received light signal data excluding 20 received light signal data captured immediately before the change from the non-detected state to the detected state. Configuration. This is because the most recent 20 received light signal data are acquired within the time T when the received light amount level changes greatly as shown in FIG. 3, and the average value including these must not be calculated.
(4) Further, in the detection state (FIG. 3C), since the comparison with the second threshold Th2 having a small margin is performed, the detection state is easily affected by, for example, noise. Therefore, the detection operation is performed under the condition that the comparison with the second threshold Th2 is invalidated until the predetermined time t1 elapses or the state where the received light amount level falls below the second threshold Th2 continues for the predetermined time t2.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、光ファイバF1,F2を備えたファイバセンサとしたが、これに限らず、投光素子12を有する投光ヘッドと、受光素子13を有する受光ヘッドとを対向配置してなる通常の透過型光電センサであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.
(1) In the above embodiment, the fiber sensor is provided with the optical fibers F1 and F2. However, the present invention is not limited to this, and the light projecting head having the light projecting element 12 and the light receiving head having the light receiving element 13 are arranged to face each other. Ordinary transmissive photoelectric sensors may be used.

(2)また、被検出物としてガラスウエハ等としたが、これに限らず、光透過性を有するものであれば本発明による効果を得ることができる。   (2) Further, although the glass wafer or the like is used as the object to be detected, the present invention is not limited to this, and the effect of the present invention can be obtained as long as it has optical transparency.

(3)上記実施形態では、所定のタイミング毎に受光量レベルを読み取って各平均化処理を行う構成としたが、これに限らず、例えば積分回路によって所定時間内における受光量レベルを平均化するアナログ的な処理であってもよい。   (3) In the above embodiment, the received light amount level is read at each predetermined timing and each averaging process is performed. However, the present invention is not limited to this. For example, the received light amount level within a predetermined time is averaged by an integration circuit. Analog processing may be used.

(4)また、上記実施形態では、所定時間t1経過までは第2閾値Th2との比較を無効化する処理と、受光量レベルが第2閾値Th2を下回った状態が所定時間t2継続したかどうかを判定する処理との両方を実行する構成としたが、これに限らず、いずれか一方の処理を選択させて当該一方の処理だけを実行させる構成であってもよい。また、上記2つの処理のいずれも実行しない構成であっても勿論よい。   (4) Further, in the above embodiment, whether or not the process of invalidating the comparison with the second threshold Th2 and the state in which the received light amount level is lower than the second threshold Th2 continues for the predetermined time t2 until the predetermined time t1 elapses. However, the present invention is not limited to this, and any one of the processes may be selected and only one of the processes may be executed. Of course, a configuration in which neither of the two processes is executed may be used.

(5)また、上記実施形態では、単にウエハWの有無を検出する構成であったが、これに限らず、例えば、受光量レベルが第1閾値Th1を下回った時点から、受光量レベルが第2閾値Th2を上回るまでの時間(図3に示す検出状態の継続時間)に基づきウエハWの寸法を測定、或いは所定の基準寸法と一致するかどうかを検出する構成であってもよい。   (5) In the above-described embodiment, the configuration is such that the presence / absence of the wafer W is merely detected. However, the present invention is not limited to this. 2 may be configured to measure the dimension of the wafer W based on the time until the threshold value Th2 is exceeded (the duration of the detection state shown in FIG. 3), or detect whether the wafer W matches a predetermined reference dimension.

本発明の一実施形態に係るウエハ検出装置の使用状態を示す斜視図The perspective view which shows the use condition of the wafer detection apparatus which concerns on one Embodiment of this invention. ウエハ検出装置のハードウエア構成を示すブロック図Block diagram showing hardware configuration of wafer detector ウエハの移動と受光量レベルの変位との関係を示す説明図Explanatory diagram showing the relationship between wafer movement and received light level shift 制御回路の制御内容を示すフローチャートFlow chart showing control contents of control circuit

符号の説明Explanation of symbols

10…ウエハ検出装置(光電センサ)
12…投光素子(投光手段)
13…受光素子(受光手段)
16…制御回路(判定手段、閾値設定手段、平均値測定手段、無効化手段)
F1,F2…光ファイバ
Th1…第1閾値
Th2…第2閾値
T…時間(直前の一定期間)
W…ウエハ(被検出物)
X…検出領域
10 ... Wafer detection device (photoelectric sensor)
12 ... Projection element (projection means)
13: Light receiving element (light receiving means)
16 ... Control circuit (determination means, threshold setting means, average value measurement means, invalidation means)
F1, F2 ... Optical fiber Th1 ... First threshold Th2 ... Second threshold T ... Time (predetermined period)
W: Wafer (object to be detected)
X: Detection area

Claims (6)

光透過性を有する被検出物が移動する所定の検出領域に光を出射する投光手段と、
前記投光手段から出射され前記検出領域を透過した光を受光可能に配される受光手段と、
閾値を設定する閾値設定手段と、
前記被検出物の存在により変化する前記受光手段での受光量レベルと前記閾値設定手段に設定されている閾値とを大小比較し、この受光量レベルが、前記閾値以下のときは前記被検出物の検出状態と判定し、前記閾値を上回ったときは前記被検出物の非検出状態と判定する判定手段と、を備える光電センサであって、
前記閾値設定手段は、前記判定手段での判定結果が前記非検出状態にあるときは、当該非検出状態のときの受光量レベルと前記検出領域に前記被検出物のエッジが位置するときの受光量レベルとの間の第1閾値を設定する一方で、
前記判定手段での判定結果が前記非検出状態から前記検出状態に変化したことを条件に、前記非検出状態のときの受光量レベルと前記検出領域に前記被検出部の前記エッジ以外の部分が位置したときの受光量レベルとの間の第2閾値を設定することを特徴とする光電センサ。
A light projecting means for emitting light to a predetermined detection region in which a detection object having light permeability moves;
A light receiving means arranged to receive light emitted from the light projecting means and transmitted through the detection region;
Threshold setting means for setting a threshold;
The received light amount level of the light receiving means that changes due to the presence of the detected object is compared with a threshold value set in the threshold setting means, and when the received light amount level is equal to or less than the threshold value, the detected object A detection unit that determines that the detected object is in a non-detected state when the threshold value is exceeded, and a photoelectric sensor comprising:
The threshold setting means, when the determination result of the determination means is in the non-detection state, the light reception amount level in the non-detection state and the light reception when the edge of the detection object is located in the detection region While setting a first threshold between the quantity levels,
On the condition that the determination result in the determination means has changed from the non-detection state to the detection state, the received light amount level in the non-detection state and the portion other than the edge of the detected portion in the detection region A photoelectric sensor characterized in that a second threshold value is set between the received light amount level when positioned.
前記非検出状態において、前記受光手段での受光量レベルを読み取り、所定の期間内に読み取られた複数の受光量レベルの平均値を求める平均値測定手段を備え、
前記閾値設定手段は、前記第1及び第2の閾値を、前記平均値測定手段で求められる平均値に基づいて設定することを特徴とする請求項1に記載の光電センサ。
In the non-detection state, the light receiving amount level in the light receiving unit is read, and an average value measuring unit for obtaining an average value of a plurality of light receiving amount levels read within a predetermined period,
The photoelectric sensor according to claim 1, wherein the threshold setting unit sets the first and second thresholds based on an average value obtained by the average value measuring unit.
前記第2閾値の設定時において、前記所定の期間は、前記非検出状態から前記検出状態に変化する直前の一定期間以前の期間であることを特徴とする請求項2に記載の光電センサ。 3. The photoelectric sensor according to claim 2, wherein, when the second threshold value is set, the predetermined period is a period before a certain period immediately before the change from the non-detection state to the detection state. 前記受光手段での受光量レベルが前記第1閾値を下回った時点から所定の一定期間、前記判定手段における前記第2閾値との比較動作を無効化する無効化手段を有することを特徴とする請求項1〜請求項3のいずれかに記載の光電センサ。 The system further comprises invalidating means for invalidating the comparison operation with the second threshold value in the determination means for a predetermined period from the time when the received light amount level at the light receiving means falls below the first threshold value. The photoelectric sensor in any one of Claims 1-3. 前記判定手段は、前記第2閾値との比較動作においては前記受光手段での受光量レベルが前記第2閾値を上回った状態が所定時間継続したことを条件に前記非検出状態であると判定することを特徴とする請求項1〜請求項4のいずれかに記載の光電センサ。 In the comparison operation with the second threshold value, the determination unit determines that the light receiving level at the light receiving unit is in the non-detection state on the condition that the state in which the light reception amount level exceeds the second threshold value has continued for a predetermined time. The photoelectric sensor according to any one of claims 1 to 4, wherein: 所定の検出領域を移動し、光透過性を有する被検出物としてのウエハを寸法を検出するウエハ検出装置であって、
上記請求項1〜請求項5のいずれかの光電センサと、
当該光電センサの判定手段において検出状態と判定された継続時間に基づき前記ウエハの寸法を検出する寸法検出手段とを備えることを特徴するウエハ検出装置。
A wafer detection apparatus for moving a predetermined detection region and detecting a dimension of a wafer as an object to be detected having optical transparency,
The photoelectric sensor according to any one of claims 1 to 5,
A wafer detection apparatus comprising: a dimension detection unit configured to detect a dimension of the wafer based on a continuation time determined as a detection state by the determination unit of the photoelectric sensor.
JP2004194435A 2004-06-30 2004-06-30 Photoelectric sensor and water detector Pending JP2006019939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194435A JP2006019939A (en) 2004-06-30 2004-06-30 Photoelectric sensor and water detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194435A JP2006019939A (en) 2004-06-30 2004-06-30 Photoelectric sensor and water detector

Publications (1)

Publication Number Publication Date
JP2006019939A true JP2006019939A (en) 2006-01-19

Family

ID=35793790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194435A Pending JP2006019939A (en) 2004-06-30 2004-06-30 Photoelectric sensor and water detector

Country Status (1)

Country Link
JP (1) JP2006019939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290877A (en) * 2007-05-28 2008-12-04 Seiko Epson Corp Component detecting method, component detector, and ic handler
JP2012117963A (en) * 2010-12-02 2012-06-21 Sharp Corp Proximity sensor and electronic apparatus
WO2021181959A1 (en) * 2020-03-12 2021-09-16 オムロン株式会社 Photoelectric sensor and threshold correction method
JP7406724B2 (en) 2020-03-09 2023-12-28 オムロン株式会社 photoelectric sensor
JP7483205B2 (en) 2020-03-09 2024-05-15 オムロン株式会社 Photoelectric Sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087107A (en) * 2001-09-12 2003-03-20 Omron Corp Photoelectric sensor
JP2003281814A (en) * 2002-03-25 2003-10-03 Ricoh Co Ltd Optical disk device, control program for the same and recording medium recorded with control program
JP2003318718A (en) * 2002-04-26 2003-11-07 Sunx Ltd Photoelectric sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003087107A (en) * 2001-09-12 2003-03-20 Omron Corp Photoelectric sensor
JP2003281814A (en) * 2002-03-25 2003-10-03 Ricoh Co Ltd Optical disk device, control program for the same and recording medium recorded with control program
JP2003318718A (en) * 2002-04-26 2003-11-07 Sunx Ltd Photoelectric sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290877A (en) * 2007-05-28 2008-12-04 Seiko Epson Corp Component detecting method, component detector, and ic handler
JP2012117963A (en) * 2010-12-02 2012-06-21 Sharp Corp Proximity sensor and electronic apparatus
US8823682B2 (en) 2010-12-02 2014-09-02 Sharp Kabushiki Kaisha Proximity sensor and electronic device
JP7406724B2 (en) 2020-03-09 2023-12-28 オムロン株式会社 photoelectric sensor
JP7483205B2 (en) 2020-03-09 2024-05-15 オムロン株式会社 Photoelectric Sensor
WO2021181959A1 (en) * 2020-03-12 2021-09-16 オムロン株式会社 Photoelectric sensor and threshold correction method

Similar Documents

Publication Publication Date Title
JP2020505585A (en) Method and system for encoding and decoding a rider
JP5187446B2 (en) Multi-axis photoelectric sensor
AU2010251644B2 (en) Foreign substance detection device for card reader and card reader socket
WO2018154000A1 (en) A 3d-camera device comprising a dirt detection unit
EP0957375A2 (en) Lightwave distance measuring apparatus and method
KR100338489B1 (en) Coin discriminating apparatus
JP5211872B2 (en) Photoelectric sensor
US20200271783A1 (en) Distance measuring device
JP4868597B2 (en) Edge detection device
JP2006019939A (en) Photoelectric sensor and water detector
JP3719130B2 (en) Liquid level monitoring device
JP5317410B2 (en) Liquid detector
JP4957254B2 (en) Photoelectric sensor and photoelectric sensor light receiving unit
KR20160109120A (en) Transmission-Type Optical Dust Detecting Device
KR101725797B1 (en) Light projection head and optical sensor
JP2007309917A (en) Photoelectric sensor with automatic sensitivity correction
JP4467933B2 (en) Refractometer
WO2020179268A1 (en) Optical distance measurement device
JP2004279127A (en) Light curtain
JP3095884B2 (en) Photoelectric separated smoke detector
JP3548754B2 (en) Multi-optical axis photoelectric sensor
US5828056A (en) Photoelectric detector with improved clear container feature detection
JP5843257B2 (en) smoke detector
JP2007003348A (en) Regression reflection typed photo-electronic sensor
US20100277711A1 (en) Optical quantized distance measuring apparatus and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720