JP3092085B1 - Purification of magnesium silicate ore containing carbonate as impurity - Google Patents

Purification of magnesium silicate ore containing carbonate as impurity

Info

Publication number
JP3092085B1
JP3092085B1 JP2000024325A JP2000024325A JP3092085B1 JP 3092085 B1 JP3092085 B1 JP 3092085B1 JP 2000024325 A JP2000024325 A JP 2000024325A JP 2000024325 A JP2000024325 A JP 2000024325A JP 3092085 B1 JP3092085 B1 JP 3092085B1
Authority
JP
Japan
Prior art keywords
magnesium silicate
carbonate
acid
purification
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000024325A
Other languages
Japanese (ja)
Other versions
JP2001220127A (en
Inventor
信治 渡村
雅喜 前田
恵一 犬飼
文彦 大橋
正哉 鈴木
博泰 佐藤
勉 澤田
弘幸 板原
辰雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omi Mining Co Ltd
Original Assignee
Omi Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omi Mining Co Ltd filed Critical Omi Mining Co Ltd
Priority to JP2000024325A priority Critical patent/JP3092085B1/en
Application granted granted Critical
Publication of JP3092085B1 publication Critical patent/JP3092085B1/en
Publication of JP2001220127A publication Critical patent/JP2001220127A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【要約】 【課題】 未利用のマグネシウムケイ酸塩鉱石の炭酸塩
系不純物を酸処理により精製する場合の効率的な精製処
理方法を提供する。 【解決手段】 炭酸塩を不純物として含むマグネシウム
ケイ酸塩鉱石の酸による精製の際に、溶媒にハロゲン化
アルカリ溶液を添加することにより、マグネシウムケイ
酸塩のダメージを防ぎ、また、酸の濃度を0.2〜4.
5N、酸の量を炭酸塩溶解のための必要当量とし、酸の
滴定速度を必要当量の百分の1毎分以下とすることによ
りダメージを少なくして精製処理する方法。 【効果】 上記の方法により、マグネシウムケイ酸塩に
与えるダメージを防ぐことができ、また、炭酸塩系不純
物の溶解を促進させることができ、その結果、効率的な
マグネシウムケイ酸塩鉱石の精製処理が可能となる。
An object of the present invention is to provide an efficient purification method for purifying unused carbonate silicate ore carbonate impurities by acid treatment. SOLUTION: When refining magnesium silicate ore containing carbonate as an impurity, an alkali halide solution is added to a solvent to prevent damage to the magnesium silicate and to reduce the acid concentration. 0.2-4.
5N, a method in which the amount of an acid is set to a necessary equivalent for dissolving a carbonate, and the titration rate of the acid is set to 1/100 or less of the required equivalent to reduce the damage to reduce the damage. According to the above method, damage to the magnesium silicate can be prevented, and the dissolution of carbonate-based impurities can be promoted. As a result, the magnesium silicate ore can be efficiently purified. Becomes possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸塩を不純物と
して含むマグネシウムケイ酸塩鉱石の精製法に関するも
のであり、さらに詳しくは、従来の方法では精製が難し
いマグネシウムケイ酸塩鉱石の精製において、精製物の
マグネシウムケイ酸塩鉱物にダメージを与えることな
く、精製効率を高めることが可能な新しいマグネシウム
ケイ酸塩鉱石の精製方法に関するものである。本発明
は、炭酸塩鉱物を不純物として含む低品位かつ未利用の
鉱石を有効利用することを可能とする当該鉱石の精製法
として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying magnesium silicate ore containing carbonate as an impurity, and more particularly to a method for purifying magnesium silicate ore which is difficult to purify by a conventional method. The present invention relates to a new method for refining a magnesium silicate ore capable of improving the refining efficiency without damaging a refined magnesium silicate mineral. INDUSTRIAL APPLICABILITY The present invention is useful as a method for refining ore that enables effective utilization of low-grade and unused ore containing carbonate minerals as impurities.

【0002】[0002]

【従来の技術】マグネシウムケイ酸塩鉱物(セピオライ
ト(Mg8 Si1230(OH)4 (H2 O)4 ・8H2
O)、海泡石(セピオライトの別名)、パリゴルスカイ
ト(Mg5 Si820(OH)2 (OH24 ・(H2
O)4 )、アタパルジャイト(パリゴルスカイトの別
名)、タルク(Mg3 Si410(OH)2 、別名:滑
石)など)は微細で高い吸着性や粘性を示す鉱物が多
く、建材、塗料、触媒担体等、様々な分野で利用され、
近年では高密度フィルターや有害ガス除去材料などの高
機能性材料やアスベスト代替え品としての利用研究がな
され、安定した高品質原料の供給が早急に望まれてい
る。
BACKGROUND ART Magnesium silicate minerals (Sepiolite (Mg 8 Si 12 O 30 ( OH) 4 (H 2 O) 4 · 8H 2
O), sepiolite (alias of sepiolite), palygorskite (Mg 5 Si 8 O 20 (OH) 2 (OH 2 ) 4. (H 2
O) 4 ), attapulgite (alias of palygorskite), talc (Mg 3 Si 4 O 10 (OH) 2 , alias: talc), etc. are many fine and highly adsorptive and viscous minerals, building materials, paints, catalysts Used in various fields such as carriers,
In recent years, research on utilization of high-performance materials such as high-density filters and harmful gas removal materials and asbestos substitutes has been made, and a stable supply of high-quality raw materials is urgently desired.

【0003】しかし、これまでは高純度の原料のみを採
掘してきているため、高純度原料が年々枯渇化傾向にあ
り、問題となってきている。これを解決するためには、
世界的に大量に存在している炭酸塩鉱物を不純物として
含む低品位鉱石を有効利用する必要に迫られている。本
発明は、このような一次粒子の粒度が細かく粘性や粘結
性が高くて分散、精製し難いマグネシウムケイ酸塩鉱石
の精製において、炭酸塩のみを溶解させるようにpHを
調整することにより精製効率を上げる方法に関するもの
である。これにより、低品位で未利用であったマグネシ
ウムケイ酸塩鉱石の利用度を高め、石油掘削泥漿、薬品
の担体、調湿・脱臭材料、セラミックス原料などに用い
られる資源の枯渇化に対処することが可能となる。
However, since only high-purity raw materials have been mined so far, high-purity raw materials tend to be depleted year by year, which has become a problem. To solve this,
There is a pressing need to effectively utilize low-grade ores containing carbonate minerals as impurities, which are present in large quantities worldwide. In the present invention, in the purification of a magnesium silicate ore in which the primary particles have a fine particle size, a high viscosity and a high caking property, and are difficult to purify, purification is performed by adjusting the pH so that only the carbonate is dissolved. It is about how to increase efficiency. This will increase the utilization of low-grade, unused magnesium silicate ores, and address the depletion of resources used in oil drilling slurries, chemical carriers, moisture conditioning and deodorizing materials, and ceramic raw materials. Becomes possible.

【0004】マグネシウムケイ酸塩の風力分級や水中分
散分級においては、その鉱石の多くは水ヒ分級限界以下
の微粒子であったり、繊維状の絡まりを有する鉱石であ
るため、十分な精製率を上げていない。従来、例えば、
特公昭55−47937号では、過酸化水素または多価
アルコール混合後、加温により山皮(セピオライトなど
を含む)を膨潤させた後、不純物を沈降させ精製するこ
とを提案している。しかし、過酸化水素は加温時に揮発
性が高いため安定的な効果は期待できず、多価アルコー
ルでは粘性低下作用があるため、マグネシウムケイ酸塩
の増粘作用などを損なう恐れがあった。また、特開昭6
1−295221号では、セピオライト鉱石を加熱して
不純物と目的鉱物を分離しやすくした後、粉砕し、風力
分級を行うことを提案している。しかし、加熱温度を高
くしなければならないため、マグネシウムケイ酸塩水和
物の水分や粘性を損う恐れがあった。さらに、粘土科
学、31巻、4号196〜201頁、1992年では、
セピオライトの塩酸精製が報告されているが、pHの制
御をしていないため、酸の添加量が過剰になりがちで、
回収すべきマグネシウムケイ酸塩の一部も溶解してしま
い、表面特性や粒子サイズなどが劣化し、粘性などの応
用特性にダメージを与える恐れが高い。
[0004] In the air classification or dispersion classification of magnesium silicate in water, most of the ore is fine particles below the classification limit of water and the ore has a fibrous entanglement. Not. Conventionally, for example,
Japanese Patent Publication No. 55-47937 proposes that after mixing hydrogen peroxide or a polyhydric alcohol, the mountain skin (including sepiolite and the like) is swollen by heating, and then the impurities are precipitated and purified. However, hydrogen peroxide has a high volatility at the time of heating, so that a stable effect cannot be expected, and polyhydric alcohol has a viscosity lowering effect, so that the thickening effect of magnesium silicate may be impaired. In addition, Japanese Unexamined Patent Publication
No. 1-295221 proposes to heat sepiolite ore to facilitate separation of impurities and target minerals, and then pulverize and perform air classification. However, since the heating temperature must be increased, there is a possibility that the moisture and viscosity of the magnesium silicate hydrate may be impaired. Furthermore, in Clay Science, Vol. 31, No. 4, pp. 196-201, 1992,
Although hydrochloric acid purification of sepiolite has been reported, since the pH is not controlled, the amount of acid added tends to be excessive,
Part of the magnesium silicate to be recovered is also dissolved, and the surface characteristics and particle size are deteriorated, and there is a high possibility of damaging applied characteristics such as viscosity.

【0005】[0005]

【発明が解決しようとする課題】上述の如く、マグネシ
ウムケイ酸塩鉱石の精製法としてはすでに各種のものが
開発されているが、従来の方法は、精製効率が十分でな
いか、精製物にダメージを与えるなどの問題点を残して
いた。このような状況の中で、本発明者らは、上記従来
技術に鑑みて、上記問題点を解決することが可能な新し
い精製法を開発することを目標として鋭意研究を積み重
ねた結果、酸処理による精製において、溶媒にハロゲン
化アルカリを添加することにより所期の目的を達成し得
ることを見出し、本発明を完成するに至った。本発明で
は、マグネシウムケイ酸塩鉱物にダメージを与えること
なく、精製効率を高めることのできるように、酸処理に
よる精製において、溶媒に塩化カリウムを添加し、その
ダメージの低減を図るものである。
As described above, various methods for refining magnesium silicate ore have already been developed, but the conventional methods have insufficient refining efficiency or damage the refined product. And had problems such as giving. Under these circumstances, the present inventors have conducted intensive studies with the aim of developing a new purification method capable of solving the above-mentioned problems in view of the above-mentioned conventional technology, and as a result, the acid treatment It has been found that the desired object can be achieved by adding an alkali halide to a solvent in the purification by the above method, and the present invention has been completed. In the present invention, potassium chloride is added to a solvent in the purification by acid treatment to reduce the damage so that the purification efficiency can be increased without damaging the magnesium silicate mineral.

【0006】即ち、本発明は、上記の問題を根本的に解
決するために、マグネシウムケイ酸塩鉱物にダメージを
与えることなく、精製効率を高める方法を提供すること
を目的とし、その要旨は、鉱酸処理による精製工程にお
いて、ハロゲン化アルカリなどマグネシウムケイ酸塩を
保護し、炭酸塩の溶解を促進する溶液を添加するところ
に存するものである。
That is, an object of the present invention is to provide a method for improving the purification efficiency without damaging the magnesium silicate mineral in order to fundamentally solve the above-mentioned problems. In the purification step by the treatment with a mineral acid, a solution for protecting a magnesium silicate such as an alkali halide and promoting the dissolution of a carbonate is added.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)炭酸塩を不純物として含むマグネシウムケイ酸塩
鉱石を精製処理する方法であって、精製のために、鉱酸
を用いて炭酸塩の溶解を促進させ、マグネシウムケイ酸
塩の溶解を防ぐために、溶媒にハロゲン化アルカリ溶液
を添加することを特徴とする精製処理方法。 (2)用いる鉱酸の濃度を0.2〜4.5Nの濃度と
し、マグネシウムケイ酸塩に与えるダメージを小さくす
る前記(1)記載の方法。 (3)用いる鉱酸の滴定量をマグネシウムケイ酸塩鉱石
中の平均不純物炭酸塩含有率から計算される必要当量と
し、その滴定速度を必要当量の百分の1毎分以下とする
前記(2)記載の方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) A method for purifying a magnesium silicate ore containing a carbonate as an impurity, in which a mineral acid is used to promote the dissolution of the carbonate and prevent the dissolution of the magnesium silicate. A purification treatment method comprising adding an alkali halide solution to a solvent. (2) The method according to the above (1), wherein the concentration of the mineral acid to be used is set to a concentration of 0.2 to 4.5 N to reduce damage to the magnesium silicate. (3) The titer of the mineral acid to be used is defined as a necessary equivalent calculated from the average impurity carbonate content in the magnesium silicate ore, and the titration speed is set to 1/100 or less of the required equivalent. ) Described method.

【0008】[0008]

【発明の実施の形態】次に、本発明についてさらに詳述
する。本発明方法は、マグネシウムケイ酸塩鉱物にダメ
ージを与えないために、保護作用のあるハロゲン化アル
カリ溶液を添加すると共に、酸に弱い炭酸塩の不純物の
みを溶解させるように、添加する酸の濃度を0.2〜
4.5Nの範囲にし、滴定量を炭酸塩の含有量から計算
される酸の必要当量までとし、滴定速度を酸の必要当量
の百分の1毎分以下とすることを特徴とする。ハロゲン
化アルカリを添加する理由は、2価のマグネシウムイオ
ンが表面から溶出する際に、溶液中のハロゲン化物のイ
オン濃度を予め高めておくことで、ハロゲン化マグネシ
ウムの溶解性があまり高くないため、マグネシウムケイ
酸塩からのマグネシウムの溶出が妨げられ、炭酸塩の溶
解のみが進行すると考えられるからである。
Next, the present invention will be described in more detail. In the method of the present invention, in order not to damage the magnesium silicate mineral, a protective alkali halide solution is added, and the concentration of the added acid is adjusted so as to dissolve only weak carbonate impurities in the acid. From 0.2 to
In the range of 4.5N, the titration is performed up to the required equivalent of the acid calculated from the content of the carbonate, and the titration speed is set to be not more than one hundredth per minute of the required equivalent of the acid. The reason for adding an alkali halide is that when divalent magnesium ions elute from the surface, by increasing the ion concentration of the halide in the solution in advance, the solubility of the magnesium halide is not so high, This is because dissolution of magnesium from the magnesium silicate is hindered, and it is considered that only dissolution of the carbonate proceeds.

【0009】本発明方法では、精製物のマグネシウムケ
イ酸塩鉱石として、炭酸塩鉱物を不純物として含む低品
位鉱石を利用することができる。これらの鉱石として、
セピオライト(和名:海泡石、山皮、別名:マウンテン
コルク、マウンテンレザー、マウンテンウッド)、パリ
ゴルスカイト(別名:アタパルジャイト)、スメクタイ
ト(モンモリロナイト、サポナイト、ヘクトライトステ
ィブンサイト)、ベントナイト、タルク(滑石)バーミ
キュライト、雲母粘土鉱物、緑泥石、などが例示され
る。本発明方法では、まず、炭酸塩を不純物として含む
マグネシウムケイ酸塩鉱石を所定量採取し、適宜の手段
で粉砕後200μm以下に篩い分けしておく。この場
合、細かい方が反応が早いが、粘性を目的とする用途に
は繊維状鉱物が長い方が望ましいので150μm程度の
粗い粒度にしておく。次に、鉱石の重量に対して3から
10倍量の0.2〜2Nのハロゲン化アルカリ溶液を添
加し、撹拌機にて1時間前後混合撹拌する。この場合、
ハロゲン化アルカリとしては、塩化カリウム、塩化ナト
リウム、塩化リチウム、臭化カリウム、臭化ナトリウ
ム、臭化リチウム、ヨウ化カリウム、ヨウ化ナトリウ
ム、ヨウ化リチウムなどが好適なものとして例示され
る。これらは、水系の溶媒に溶解して用いられる。本発
明方法で不純物の溶解液として用いる酸としては、塩
酸、硝酸、硫酸などが挙げられるが、価格や取り扱いの
面から塩酸が最も好ましい酸として挙げられる。これら
の酸は、濃度0.2〜4.5N望ましくは1〜2Nの酸
を、炭酸塩の含有率から、下記の式(1)、(2)、
(3)などにより計算される必要当量の百分の1毎分以
下、望ましくは千分の1毎分の滴定速度で当量までゆっ
くり添加する。最終的なpHが酸性である場合は水酸化
ナトリウムなどアルカリ性の溶液で中和する。その後、
純水または水道水等の清水により洗浄し、遠心分離、フ
ィルタープレスなどにより濾過し、乾燥後、軽く粉砕
し、処理品とすることにより、ダメージを小さくして精
製処理が可能となる。
In the method of the present invention, a low-grade ore containing a carbonate mineral as an impurity can be used as a purified magnesium silicate ore. As these ores,
Sepiolite (Japanese name: sepiolite, skin bark, alias: mountain cork, mountain leather, mountain wood), palygorskite (alias: attapulgite), smectite (montmorillonite, saponite, hectorite stevensite), bentonite, talc (talc) Vermiculite, mica clay mineral, chlorite and the like are exemplified. In the method of the present invention, first, a predetermined amount of magnesium silicate ore containing carbonate as an impurity is collected, pulverized by an appropriate means, and sieved to 200 μm or less. In this case, the finer the particle, the quicker the reaction. However, for the purpose of viscosity, it is desirable to use a long fibrous mineral. Next, an alkali halide solution of 0.2 to 2N in an amount of 3 to 10 times the weight of the ore is added, and mixed and stirred for about 1 hour with a stirrer. in this case,
Suitable examples of the alkali halide include potassium chloride, sodium chloride, lithium chloride, potassium bromide, sodium bromide, lithium bromide, potassium iodide, sodium iodide, and lithium iodide. These are used after being dissolved in an aqueous solvent. Examples of the acid used as a solution for dissolving impurities in the method of the present invention include hydrochloric acid, nitric acid, and sulfuric acid, and hydrochloric acid is the most preferred acid in terms of cost and handling. These acids are prepared by converting an acid having a concentration of 0.2 to 4.5 N, preferably 1 to 2 N, from the content of carbonate in the following formulas (1), (2),
Add slowly to the equivalent at a titration rate of one hundredth per minute or less, preferably one thousandth per minute of the required equivalent calculated by (3) and the like. If the final pH is acidic, neutralize with an alkaline solution such as sodium hydroxide. afterwards,
By washing with pure water or tap water or the like, filtering with a centrifuge, a filter press, or the like, drying, and then crushing lightly to obtain a processed product, the purification process can be performed with less damage.

【0010】 式(1)ドロマイト CaMg(CO32 +4HCl → CaCl2 +MgCl2 +2CO2 +2H2 O 式(2)方解石 CaCO3 +2HCl → CaCl2 +CO2 +H2 O 式(3)マグネサイト MgCO3 +2HCl → MgCl2 +CO2 +H2Formula (1) Dolomite CaMg (CO 3 ) 2 + 4HCl → CaCl 2 + MgCl 2 + 2CO 2 + 2H 2 O Formula (2) Calcite CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O Formula (3) Magnesite MgCO 3 + 2HCl → MgCl 2 + CO 2 + H 2 O

【0011】上記精製工程において、ハロゲン化アルカ
リ溶液を添加することにより、また、酸の濃度、添加
量、添加速度を適度な範囲に調整することにより、マグ
ネシウムケイ酸塩に与える酸のダメージを少なくし、炭
酸塩のみの溶解を促進して、マグネシウムケイ酸塩鉱石
の精製効率を顕著に向上させることができる。
In the above-mentioned purification step, by adding an alkali halide solution, and by adjusting the concentration, amount and rate of addition of the acid in an appropriate range, the damage of the acid to the magnesium silicate is reduced. However, the dissolution of only the carbonate can be promoted, and the purification efficiency of the magnesium silicate ore can be significantly improved.

【0012】[0012]

【実施例】次に、本発明を実施例に基づいて具体的に説
明するが、本発明は当該実施例のみに限定されるもので
はない。 実施例1 1Nの塩化カリウム1lにセピオライトの純度20.8
%でドロマイト(CaMg(CO32 )を不純物とし
て77.3%含むトルコ産白色セピオライト原料A20
0gを懸濁させた溶液を混合攪拌し、それに1Nの塩酸
を千分の1当量毎分の速度で滴下した。CaOの分析値
が全てドロマイトに由来するものと仮定して、式(1)
から必要な塩酸の理論値を求め、これの当量を加えた。
その後、過剰の酸を1N NaOHにより中和し、純水
による洗浄、吸引濾過、110℃48時間乾燥、粉砕を
行った。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to only the examples. Example 1 Sepiolite purity 20.8 in 1 liter of 1N potassium chloride
% Of Turkish white sepiolite raw material A20 containing 77.3% of dolomite (CaMg (CO 3 ) 2 ) as impurities
The solution in which 0 g was suspended was mixed and stirred, and 1N hydrochloric acid was added dropwise at a rate of 1 / 1,000 equivalent per minute. Assuming that all analytical values of CaO are derived from dolomite, the equation (1)
The theoretical value of the required hydrochloric acid was determined from the above, and this equivalent was added.
Thereafter, the excess acid was neutralized with 1N NaOH, washed with pure water, suction filtered, dried at 110 ° C. for 48 hours, and pulverized.

【0013】このトルコ産セピオライトを塩酸処理した
結果を、表1に示す。CaOの組成からドロマイト含有
率を計算すると、酸処理前の77.3重量%から処理後
には5.3重量%に減少させることができた。また、表
面積は処理前の85m2 /gから処理後には365m2
/gに増加させることができた。粉末X線回折では不純
物のドロマイトのピークを原鉱の11分の1まで小さく
でき、セピオライトのピークを約5倍まで大きくするこ
とができた(図1)。
Table 1 shows the results of treating the Turkish sepiolite with hydrochloric acid. When the dolomite content was calculated from the composition of CaO, it could be reduced from 77.3% by weight before the acid treatment to 5.3% by weight after the treatment. The surface area is from 85 m 2 / g before the treatment to 365 m 2 / g after the treatment.
/ G could be increased. In powder X-ray diffraction, the peak of dolomite as an impurity could be reduced to 1/11 that of the ore, and the peak of sepiolite could be increased to about 5 times (FIG. 1).

【0014】比較例1 上記実施例1と同様の原料A用いて、蒸留水1lに試料
200gを懸濁させた溶液を混合撹拌し、それに1N塩
酸を千分の1当量毎分の速度で滴下した。CaOの分析
値が全てドロマイトに由来するものと仮定して、式
(1)から必要な塩酸の理論値を求め、これの当量とな
るまで加えた。その後、過剰の酸を1N NaOHで中
和し、純水による洗浄、吸引濾過、乾燥、粉砕を行っ
た。
Comparative Example 1 Using the same raw material A as in Example 1, a solution in which 200 g of a sample was suspended in 1 liter of distilled water was mixed and stirred, and 1N hydrochloric acid was added dropwise at a rate of 1 / 1,000 equivalent per minute. did. Assuming that all the analytical values of CaO were derived from dolomite, the required theoretical value of hydrochloric acid was determined from equation (1) and added until the equivalent value of the theoretical value was reached. Thereafter, the excess acid was neutralized with 1N NaOH, washed with pure water, suction-filtered, dried and pulverized.

【0015】このトルコ産セピオライトを塩酸処理した
結果を、表1に示す。CaOの組成からドロマイト含有
率を計算すると、酸処理前の77.3重量%から処理後
には19.1重量%に減少していたが、上述の実施例1
よりも減少率は劣っていた。また、表面積は処理前の8
5m2 /gから処理後には311m2 /gに増加してい
たが、上述の実施例1よりも劣っていた。粉末X線回折
では不純物のドロマイトのピークが原鉱の5分の1にな
り、セピオライトのピークが約4倍になったが、上述の
実施例1よりも劣っていた(図1)。
Table 1 shows the results of treating the Turkish sepiolite with hydrochloric acid. When the dolomite content was calculated from the composition of CaO, it was reduced from 77.3% by weight before the acid treatment to 19.1% by weight after the treatment.
The rate of decrease was worse than that. The surface area is 8 before treatment.
It increased from 5 m 2 / g to 311 m 2 / g after the treatment, but was inferior to that of Example 1 described above. In the powder X-ray diffraction, the impurity dolomite peak was one-fifth that of the ore and the sepiolite peak was about four times higher, but inferior to Example 1 described above (FIG. 1).

【0016】比較例2 ドロマイトを不純物として54.0%含有するトルコ産
セピオライト原料Bを用いて、蒸留水1lに試料200
gを懸濁させた溶液を混合撹拌し、それに4.5N塩酸
を十分の1当量毎分の速度で滴下した。CaOの分析値
が全てドロマイトに由来するものと仮定して、式(1)
から必要な塩酸の理論値を求め、これの当量の0,0.
2,0.4,0.6,0.8,1.0,1.2,1.4
倍となるまで加えた。その後、過剰の酸を1N NaO
Hで中和し、純水による洗浄、吸引濾過、乾燥、粉砕を
行った。
Comparative Example 2 A sample 200 was added to 1 liter of distilled water using a Turkish sepiolite raw material B containing 54.0% of dolomite as an impurity.
g of the suspension was mixed and stirred, and 4.5N hydrochloric acid was added dropwise thereto at a sufficient rate of 1 equivalent per minute. Assuming that all analytical values of CaO are derived from dolomite, the equation (1)
From the theoretical value of the required hydrochloric acid, and the equivalent of 0,0.
2,0.4,0.6,0.8,1.0,1.2,1.4
Added until doubled. Thereafter, the excess acid was removed with 1N NaO.
The solution was neutralized with H, washed with pure water, suction-filtered, dried and pulverized.

【0017】このトルコ産セピオライト原料Bを塩酸処
理した結果を、表1に示す。CaOの組成からドロマイ
ト含有率を計算すると、酸処理前の54.0重量%から
酸当量が0.2〜1.0の間では処理後には49.1〜
11.9重量%に減少していたが、上述の実施例1より
も減少率は劣っていた。また、表面積は処理前の159
2 /gから処理後には295m2 /gに増加していた
が、上述の実施例1よりも劣っていた。粉末X線回折で
は不純物のドロマイトのピークが原鉱の5分の1にな
り、セピオライトのピークが約2倍になったが、上述の
実施例1よりも劣っていた(図2)。酸当量が1.2〜
1.4では、ドロマイト含有率が2.1〜2.0%と小
さくなり、表面積が369〜327m2 /gと大きくな
り、粉末X線回折でもドロマイトのピークがほとんど見
られなくなっていたが、セピオライトのピークが原鉱と
同様ないしそれ以下となり、ダメージを受けていること
が明らかとなった。
Table 1 shows the results of treating the Turkish raw material sepiolite B with hydrochloric acid. When the dolomite content is calculated from the composition of CaO, the content of the dolomite is from 54.0% by weight before the acid treatment to 49.1% after the treatment when the acid equivalent is 0.2 to 1.0.
Although reduced to 11.9% by weight, the reduction rate was inferior to that of Example 1 described above. The surface area is 159 before the treatment.
It increased from m 2 / g to 295 m 2 / g after the treatment, but was inferior to Example 1 described above. In the powder X-ray diffraction, the impurity dolomite peak was one-fifth that of the ore and the sepiolite peak was approximately doubled, but it was inferior to Example 1 described above (FIG. 2). Acid equivalent of 1.2 to
In 1.4, the dolomite content was as small as 2.1 to 2.0%, the surface area was as large as 369 to 327 m 2 / g, and almost no dolomite peak was observed in powder X-ray diffraction. The peak of sepiolite was equal to or lower than that of the original ore, indicating that it was damaged.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】以上詳述したように、本発明は、炭酸塩
を不純物として含むマグネシウムケイ酸塩鉱石を精製処
理する方法であって、精製のために、鉱酸を用いて炭酸
塩の溶解を促進させ、マグネシウムケイ酸塩の溶解を防
ぐために、溶媒にハロゲン化アルカリ溶液を添加するこ
とを特徴とする精製処理方法に係るものであり、本発明
により、1)ハロゲン化アルカリ溶液を添加することに
より、マグネシウムケイ酸塩に与える酸のダメージを少
なくし、炭酸塩のみ溶解するように促進することができ
る、2)また、酸の濃度、添加量、添加速度を適度な範
囲に調整することにより補助的な効果を上げることがで
きる、3)よって、本発明は、未利用のマグネシウムケ
イ酸塩鉱石を酸処理により効率的に精製する方法を提供
するものとして、当業界に寄与するところは極めて大き
いものである、という格別の効果が得られる。
As described above in detail, the present invention relates to a method for purifying a magnesium silicate ore containing a carbonate as an impurity, and for dissolving the carbonate using a mineral acid for the purification. The present invention relates to a purification method comprising adding an alkali halide solution to a solvent in order to promote the dissolution of magnesium silicate and promote the dissolution of magnesium silicate. According to the present invention, 1) adding an alkali halide solution By doing so, it is possible to reduce the damage of the acid to the magnesium silicate and promote the dissolution of only the carbonate. 2) Adjust the concentration, amount and rate of addition of the acid to an appropriate range. Thus, the present invention provides a method for efficiently purifying unused magnesium silicate ore by acid treatment. When contributes to industry is extremely large, special effect can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例および比較例(原鉱および処理
試料)の粉末X線回折図形を示す。
FIG. 1 shows powder X-ray diffraction patterns of Examples and Comparative Examples (ores and treated samples) of the present invention.

【図2】比較例2(処理試料)の粉末X線回折図形を示
す。
FIG. 2 shows a powder X-ray diffraction pattern of Comparative Example 2 (treated sample).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 雅喜 愛知県知多郡阿久比町大字草木字東郷54 番地 (72)発明者 犬飼 恵一 愛知県名古屋市中川区西伏屋1丁目605 番地 (72)発明者 大橋 文彦 愛知県名古屋市西区平出町169番地の2 サンドエル3C (72)発明者 鈴木 正哉 岐阜県多治見市松阪町4−8−212 (72)発明者 佐藤 博泰 滋賀県坂田郡山東町長岡1780番地 近江 鉱業株式会社内 (72)発明者 澤田 勉 滋賀県坂田郡山東町長岡1780番地 近江 鉱業株式会社内 (72)発明者 板原 弘幸 滋賀県坂田郡山東町長岡1780番地 近江 鉱業株式会社内 (72)発明者 木村 辰雄 愛知県春日井市牛山町2946丁目5番地 審査官 関 美祝 (56)参考文献 K.Inukai,et.al,“P urification of Tur kish sepiolite thr ough hydrochlorica cid treatment”Appl ied Clay Science, 1994,vol.9,p.11−29 (58)調査した分野(Int.Cl.7,DB名) C01B 33/20 - 33/46 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaki Maeda 54 Togo, Togo, Azamachi, Chita-gun, Aichi Prefecture, Japan (72) Inventor Keiichi Inukai 1-605, Nishifushiya, Nakagawa-ku, Nagoya City, Aichi Prefecture (72) Inventor Fumihiko Ohashi 2 Sandel 3C, 169, Hirade-cho, Nishi-ku, Nagoya, Aichi (72) Inventor Masaya Suzuki 4-8-212, Matsusaka-cho, Tajimi-shi, Gifu (72) Inventor Hiroyasu Sato 1780, Nagaoka, Yamato-cho, Sakata-gun, Shiga Omi Mining Co., Ltd. (72) Inventor Tsutomu Sawada 1780 Nagaoka, Yamato-cho, Sakata-gun, Shiga Prefecture Omi Mining Co., Ltd. (72) Inventor Hiroyuki Itahara 1780 Nagaoka, Yamato-cho, Sakata-gun, Shiga Prefecture Omi Mining Co., Ltd. (72) Inventor Tatsuo Kimura 2946-5 Ushiyama-cho, Kasugai-shi, Aichi Examiner Yoshihisa Seki (56) References K. Inukai, et. al, "Purification of Turkisepisolate through through hydrochloric acid treatment", Applied Clay Science, 1994, vol. 9, p. 11-29 (58) Field surveyed (Int. Cl. 7 , DB name) C01B 33/20-33/46 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭酸塩を不純物として含むマグネシウム
ケイ酸塩鉱石を精製処理する方法であって、精製のため
に、鉱酸を用いて炭酸塩の溶解を促進させ、マグネシウ
ムケイ酸塩の溶解を防ぐために、溶媒にハロゲン化アル
カリ溶液を添加することを特徴とする精製処理方法。
1. A method for purifying a magnesium silicate ore containing a carbonate as an impurity, wherein for the purification, dissolution of the carbonate is promoted by using a mineral acid to dissolve the magnesium silicate. A purification method comprising adding an alkali halide solution to a solvent to prevent the purification.
【請求項2】 用いる鉱酸の濃度を0.2〜4.5Nの
濃度とし、マグネシウムケイ酸塩に与えるダメージを小
さくする請求項1記載の方法。
2. The method according to claim 1, wherein the concentration of the mineral acid used is from 0.2 to 4.5 N to reduce the damage to the magnesium silicate.
【請求項3】 用いる鉱酸の滴定量をマグネシウムケイ
酸塩鉱石中の平均不純物炭酸塩含有率から計算される必
要当量とし、その滴定速度を必要当量の百分の1毎分以
下とする請求項2記載の方法。
3. The method according to claim 1, wherein the titration of the mineral acid used is a required equivalent calculated from the average impurity carbonate content in the magnesium silicate ore, and the titration speed is 1 / per minute or less of the required equivalent. Item 3. The method according to Item 2.
JP2000024325A 2000-02-01 2000-02-01 Purification of magnesium silicate ore containing carbonate as impurity Expired - Lifetime JP3092085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024325A JP3092085B1 (en) 2000-02-01 2000-02-01 Purification of magnesium silicate ore containing carbonate as impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024325A JP3092085B1 (en) 2000-02-01 2000-02-01 Purification of magnesium silicate ore containing carbonate as impurity

Publications (2)

Publication Number Publication Date
JP3092085B1 true JP3092085B1 (en) 2000-09-25
JP2001220127A JP2001220127A (en) 2001-08-14

Family

ID=18550338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024325A Expired - Lifetime JP3092085B1 (en) 2000-02-01 2000-02-01 Purification of magnesium silicate ore containing carbonate as impurity

Country Status (1)

Country Link
JP (1) JP3092085B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006332420A1 (en) * 2006-01-04 2007-07-12 Kenneth J. Hsu Process for combating water polluted by algae
JP2007291585A (en) * 2006-04-25 2007-11-08 Showa Kde Co Ltd Filament-like palygorskite powder excellent in heat resistance, chemical resistance, abrasion resistance and the like, and method for producing the same
JP2008019111A (en) * 2006-07-11 2008-01-31 Showa Kde Co Ltd Long filamentous sepiolite compound powder product and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.Inukai,et.al,"Purification of Turkish sepiolite through hydrochloricacid treatment"Applied Clay Science,1994,vol.9,p.11−29

Also Published As

Publication number Publication date
JP2001220127A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
EA034324B1 (en) Method for the production of amorphous silica with controlled specific surface area from serpentine
JP5315359B2 (en) Method for producing calcium compound
JP3092085B1 (en) Purification of magnesium silicate ore containing carbonate as impurity
JP2591921B2 (en) Method for producing alkali metal phosphate
JP4536257B2 (en) Method for producing sodium chloride aqueous solution
JP6873112B2 (en) How to Stabilize Metallic Mercury
US1916902A (en) Adsorbent
US3927172A (en) Method of concentrating gallium
CN107459024B (en) Method for preparing ultrafine-grained aluminum dihydrogen phosphate powder in aluminous rock
RU2202516C1 (en) Method of production of aluminum oxide
JP2002285255A (en) Method for manufacturing zinc oxide calcine or zinc oxide briquette
US2027948A (en) Adsorbent
RU2259320C1 (en) Magnesium-containing ore processing method
JPH07113129A (en) Recovery of lead from raw material containing lead
KR0128123B1 (en) Refining method of wasting acid
RU2625114C1 (en) Process of producing finely dispersed amorphous microsilica by sol-gel method
CA2248474C (en) Magnesium compounds from magnesium silicates
KR0128122B1 (en) Method of processing the iron chloride liquid
CN113044865B (en) Method for preparing aluminum oxide
CN113044866B (en) Method for preparing aluminum sulfate from aluminum-containing acid treatment liquid
JPH06343978A (en) Removing process for iron content in aqueous solution containing alkaline earth metal chloride
JP3456387B2 (en) Functional adsorbent and method for producing the same
JPH01261218A (en) Fibrous aggregate silica gel
KR100280262B1 (en) Manufacturing method of high purity ferric chloride solution
WO2001047809A1 (en) Process for treating sodium aluminosilicate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3092085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term