WO2001047809A1 - Process for treating sodium aluminosilicate - Google Patents

Process for treating sodium aluminosilicate Download PDF

Info

Publication number
WO2001047809A1
WO2001047809A1 PCT/JP2000/009443 JP0009443W WO0147809A1 WO 2001047809 A1 WO2001047809 A1 WO 2001047809A1 JP 0009443 W JP0009443 W JP 0009443W WO 0147809 A1 WO0147809 A1 WO 0147809A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
sodium aluminosilicate
aluminosilicate
elution
calcium compound
Prior art date
Application number
PCT/JP2000/009443
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Kawai
Isao Ishikawa
Yoshiyuki Takenaka
Hideya Saito
Mineo Nozaki
Original Assignee
Showa Denko K. K.
Tsukishima Kikai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K. K., Tsukishima Kikai Co., Ltd. filed Critical Showa Denko K. K.
Priority to JP2001549292A priority Critical patent/JP4480317B2/en
Priority to AU22318/01A priority patent/AU2231801A/en
Publication of WO2001047809A1 publication Critical patent/WO2001047809A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the present invention relates to a method for treating sodium aluminosilicate.
  • sodium aluminosilicate which is currently discarded or not effectively used, such as red mud and soda light generated during the production of alumina and aluminum, zeolite used in various applications, Alternatively, by separating sodium contained in naturally occurring zeolite and sodalite, the recovery and utilization of sodium and the removal of sodium-removed residue from semite are performed. It can be effectively used as a raw material for packaging. Background art
  • a typical example of sodium aluminosilicate is red hydroxide produced as a by-product of the production of aluminum hydroxide and alumina. About 800 kg of this red mud is produced for 1 ton of aluminum. Red mud, A 1 2 O 3, S i O, the aluminosilicate sodium and F e 2 ⁇ 3 consisting of N a 2 O as a main component, and the other, T i 0 2, quartz, alumina Contains several percent of hydrates and lime compounds. Possible uses include cement raw materials and steelmaking raw materials. However, it has been considered difficult to use cement raw materials because it contains a large amount of Na and steel raw materials contain a large amount of A1. Therefore, red mud has been discarded as industrial waste without being used.
  • zeolite used in various applications. Zeolite is generally used as a catalyst supporting a metal catalyst and a noble metal catalyst, and for ion exchange. Some are recycled and used in most cases After removing harmful and useful components, the carrier zeolite is discarded as industrial waste.
  • a main object of the present invention is to recover a useful component of Na among the components contained in sodium aluminosilicate and further reduce the Na concentration of a substance discharged as a residue.
  • the purpose is to propose a treatment method that can be effectively used as a cement raw material. Disclosure of the invention
  • the present invention recovers the Na component at a higher rate than various types of sodium aluminosilicate in order to effectively use the sodium aluminosilicate that has been discarded or not used without being used effectively at present.
  • a method for treating sodium aluminosilicate to obtain a useful substance having a very low content characterized by the following preferred features. (1) A calcium compound as a simple substance or a mixture of calcium oxide, calcium carbonate, calcium hydroxide, calcium sulfate, or the like, or a mixture containing them, particularly preferably calcium oxide, is added to sodium aluminosilicate. Add and mix.
  • the amount of the calcium compound added is such that the sodium component in the sodium aluminosilicate is expressed as Na 2 O, and the silicon component is expressed as a molar ratio of Ca ON a 2 O when expressed as Si 0 2. Or (preferably “and”) C a ⁇ ZS i 0 2 force; ⁇ 5, preferably 2.0 ⁇ 4.0.
  • the particle size of the sodium aluminosilicate and the calcium compound to be added is not particularly specified, but includes a particle size of 1 ⁇ m to 300 ⁇ m, more preferably a particle size of 60 ⁇ m or less. Things are good.
  • the mixture may be either dry or wet, but is more preferably wet.
  • the mixture of (1) is subjected to a heat treatment at 800 to 140 ° C., more preferably 100 to 135 ° C., using a heater such as a kiln.
  • the mixture to be heat-treated may be in the form of a powder or a pellet, and the form is not particularly limited.
  • the heat treatment time is from 5 minutes to 180 minutes, more preferably from 20 to 80 minutes.
  • the high-temperature exhaust gas generated by the heater generates steam in a boiler, etc., recovers waste heat, and recovers energy.
  • the heat-treated product obtained in (2) is eluted with water (or an aqueous solution) to elute and recover sodium.
  • the amount of water (or aqueous solution) at this time is 1 to 30 times by weight, more preferably 10 to 20 times by weight, of the heat-treated product.
  • the elution temperature is 50 ° C or higher, more preferably 70 ° C or higher.
  • the elution time is between 10 and 120 minutes, more preferably between 60 and 90 minutes.
  • FIG. 1 shows an embodiment of the process of the present invention.
  • FIG. 2 shows an example (1) of an apparatus configuration for performing the process of the present invention.
  • FIG. 3 shows an example (part 2) of an apparatus configuration for performing the process of the present invention.
  • FIG. 4 shows an example (part 3) of an apparatus configuration for performing the process of the present invention.
  • the sodium aluminosilicate according to the present invention includes sodalite discharged in the production of aluminum hydroxide, aluminum, and metallic aluminum. Zeolites used in various applications, natural and synthetic zeolites and sodalites, etc. Either way.
  • the soda light emitted in the production of aluminum is generally Na 2 O power; 18 to 25 weight 0 /. , A 1 2 O 3 power s 3 1 ⁇ 3 8 weight 0 I, S i O 2 2 8-3 5 wt%, impurities such as F e 2 O 3 contains 5 wt% or less.
  • Zeorai bets expressed in ionic formula, C a O ⁇ A 1 2 0 3 ⁇ 4 S i 0 2 -. 6 5 H 2 ⁇ , N a 2 O - A 1 2 0 3 ⁇ 2 S i 0 2 - . 4 5 H 2 0, N a 2 O ⁇ A 1 2 0 3 - 2 5 S i 0 2 ⁇ 6 H 2 O.
  • This sodium aluminosilicate may be obtained as red mud containing iron in bauxite treatment, but in the present invention, sodium aluminosilicate separated from iron is preferred.
  • Preferred correct aluminosilicate soda in the present invention aluminosilicate soda 9 0 wt% or more, good Ri rather preferably 9 5 those containing by weight% or more, or 1 0 weight iron content in the F e 2 ⁇ 3 %, More preferably less than 5% by weight.
  • a method of obtaining sodium aluminosilicate separated from iron in bauxite treatment is known. However, there is no particular problem if sodium aluminosilicate contains iron and other metal components. However, the more the soda light, the less the energy consumption per soda light.
  • the calcium compound calcium oxide, calcium carbonate, calcium hydroxide, calcium sulfate, and the like, and in some cases, a mixture thereof can be used. Calcium oxide is preferred.
  • the calcium compound and the sodium aluminosilicate react to convert the soda component into a compound that can be dissolved in water. it can.
  • the product that can be eluted is probably a product containing sodium aluminate.
  • the amount of the calcium compound to be added is such that when the sodium component in the sodium aluminosilicate is represented by Na 2 O and the silicon component is represented by Si 0 2 , the molar ratio is C a OZN a 2 O or Z and C a OZ S i 0 2 is typically 1 or more, properly favored properly is preferred 1-5, yo Ri may range from 2-4. If these ratios are less than 1, it is not possible to make a compound capable of sufficiently eluting the soda content in the sodium aluminosilicate. If these ratios are too large, compounds that are difficult to elute may be formed, and the elution rate of soda may decrease.
  • the sodium aluminosilicate and the calcium compound are ground to reduce the particle size.
  • the soda elution rate can be increased.
  • the sodium aluminosilicate and the calcium compound may be mixed in a dry state, but C a ⁇ partially dissolves as C a (OH) 2, and the Na and C a of the sodalite in the liquid phase before firing. It is preferable that water is added and mixed in a wet state, since the mixture may undergo a substitution reaction.When mixed in a wet state, the mixture can be pelletized and pelletized. Is preferred. By forming pellets, generation of dust during firing is suppressed, and transfer is facilitated. When pelletizing, since the reactivity depends on the particle size of the original particles, it is desirable that the original particles have the above-mentioned particle size.
  • the mixture of the sodium aluminosilicate and the calcium compound is generally heated at a temperature of 800 to 140 ° C, particularly preferably 100 to 135 ° C.
  • the heating temperature has a large effect on the soda elution rate after heating. It is considered that a heating temperature within a certain range is required to generate compounds that can be easily eluted.
  • the heating atmosphere may be in the air.
  • the heating time is not particularly limited, but is generally 5 to 180 minutes, and is preferably 20 to 80 minutes. Is preferred. Heating rate 'Although not limited, generally 10 to 30 ° C / min may be used. Cooling may be either rapid cooling or slow cooling.
  • the heating device is not limited, but kilns and the like are industrially advantageous (a substance produced by this heat treatment may be referred to as a heat-treated product).
  • the heat-treated product is preferably ground to facilitate elution.
  • Elution is performed with water or an aqueous solution.
  • the amount of water or aqueous solution is not particularly limited, but is preferably 1 to 30 times by weight, more preferably 10 to 20 times by weight of the heat-treated product. Elution can be promoted by using warm water. It is generally at least 50 ° C, preferably at least 70 ° C.
  • the elution time is not particularly limited, but may be 5 to 120 minutes, preferably 60 to 90 minutes.
  • sodium aluminosilicate and a calcium compound are mixed, heated, and soda is eluted, so that the amount of soda in the eluted residue can be extremely reduced. It is possible.
  • the residual soda content can be reduced to 1% or less, further to 0.6% or less, 0.1% or less, and particularly to 0.01% or less.
  • the solid of sodium recovered from sodium which is mainly composed of calcium silicate, can be used as a cement raw material.
  • the recovery (extraction) rate of more than 95%, more preferably more than 99%, especially more than 99.9% is calculated as the recovery rate of soda in sodium aluminosilicate. It can be achieved.
  • a mixing device 1 for example, a double kneader. Mix O well.
  • This mixture is supplied from line 13 to heating device 2, for example, a kiln, and is calcined at 100 ° C. to 135 ° C.
  • the calcined product is sent through line 14 to a cooling device 3, for example, a rotary cooler or a steel belt cooler, where it is cooled, and then, through line 15, a crushing device 4, for example, a hammer. It is supplied to a mill and pulverized.
  • the pulverized material pulverized by the pulverizing device 4 in the firing step is supplied to the elution device 5 via the pipe 16 together with the water (or aqueous solution) from the pipe 17 and is stirred at 50 ° C. Elution is performed at ⁇ 100 ° C.
  • the slurry of the elution device 5 is extracted from the pipe 18 and separated into solid and liquid by a solid-liquid separation device 6, for example, a horizontal belt finoletter or a rotary drum finoletter.
  • the filtrate containing the useful component sodium is withdrawn through line 20 and reused.
  • the separated cake is washed by the washing water supplied from the pipe 19, and discharged from the pipe 21.
  • This sodium recovery residue is mainly composed of calcium and silica. Since the rubber content is less than 1%, it is effectively used as a cement raw material. Also, the washing filtrate at this time is extracted from the pipe 20 and reused.
  • FIGS. 2 to 4 disassemble and show a configuration example of the apparatus more specifically for performing the process of the present invention.
  • sodalite is supplied to a mixer 31 via a sodalite storage tank 32, and a Ca ⁇ storage tank 33, a Ca ⁇ pulverizer 34, and a CaO quantitative feeder 3 are provided.
  • the mixture is fed into the kiln 37 via the kiln charging device 36, the mixture is injected into the kiln 37 via the kiln charging device 36 Fired at temperature.
  • the calcined product is cooled by a cooler 38, it is pulverized by a crusher / pulverizer 39, and then subjected to elution treatment with warm water in an elution tank 40.
  • the slurry subjected to the elution treatment is separated into a filtrate and a cake by a filter 41, and the filtrate passes through a filtrate tank 42, passes through an evaporative concentrator 43, and is used in an alumina treatment process such as a Bayer method. Is done.
  • the cake after filtration is passed through a cake receiving tank 44, a dryer 45, and a drying cake receiving tank 46, and is used as a cement raw material. 47 is a bug fino letter.
  • Table 1 shows the analytical values of sodalite obtained from the desiliconization process added to the Bayer method for the production of aluminum hydroxide and alumina.
  • This soda light, CaO having a particle size of 53 ⁇ xm or less, and water in such an amount that the total water content of the mixture becomes 40% are put into a mixing device and mixed.
  • the mixture is calcined in a kiln at 1200 ° C. for a residence time of 30 minutes, and then cooled. And cooled, and then pulverized by a pulverizer.
  • the pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
  • the obtained recovered liquid and cake were chemically analyzed for the sodium component concentration, and the recovery ratio of the sodium component and the remaining sodium concentration in the cake were determined. As a result, a high sodium recovery rate of 99.9% was obtained, and the sodium concentration of the insoluble residue was also very low at 0.01% dry%.
  • a useful material that can be used as a raw material was obtained. Soda light analysis value
  • the pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
  • the obtained recovered liquid and cake were chemically analyzed for the sodium component concentration, and the recovery rate of the sodium component and the sodium remaining concentration in the cake were determined. I asked. As a result, the recovery rate of sodium was 22.5%, and the sodium concentration of the insoluble residue was 8.81 dry%.
  • the pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
  • the sodium concentration of the obtained recovered liquid and cake was chemically analyzed to determine the sodium component recovery rate and the sodium concentration remaining in the cake. As a result, the sodium recovery was 61.8%, and the sodium concentration of the insoluble residue was 4.33 dry 0 /. Met.
  • Table 2 shows the analysis values of synthetic zeolite 4A.
  • the zeolite and CaO are charged into a mixing device and mixed.
  • This mixture was calcined in a kiln at 1200 ° C. for a residence time of 60 minutes, then put into a cooling device, cooled, and then pulverized by a pulverizer.
  • the pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution.
  • the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
  • the obtained recovered liquid and The sodium component concentration in the cake was chemically analyzed to determine the sodium component recovery rate and the residual sodium concentration in the cake. As a result, a high sodium recovery of 93.4% was obtained, and the sodium concentration of the insoluble residue was extremely low at 0.66 dry%.
  • Useful materials that can be used as cement raw materials were obtained.
  • Table 2 Analytical values of zeolite (used synthetic zeolite 4A) As described above, according to the present invention, the following effects can be obtained.
  • sodium aluminosilicate which is currently discarded or not effectively used, such as red mud and soda light generated during the production of alumina and aluminum, zeolite used in various applications, Alternatively, by separating sodium contained in naturally occurring zeolite and sodalite, sodium can be recovered and sodium-removed residue can be cemented. It can be effectively used as a raw material.

Abstract

A process for treating sodium aluminosilicate which comprises adding a calcium compound to sodium aluminosilicate, heating the resultant mixture of sodium aluminosilicate and the calcium compound, subjecting the heated mixture to an elution treatment with water or an aqueous solution, to thereby solubilize and elute other sodium components in the sodium aluminosilicate, and recovering the sodium components while providing a useful product having a significantly reduced content of the sodium other than that in the sodium aluminosilicate. The process allows the other sodium components to be recovered almost completely from the sodium aluminosilicate, and also the production of a residue which has a content of the sodium other than that in sodium aluminosilicate of 1 % or less and thus can be effectively used. The percentage of the above elution can be enhanced by optimizing the conditions for heating and elution.

Description

明 細 書 アルミ ノ珪酸ソ一ダの処理方法 技術分野  Description Processing method of sodium aluminosilicate Technical field
本発明はアルミ ノ珪酸ソーダの処理方法に係る。  The present invention relates to a method for treating sodium aluminosilicate.
本発明によれば、 現在廃棄されている、 も しく は有効利用されて いないアルミ ノ珪酸ソーダ、 例えばアルミナおよびアルミニウム製 造時に発生する赤泥やソーダライ ト、 各種用途で利用されたゼオラ ィ ト、 または天然に存在するゼォライ トおよびソーダライ ト を対象 にして、 それらに含有するナ ト リ ウムを分離するこ とで、 ナ ト リ ウ ムの回収利用とナ ト リ ゥムを除去した残渣をセメ ン ト原料等と して 有効利用するこ とができる。 背景技術  According to the present invention, sodium aluminosilicate which is currently discarded or not effectively used, such as red mud and soda light generated during the production of alumina and aluminum, zeolite used in various applications, Alternatively, by separating sodium contained in naturally occurring zeolite and sodalite, the recovery and utilization of sodium and the removal of sodium-removed residue from semite are performed. It can be effectively used as a raw material for packaging. Background art
アルミ ノ珪酸ソーダの代表例と して、 まず水酸化アルミニウム、 アルミナ製造の副産物と して生成する赤泥がある。 この赤泥は、 ァ ルミナ 1 t on 製造するのに対して約 8 0 0 kg程度が生成する。 赤泥 は、 A 1 2 O 3 , S i O , N a 2 Oからなるアルミ ノ珪酸ソーダ と F e 23 を主成分と し、 その他と して、 T i 0 2 、 石英、 アル ミナ水和物、 石灰化合物が数%含有する。 用途と しては、 セメ ン ト 原料および製鉄原料が考えられる。 しかし、 セメ ン ト原料にするに は、 含有する N a 分が多く 、 鉄鋼原料にするには含有する A 1 分が 多いため、 利用するのは困難と されてきた。 よって、 これまで赤泥 は、 利用されるこ となく 産廃と して廃棄されてきた。 A typical example of sodium aluminosilicate is red hydroxide produced as a by-product of the production of aluminum hydroxide and alumina. About 800 kg of this red mud is produced for 1 ton of aluminum. Red mud, A 1 2 O 3, S i O, the aluminosilicate sodium and F e 23 consisting of N a 2 O as a main component, and the other, T i 0 2, quartz, alumina Contains several percent of hydrates and lime compounds. Possible uses include cement raw materials and steelmaking raw materials. However, it has been considered difficult to use cement raw materials because it contains a large amount of Na and steel raw materials contain a large amount of A1. Therefore, red mud has been discarded as industrial waste without being used.
また、 赤泥からの有用成分 ( F e , N a , A 1 ) を回収する方法 と して、 特開昭 5 0— 1 6 6 0 8号公報などがある。 この方法は、 赤泥に所定の割合で C a O含有成分を添加して、 還元性熱処理によ り溶融し、 鉄と鉱滓に分離し、 さ らに鉱滓からはアルカ リ溶出によ つて、 N a, A 1 成分を回収する方法である。 しかし、 この方法で は、 N a は赤泥含有量の 6 0〜 7 0 %程度しか回収できず、 残渣に は N a がかな り残り 、 セメ ン ト原料等への有効利用はできない。 ま た、 赤泥中に 4 0 %程度含有する鉄を含めた状態での熱処理になる ため、 かな り の熱量負荷が掛かる。 As a method for recovering useful components (F e, Na, A 1) from red mud, there is Japanese Patent Application Laid-Open No. 50-16608. This method The CaO-containing component is added to the red mud at a predetermined ratio, melted by reducing heat treatment, separated into iron and slag, and Na and A are extracted from the slag by alkaline elution. This is a method to recover one component. However, according to this method, Na can be recovered only in the amount of about 60 to 70% of the red mud content, and Na remains in the residue, and cannot be effectively used as a cement raw material. In addition, since the heat treatment is performed in a state that iron containing about 40% is contained in red mud, considerable heat load is applied.
その他のアルミ ノ珪酸ソーダと しては、 各用途で使用されるゼォ ライ 卜がある。 ゼォライ トは一般的に、 金属触媒及び貴金属触媒を 担持させた触媒と して、 またイ オン交換を目的と して利用されてい る。 一部は再生処理され使用されている力 ほとんどの場合有害成 分、 有用成分を除去した後、 担体ゼォライ トは産廃と して廃棄され ている。  Other sodium aluminosilicates include zeolite used in various applications. Zeolite is generally used as a catalyst supporting a metal catalyst and a noble metal catalyst, and for ion exchange. Some are recycled and used in most cases After removing harmful and useful components, the carrier zeolite is discarded as industrial waste.
以上のよ う に、 アルミ ノ珪酸ソ一ダの一部は、 有効利用方法につ いて種々提案されているが、 実際には、 有用成分回収後の残渣また はアルミ ノ珪酸ソーダそのものは有効利用されず廃棄されている。 よって、 本発明の主たる課題は、 アルミ ノ珪酸ソーダが含有する 成分のう ち、 N a の有用成分を回収して、 更には残渣と して排出さ れる物質も、 N a濃度を非常に低くする こ とでセメ ン ト原料等と し て有効利用するこ とができる処理方法を提案するこ とである。 発明の開示  As described above, some of the sodium aluminosilicate have been proposed for their effective use, but in practice, the residue after recovery of useful components or the sodium aluminosilicate itself is effectively used. Has been discarded. Therefore, a main object of the present invention is to recover a useful component of Na among the components contained in sodium aluminosilicate and further reduce the Na concentration of a substance discharged as a residue. The purpose is to propose a treatment method that can be effectively used as a cement raw material. Disclosure of the invention
本発明は、 現在有効利用されないまま廃棄されているまたは未利 用のアルミ ノ珪酸ソーダを有効利用するために、 各種アルミ ノ珪酸 ソーダよ り 、 N a成分を高い割合で回収する と共に、 N a含有濃度 が非常に低い有用物を得るアルミ ノ珪酸ソーダの処理方法であって 、 下記を好適な特徴とする。 ( 1 ) アルミ ノ珪酸ソーダに、 酸化カルシウム、 炭酸カルシゥ ム、 水酸化カルシウム、 または硫酸カルシウム等の単体またはその 混合物、 またはこれらを含む混合物と してのカルシウム化合物、 特 に好ま しく は酸化カルシウムを添加混合する。 The present invention recovers the Na component at a higher rate than various types of sodium aluminosilicate in order to effectively use the sodium aluminosilicate that has been discarded or not used without being used effectively at present. A method for treating sodium aluminosilicate to obtain a useful substance having a very low content, characterized by the following preferred features. (1) A calcium compound as a simple substance or a mixture of calcium oxide, calcium carbonate, calcium hydroxide, calcium sulfate, or the like, or a mixture containing them, particularly preferably calcium oxide, is added to sodium aluminosilicate. Add and mix.
この時、 添加するカルシウム化合物の量は、 アルミ ノ珪酸ソーダ 中のナ ト リ ウム成分を N a 2 Oで、 ケィ素成分を S i 02 で表した 時モル比で C a O N a 2 Oまたは (好ま しく は 「および」 ) C a 〇Z S i 02 力;:! 〜 5であり 、 好ま しく は 2. 0〜 4. 0である。 また、 アルミ ノ珪酸ソーダおよび添加するカルシウム化合物の粒度 は特に規定しないが、 1 μ m〜 3 0 0 μ mの粒径を含んでおり 、 よ り好ま しく は 6 0 μ ΐΏ以下の粒径のものが良い。 また、 この混合物 は、 乾燥状態または湿潤状態のどちらでも良いが、 よ り好ま しく は 湿潤状態である。 At this time, the amount of the calcium compound added is such that the sodium component in the sodium aluminosilicate is expressed as Na 2 O, and the silicon component is expressed as a molar ratio of Ca ON a 2 O when expressed as Si 0 2. Or (preferably “and”) C a 〇ZS i 0 2 force; ~ 5, preferably 2.0 ~ 4.0. The particle size of the sodium aluminosilicate and the calcium compound to be added is not particularly specified, but includes a particle size of 1 μm to 300 μm, more preferably a particle size of 60 μm or less. Things are good. The mixture may be either dry or wet, but is more preferably wet.
( 2 ) ( 1 ) の混合物をキルン等の加熱機を用いて 8 0 0〜 1 4 0 0 °C、 よ り好ま しく は 1 0 0 0〜 1 3 5 0 °Cで加熱処理を行う 。 また、 この時、 被熱処理混合物は粉末状でもペレ ッ ト化した状態 でも良く 、 その形態は特に限定されない。 また、 加熱処理時間は 5 分から 1 8 0分であり 、 よ り好ま しく は 2 0〜 8 0分である。  (2) The mixture of (1) is subjected to a heat treatment at 800 to 140 ° C., more preferably 100 to 135 ° C., using a heater such as a kiln. At this time, the mixture to be heat-treated may be in the form of a powder or a pellet, and the form is not particularly limited. The heat treatment time is from 5 minutes to 180 minutes, more preferably from 20 to 80 minutes.
( 3 ) 加熱機で発生する高温の排ガスは、 ボイ ラーなどで蒸気 をつく り 、 廃熱を回収し、 エネルギー回収を行う。  (3) The high-temperature exhaust gas generated by the heater generates steam in a boiler, etc., recovers waste heat, and recovers energy.
( 4 ) ( 2 ) で得られる加熱処理物を水 (または水溶液) で溶 出処理し、 ナ ト リ ウムを溶出 ' 回収する。 この時の水 (または水溶 液) 量は、 加熱処理物に対して 1〜 3 0重量倍であ り 、 よ り好ま し く は 1 0〜 2 0重量倍である。 また、 溶出温度は 5 0 °C以上で、 よ り好ま しく は 7 0 °C以上である。 溶出時間は 1 0〜 1 2 0分、 よ り 好ま しく は 6 0〜 9 0分である。  (4) The heat-treated product obtained in (2) is eluted with water (or an aqueous solution) to elute and recover sodium. The amount of water (or aqueous solution) at this time is 1 to 30 times by weight, more preferably 10 to 20 times by weight, of the heat-treated product. Further, the elution temperature is 50 ° C or higher, more preferably 70 ° C or higher. The elution time is between 10 and 120 minutes, more preferably between 60 and 90 minutes.
( 5 ) ( 4 ) で得られるス ラ リ ーを濾過機などで固液分離し、 ケーキは更に水で良く洗浄する。 得られる分離液および洗浄濾液は 、 ナ ト リ ゥム含有溶液と してアルカ リ溶液を必要とする設備で有効 利用し、 ケーキ (ナ ト リ ウムを溶出した残渣のこ とをナ ト リ ウム回 収残渣と記すこ とがある。 ) は、 セメ ン ト原料と してリ サイ クルす る。 また、 洗浄濾液は、 ( 2 ) で得られる加熱処理物の溶出処理に 使用 しても良い。 図面の簡単な説明 (5) The slurry obtained in (4) is subjected to solid-liquid separation using a filter, etc. The cake is further washed well with water. The resulting separated solution and the washing filtrate are effectively used in equipment that requires an alkaline solution as a sodium-containing solution, and the cake (residue of sodium eluted is removed from the sodium). Collected residue is sometimes recycled.) Is recycled as cement raw material. Further, the washing filtrate may be used for elution of the heat-treated product obtained in (2). BRIEF DESCRIPTION OF THE FIGURES
図 1 は本発明のプロセスの実施例を示す。  FIG. 1 shows an embodiment of the process of the present invention.
図 2 は本発明のプロセスを実施する装置構成の例 (その 1 ) を示 す。  FIG. 2 shows an example (1) of an apparatus configuration for performing the process of the present invention.
図 3は本発明のプロセスを実施する装置構成の例 (その 2 ) を示 す。  FIG. 3 shows an example (part 2) of an apparatus configuration for performing the process of the present invention.
図 4は本発明のプロセスを実施する装置構成の例 (その 3 ) を示 す。 発明を実施するための最良の形態  FIG. 4 shows an example (part 3) of an apparatus configuration for performing the process of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明におけるアルミ ノ珪酸ソーダは、 水酸化アルミニウム、 ァ ルミ ナ、 金属アルミ ニウムの製造で排出される ソーダライ トゃ各種 用途で使用されたゼォライ ト、 天然及び合成のゼォライ トおよびソ ーダライ ト等のいずれでもよレ、。  The sodium aluminosilicate according to the present invention includes sodalite discharged in the production of aluminum hydroxide, aluminum, and metallic aluminum. Zeolites used in various applications, natural and synthetic zeolites and sodalites, etc. Either way.
アルミ ニウムの製造で排出される ソーダライ トは、 一般的に、 N a 2 O力; 1 8 〜 2 5重量0 /。、 A 1 2 O 3 力 s 3 1 〜 3 8重量0ん、 S i O 2 が 2 8 〜 3 5重量%、 F e 2 O 3 などの不純物が 5重量%以下 を含む。 また、 ゼォライ トの代表例と しては、 イオン式で表わすと 、 C a O · A 1 2 0 3 · 4 S i 0 2 - 6 . 5 H 2 〇、 N a 2 O - A 1 2 0 3 · 2 S i 0 2 - 4 . 5 H 2 0、 N a 2 O · A 1 2 0 3 - 2 . 5 S i 02 · 6 H2 Oなどがある。 The soda light emitted in the production of aluminum is generally Na 2 O power; 18 to 25 weight 0 /. , A 1 2 O 3 power s 3 1 ~ 3 8 weight 0 I, S i O 2 2 8-3 5 wt%, impurities such as F e 2 O 3 contains 5 wt% or less. Further, as a typical example of Zeorai bets, expressed in ionic formula, C a O · A 1 2 0 3 · 4 S i 0 2 -. 6 5 H 2 〇, N a 2 O - A 1 2 0 3 · 2 S i 0 2 - . 4 5 H 2 0, N a 2 O · A 1 2 0 3 - 2 5 S i 0 2 · 6 H 2 O.
このアルミ ノ珪酸ソーダは、 ボ一キサイ ト処理では鉄分を含む赤 泥と して入手される場合もあるが、 本発明では鉄分とは分離された アルミ ノ珪酸ソーダが好ま しい。 本発明において好ま しいアルミ ノ 珪酸ソーダは、 アルミ ノ珪酸ソーダを 9 0重量%以上、 よ り好まし く は 9 5重量%以上含むもの、 あるいは鉄分が F e 23 と して 1 0重量%以下、 よ り好ま しく は 5重量%以下のものである。 ボーキ サイ ト処理においてこのよ う に鉄分と分離されたアルミ ノ珪酸ソー ダを得る方法は知られている。 しかし、 アルミ ノ珪酸ソーダが鉄分 その他の金属成分を含んでいても特に問題はない。 ただしソ一ダラ ィ ト分が多い方がソーダライ ト当た り のエネルギー消費量は少なく てすむ。 This sodium aluminosilicate may be obtained as red mud containing iron in bauxite treatment, but in the present invention, sodium aluminosilicate separated from iron is preferred. Preferred correct aluminosilicate soda in the present invention, aluminosilicate soda 9 0 wt% or more, good Ri rather preferably 9 5 those containing by weight% or more, or 1 0 weight iron content in the F e 23 %, More preferably less than 5% by weight. A method of obtaining sodium aluminosilicate separated from iron in bauxite treatment is known. However, there is no particular problem if sodium aluminosilicate contains iron and other metal components. However, the more the soda light, the less the energy consumption per soda light.
カルシウム化合物と しては酸化カルシウム、 炭酸カルシウム、 水 酸化カルシウム、 硫酸カルシウムなど、 あるレ、はこれらの混合物を 用いるこ とができる。 酸化カルシウムが好ま しレ、。 カルシウム化合 物をアルミ ノ珪酸ソーダと混合して加熱処理するこ とによ り 、 カル シゥム化合物とアルミ ノ珪酸ソーダとが反応してソーダ分が水で溶 出可能な化合物に変化させるこ とができる。 溶出可能な生成物は多 分、 アルミ ン酸ソーダを含む生成物である と考えられる。  As the calcium compound, calcium oxide, calcium carbonate, calcium hydroxide, calcium sulfate, and the like, and in some cases, a mixture thereof can be used. Calcium oxide is preferred. By mixing and heating the calcium compound with sodium aluminosilicate, the calcium compound and the sodium aluminosilicate react to convert the soda component into a compound that can be dissolved in water. it can. The product that can be eluted is probably a product containing sodium aluminate.
添加するカルシウム化合物の量はアルミ ノ珪酸ソーダ中のナ ト リ ゥム成分を N a 2 Oで、 ケィ素成分を S i 02 で表わしたとき、 モ ル比で C a OZN a 2 Oまたは Z及び C a OZ S i 02 が一般的に 1以上、 好ま しく は 1〜 5、 よ り好ま しく は 2〜 4の範囲でよい。 これらの比が 1未満ではアルミ ノ珪酸ソーダ中のソーダ分を十分に 溶出可能な化合物にする こ とができない。 また、 これらの比が大き すぎる と溶出しにく い化合物を生成してソーダ分の溶出率が低下す る可能性がある。 アルミ ノ珪酸ソーダとカルシウム化合物を混合する とき、 アルミ ノ珪酸ソーダ及びカルシウム化合物は粉砕して粒度を小さ くするこ とが好ま しい。 限定するわけではないが 1 μ m〜 3 0 0 mの範囲 内の粒度のものを含むこ とが好ま しく 、 よ り好ま しく は粒径が 8 0 /z m以下、 特に 6 0 /i m以下である。 これらの粒度をよ り小さ くす るこ とによ り 、 ソーダ溶出率を増加させるこ とができる。 ただし、 必ずしもすべての粒子がこれらの粒径の範囲内にある必要はなく 、 少なく と も 6 0重量%、 よ り好ま しく は少なく と も 8 0重量%がこ れらの粒径の範囲内にあれば効果がある。 ソーダ溶出率を高く し、 残渣中のソ一ダ分を 1 %以下にするためにはこれらの粒度の調整が 有効であるこ とが見い出された。 粒度をあま り小さ くするこ とは必 要なく 、 経済的でないと思われる。 The amount of the calcium compound to be added is such that when the sodium component in the sodium aluminosilicate is represented by Na 2 O and the silicon component is represented by Si 0 2 , the molar ratio is C a OZN a 2 O or Z and C a OZ S i 0 2 is typically 1 or more, properly favored properly is preferred 1-5, yo Ri may range from 2-4. If these ratios are less than 1, it is not possible to make a compound capable of sufficiently eluting the soda content in the sodium aluminosilicate. If these ratios are too large, compounds that are difficult to elute may be formed, and the elution rate of soda may decrease. When the sodium aluminosilicate and the calcium compound are mixed, it is preferable that the sodium aluminosilicate and the calcium compound are ground to reduce the particle size. Preferably, but not limited to, those having a particle size in the range of 1 μm to 300 m, more preferably 80 / zm or less, especially 60 / im or less. is there. By making these particle sizes smaller, the soda elution rate can be increased. However, not all particles need to be within these ranges, at least 60% by weight, and more preferably at least 80% by weight, are within these ranges. Is effective. It has been found that adjusting the particle size is effective in increasing the soda elution rate and reducing the soda content in the residue to 1% or less. It is not necessary to reduce the particle size too much, and it would not be economical.
アルミ ノ珪酸ソーダとカルシウム化合物は乾燥状態で混合しても よいが、 C a 〇が C a (OH) 2 と して一部溶解し、 焼成前に液相 でソーダライ 卜の N a と C aが置換反応するこ とが考えられるので 水を加えて湿潤状態で混合するこ とが好ま しく 、 湿潤状態で混合し た場合には混合物をペレ ツ ト化でき、 ペ レ ツ ト化するこ とが好ま し い。 ペ レ ッ ト化するこ とによ り 、 焼成時に粉塵の発生が抑えられ、 また移送が容易になる。 なお、 ペレ ッ ト化する際にも、 反応性はも との粒子の粒度に依存するので、 も との粒子が上述の粒度を有する こ とが望ま しい。 The sodium aluminosilicate and the calcium compound may be mixed in a dry state, but C a 一部 partially dissolves as C a (OH) 2, and the Na and C a of the sodalite in the liquid phase before firing. It is preferable that water is added and mixed in a wet state, since the mixture may undergo a substitution reaction.When mixed in a wet state, the mixture can be pelletized and pelletized. Is preferred. By forming pellets, generation of dust during firing is suppressed, and transfer is facilitated. When pelletizing, since the reactivity depends on the particle size of the original particles, it is desirable that the original particles have the above-mentioned particle size.
アルミ ノ珪酸ソーダとカルシウム化合物の混合物は一般的には 8 0 0〜 1 4 0 0 °C、 特に好ま しく は 1 0 0 0〜 1 3 5 0 °Cの温度で 加熱する。 加熱温度は加熱後のソーダ分の溶出率に対して影響が大 きい。 溶出し易い化合物を生成するために一定範囲内の加熱温度が 必要なものと考えられる。 加熱雰囲気は大気中でよい。 加熱時間は 特に限定されないが、 一般的に 5〜 1 8 0分でよ く 、 2 0〜 8 0分 が好ま しい。 昇温速度 ' 限定されないが、 一般的に 1 0〜 3 0 °C / 分でよい。 冷却は急冷、 徐冷のいずれでもよい。 加熱装置も限定さ れないが、 キルンなどが工業的に有利である (この加熱処理によ り 生成した物質を加熱処理物と記すこ とがある) 。 The mixture of the sodium aluminosilicate and the calcium compound is generally heated at a temperature of 800 to 140 ° C, particularly preferably 100 to 135 ° C. The heating temperature has a large effect on the soda elution rate after heating. It is considered that a heating temperature within a certain range is required to generate compounds that can be easily eluted. The heating atmosphere may be in the air. The heating time is not particularly limited, but is generally 5 to 180 minutes, and is preferably 20 to 80 minutes. Is preferred. Heating rate 'Although not limited, generally 10 to 30 ° C / min may be used. Cooling may be either rapid cooling or slow cooling. The heating device is not limited, but kilns and the like are industrially advantageous (a substance produced by this heat treatment may be referred to as a heat-treated product).
加熱処理した後、 加熱処理物は溶出し易くするために粉砕するこ とが好ま しい。  After the heat treatment, the heat-treated product is preferably ground to facilitate elution.
溶出は水、 または水溶液で行なう。 水又は水溶液の量は特に限定 されないが、 好ま しく は加熱処理物の 1 〜 3 0重量倍、 よ り好ま し く は 1 0〜 2 0重量倍でよい。 温水を用いるこ とによ り溶出を促進 するこ とができる。 一般的には 5 0 °C以上、 好ま しく は 7 0 °C以上 である。 溶出時間は特に限定されないが、 5〜 1 2 0分、 好ま しく は 6 0〜 9 0分でよレヽ。  Elution is performed with water or an aqueous solution. The amount of water or aqueous solution is not particularly limited, but is preferably 1 to 30 times by weight, more preferably 10 to 20 times by weight of the heat-treated product. Elution can be promoted by using warm water. It is generally at least 50 ° C, preferably at least 70 ° C. The elution time is not particularly limited, but may be 5 to 120 minutes, preferably 60 to 90 minutes.
以上の如く 、 本発明に従い、 アルミ ノ珪酸ソーダとカルシウム化 合物を混合し、 加熱処理し、 ソーダ分の溶出を行なう こ とによ り 、 溶出残渣中のソーダ分を極めて少なくするこ とが可能である。 条件 を適当に選択するこ とによ り 、 残留ソーダ分を 1 %以下、 さ らには 0 . 6 %以下、 0 . 1 %以下、 特に 0 . 0 1 %以下にするこ とが可 能であり 、 これによつて珪酸カルシウムを主成分とするナ ト リ ゥム 回収残渣固形物はセメ ン ト原料と して使用するこ とが可能になる。 さ らに、 アルミ ノ珪酸ソーダ中のソーダ分の回収率と して計算して 、 9 5 %以上、 さ らには 9 9 %以上、 特に 9 9 . 9 %以上の回収 ( 抽出) 率を達成するこ と も可能である。 このよ う に高いソーダ分の 回収 (抽出) 率が達成可能であるこ とは従来知られておらず、 特に ナ ト リ ゥム回収残渣固形物中のソーダ分を 1 %以下にできるこ とに よ りそれを有用なセメ ン ト原料と して実用できるこ とは、 本発明の 有用性を極めて高くする ものである。  As described above, according to the present invention, sodium aluminosilicate and a calcium compound are mixed, heated, and soda is eluted, so that the amount of soda in the eluted residue can be extremely reduced. It is possible. By selecting appropriate conditions, the residual soda content can be reduced to 1% or less, further to 0.6% or less, 0.1% or less, and particularly to 0.01% or less. Thus, the solid of sodium recovered from sodium, which is mainly composed of calcium silicate, can be used as a cement raw material. Further, the recovery (extraction) rate of more than 95%, more preferably more than 99%, especially more than 99.9% is calculated as the recovery rate of soda in sodium aluminosilicate. It can be achieved. It has not been heretofore known that such a high soda recovery (extraction) rate can be achieved, and in particular, it is possible to reduce the soda content in the solids of sodium recovered to 1% or less. The fact that it can be practically used as a useful cement raw material greatly enhances the usefulness of the present invention.
加熱処理物を水又は水溶液で溶出処理する際、 ソーダ分と共にァ ノレミナ分も溶出しても、 この溶出液はそのままボーキサイ トの処理 (バイヤー法など) に再利用でき、 ソーダ分とアルミナ分を分離す る必要はない。 一方、 溶出残渣中にアルミナ分が残ってもセメ ン ト 原料と して用いるのに問題はなく 、 またアルミナ分が全く含まれな い溶出残渣はそれはそれでセメ ン ト原料と して好ま しいものである 本発明のプロセスの実施例を図 1 を参照して説明する。 この処理 プロセスは、 大別して焼成工程、 溶出工程で構成されている。 When the heat-treated product is eluted with water or aqueous solution, Even if the noremina component is also eluted, this eluate can be reused for bauxite treatment (eg, the Bayer method) without the need to separate soda and alumina. On the other hand, if alumina remains in the elution residue, there is no problem in using it as a cement raw material, and an elution residue that does not contain alumina at all is preferable as a cement raw material. An embodiment of the process of the present invention will be described with reference to FIG. This treatment process is roughly divided into a baking step and an elution step.
(焼成工程)  (Firing process)
各種アルミ ノ珪酸ソーダを管路 1 1 よ り 、 また添加剤の C a Oを 管路 1 2 よ り混合装置 1 、 例えば二一ダーゃ混練機に供給し、 アル ミ ノ珪酸ソーダと C a Oを良く 混合する。 この混合物は、 管路 1 3 よ り加熱装置 2、 例えばキルンに供給され、 1 0 0 0 °C〜 1 3 5 0 °Cで焼成処理される。 次に、 この焼成処理物は管路 1 4 よ り冷却装 置 3、 例えばロータ リ ークーラーまたはスチールベル ト クーラーな どに送られ冷却し、 ついで管路 1 5 よ り粉砕装置 4、 例えばハンマ 一ミルに供給され粉砕される。  Various kinds of sodium aluminosilicate are supplied through line 11 and the additive CaO is supplied through line 12 to a mixing device 1, for example, a double kneader. Mix O well. This mixture is supplied from line 13 to heating device 2, for example, a kiln, and is calcined at 100 ° C. to 135 ° C. Next, the calcined product is sent through line 14 to a cooling device 3, for example, a rotary cooler or a steel belt cooler, where it is cooled, and then, through line 15, a crushing device 4, for example, a hammer. It is supplied to a mill and pulverized.
(溶出工程)  (Elution process)
焼成工程の粉砕装置 4で粉砕された粉砕物は、 管路 1 6 を介して 、 管路 1 7 よ り の水 (または水溶液) と共に溶出装置 5 に供給され 、 撹拌混合しながら 5 0 °C〜 1 0 0 °Cで溶出処理される。 溶出装置 5 のス ラ リ ーは、 管路 1 8 よ り抜き出され、 固液分離装置 6、 例え ば水平ベル ト フイノレターまたはロ ータ リ ー ドラムフイノレターで固液 分離される。 有用成分のナ ト リ ウムを含有する濾液は、 管路 2 0に よ り抜き出され再利用される。 分離ケーキは、 管路 1 9 よ り供給さ れる洗浄水によ り洗浄され、 管路 2 1 よ り排出される。 このナ ト リ ゥム回収残渣は、 カルシウムおよびシリ カが主成分であ り 、 ナ ト リ ゥム含有量が 1 %以下であるのでセメ ン ト原料と して有効利用され る。 また、 この時の洗浄濾液も管路 2 0 よ り抜き出され再利用され る。 The pulverized material pulverized by the pulverizing device 4 in the firing step is supplied to the elution device 5 via the pipe 16 together with the water (or aqueous solution) from the pipe 17 and is stirred at 50 ° C. Elution is performed at ~ 100 ° C. The slurry of the elution device 5 is extracted from the pipe 18 and separated into solid and liquid by a solid-liquid separation device 6, for example, a horizontal belt finoletter or a rotary drum finoletter. The filtrate containing the useful component sodium is withdrawn through line 20 and reused. The separated cake is washed by the washing water supplied from the pipe 19, and discharged from the pipe 21. This sodium recovery residue is mainly composed of calcium and silica. Since the rubber content is less than 1%, it is effectively used as a cement raw material. Also, the washing filtrate at this time is extracted from the pipe 20 and reused.
図 2 〜 4は本発明のプロセスを実施するよ り具体的に装置の構成 例を分解して示すものである。 これらの図において、 混合機 3 1 に は、 ソ一ダライ ト貯槽 3 2 を介してソーダライ トが、 また C a 〇貯 槽 3 3 、 C a 〇粉砕機 3 4 、 C a O定量供給機 3 5 を介して C a 〇 力 それぞれ所定の粒度、 所定の量で供給され、 混合機 3 1 中で混 合された後、 混合物はキルン投入装置 3 6 を介してキルン 3 7 に投 入され所定温度で焼成される。 焼成物は冷却機 3 8で冷却された後 、 解砕機粉碎機 3 9で粉砕されてから、 溶出槽 4 0 中で温水によ り 溶出処理される。 溶出処理されたス ラ リ ーは濾過機 4 1 で濾液とケ ーキとに分離され、 濾液は濾液槽 4 2 を経て、 蒸発濃縮装置 4 3 を 介してバイヤー法などのアルミナ処理プロセスに利用される。 一方 、 濾過後のケーキはケーキ受槽 4 4 を介して乾燥機 4 5 、 乾燥ケ一 キ受槽 4 6 を経てセメ ン ト原料と して利用される。 4 7 はバグフ ィ ノレターである。 実施例  FIGS. 2 to 4 disassemble and show a configuration example of the apparatus more specifically for performing the process of the present invention. In these figures, sodalite is supplied to a mixer 31 via a sodalite storage tank 32, and a Ca〇 storage tank 33, a Ca〇 pulverizer 34, and a CaO quantitative feeder 3 are provided. After the mixture is fed into the kiln 37 via the kiln charging device 36, the mixture is injected into the kiln 37 via the kiln charging device 36 Fired at temperature. After the calcined product is cooled by a cooler 38, it is pulverized by a crusher / pulverizer 39, and then subjected to elution treatment with warm water in an elution tank 40. The slurry subjected to the elution treatment is separated into a filtrate and a cake by a filter 41, and the filtrate passes through a filtrate tank 42, passes through an evaporative concentrator 43, and is used in an alumina treatment process such as a Bayer method. Is done. On the other hand, the cake after filtration is passed through a cake receiving tank 44, a dryer 45, and a drying cake receiving tank 46, and is used as a cement raw material. 47 is a bug fino letter. Example
(例 1 )  (Example 1 )
水酸化アルミニウム · アルミナ製造のバイヤー法に追加した脱珪 工程から得られる ソーダライ トの分析値を表 1 に示す。 このソーダ ライ ト と粒径が 5 3 ^x m以下の C a O及び混合物全体での水分が 4 0 %になる量の水を混合装置に投入し、 混合する。 この時の C a O 混合量は、 ソーダライ ト中のケィ素成分を S i 0 2 で表した時、 C a O / S i 0 2 モル比 = 3 となるよ う に添加した。 この混合物をキ ルンで 1 2 0 0 °C、 滞留時間 3 0分で焼成処理し、 次いで冷却装置 に投入し冷却した後粉砕装置で粉砕した。 Table 1 shows the analytical values of sodalite obtained from the desiliconization process added to the Bayer method for the production of aluminum hydroxide and alumina. This soda light, CaO having a particle size of 53 ^ xm or less, and water in such an amount that the total water content of the mixture becomes 40% are put into a mixing device and mixed. C a O mixing amount at this time, when expressed the Kei-containing components in Sodarai preparative S i 0 2, was added to the power sale by a C a O / S i 0 2 molar ratio = 3. The mixture is calcined in a kiln at 1200 ° C. for a residence time of 30 minutes, and then cooled. And cooled, and then pulverized by a pulverizer.
粉砕処理物は溶出槽に投入し、 水を焼成処理物 (粉砕品) の 2 0 重量倍添加し、 9 0 °Cで 6 0分間良く撹拌混合し溶出を行った。 次 いでこの溶出スラ リ ーを濾過機に供給し固液分離を行う と共に、 分 離ケーキを水で良く洗浄した。  The pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
得られた回収液およびケーキのナ ト リ ゥム成分濃度を化学分析し 、 ナ ト リ ゥム成分の回収率およびケーキ中のナ ト リ ゥム残存濃度を 求めた。 その結果、 ナ ト リ ウムの回収率は 9 9 . 9 %と高回収率が 得られ、 さ らに不溶解残渣のナ ト リ ウム濃度も 0 . 0 1 dry %と非 常に低く 、 セメ ン ト原料と して利用できる有用物が得られた。 ソーダライ ト分析値
Figure imgf000012_0001
The obtained recovered liquid and cake were chemically analyzed for the sodium component concentration, and the recovery ratio of the sodium component and the remaining sodium concentration in the cake were determined. As a result, a high sodium recovery rate of 99.9% was obtained, and the sodium concentration of the insoluble residue was also very low at 0.01% dry%. A useful material that can be used as a raw material was obtained. Soda light analysis value
Figure imgf000012_0001
(例 2 ) (Example 2)
例 1 と同じソーダライ トに、 粒径が 3 0 0 /z m超の C a Oを混合 装置に投入し、 混合する。 この時の C a O混合量は、 例 1 と同様に 、 C a O / S i O 2 モル比 = 3 となるよ う に添加した。 この混合物 をキルンで 1 2 0 0 °C、 滞留時間 6 0分で焼成処理し、 次いで冷却 装置に投入し冷却した後粉砕装置で粉砕した。  Into the same soda light as in Example 1, CaO having a particle size of more than 300 / zm is charged into a mixing device and mixed. At this time, as in Example 1, the CaO mixed amount was added so that the molar ratio of CaO / SiO2 = 3. This mixture was calcined in a kiln at 1200 ° C. for a residence time of 60 minutes, then put into a cooling device, cooled, and then ground by a grinding device.
粉砕処理物は溶出槽に投入し、 水を焼成処理物 (粉砕品) の 2 0 重量倍添加し、 9 0 °Cで 6 0分間良く撹拌混合し溶出を行った。 次 いでこの溶出スラ リ ーを濾過機に供給し固液分離を行う と共に、 分 離ケーキを水で良く洗浄した。  The pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
得られた回収液およびケーキのナ ト リ ゥム成分濃度を化学分析し 、 ナ ト リ ゥム成分の回収率およびケーキ中のナ ト リ ゥム残存濃度を 求めた。 その結果、 ナ ト リ ウムの回収率は 2 2. 5 %、 不溶解残渣 のナ ト リ ウム濃度は 8. 8 1 dry %であった。 The obtained recovered liquid and cake were chemically analyzed for the sodium component concentration, and the recovery rate of the sodium component and the sodium remaining concentration in the cake were determined. I asked. As a result, the recovery rate of sodium was 22.5%, and the sodium concentration of the insoluble residue was 8.81 dry%.
(例 3 )  (Example 3)
例 1 と同じソーダライ 卜に、 粒径が 5 3 μ πι以下の C a 〇を混合 装置に投入し、 混合する。 この時の C a O混合量は、 例 1 と同様に 、 C a Oノ S i O 2 モル比 = 3 となるよ う に添加した。 この混合物 をキルンで 8 0 0 °C、 滞留時間 3 0分で焼成処理し、 次いで冷却装 置に投入し冷却した後粉砕装置で粉砕した。 Into the same sodalite as in Example 1, C a の with a particle size of 53 μπι or less is charged into a mixing device and mixed. C a O mixing amount at this time, in the same manner as Example 1, was added to the power sale by a C a O Bruno S i O 2 molar ratio = 3. This mixture was calcined in a kiln at 800 ° C. for a residence time of 30 minutes, then put into a cooling device, cooled, and then pulverized by a pulverizer.
粉砕処理物は溶出槽に投入し、 水を焼成処理物 (粉砕品) の 2 0 重量倍添加し、 9 0 °Cで 6 0分間良く撹拌混合し溶出を行った。 次 いでこの溶出スラ リ ーを濾過機に供給し固液分離を行う と共に、 分 離ケーキを水で良く洗浄した。  The pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water.
得られた回収液およびケーキのナ ト リ ウム成分濃度を化学分析し 、 ナ ト リ ウム成分の回収率およびケーキ中のナ ト リ ウム残存濃度を 求めた。 その結果、 ナ ト リ ウムの回収率は 6 1 . 8 %、 不溶解残渣 のナ ト リ ウム濃度は 4. 3 3 dry0/。であった。 The sodium concentration of the obtained recovered liquid and cake was chemically analyzed to determine the sodium component recovery rate and the sodium concentration remaining in the cake. As a result, the sodium recovery was 61.8%, and the sodium concentration of the insoluble residue was 4.33 dry 0 /. Met.
(例 4 )  (Example 4)
使用済み合成ゼォライ ト 4 Aを用いて実験を行った。 合成ゼオラ ィ ト 4 Aの分析値を表 2に示す。 このゼォライ ト と C a Oを混合装 置に投入し、 混合する。 この時の C a 〇混合量は、 ソ一ダライ ト中 のケィ素成分を S i 02 で表した時、 C a O/ S i 〇2 モル比 = 3 となるよ う に添加した。 この混合物をキルンで 1 2 0 0 °C、 滞留時 間 6 0分で焼成処理し、 次いで冷却装置に投入し冷却した後粉砕装 置で粉砕した。 粉砕処理物は溶出槽に投入し、 水を焼成処理物 (粉 碎品) の 2 0重量倍添加し、 9 0 °Cで 6 0分間良く撹拌混合し溶出 を行った。 次いでこの溶出スラ リ ーを濾過機に供給し固液分離を行 う と共に、 分離ケーキを水で良く 洗浄した。 得られた回収液および ケーキのナ ト リ ウム成分濃度を化学分析し、 ナ ト リ ウム成分の回収 率およびケーキ中のナ ト リ ウム残存濃度を求めた。 その結果、 ナ ト リ ウムの回収率は 9 3 . 4 %と高回収率が得られ、 さ らに不溶解残 渣のナ ト リ ウム濃度も 0 . 6 6 dr y %と非常に低く 、 セメ ン ト原料 と して利用できる有用物が得られた。 表 2 ゼォライ ト (使用済み合成ゼォライ ト 4 A ) 分析値
Figure imgf000014_0001
以上の通り 、 本発明によれば、 次の効果が奏せられる。
An experiment was performed using used synthetic zeolite 4A. Table 2 shows the analysis values of synthetic zeolite 4A. The zeolite and CaO are charged into a mixing device and mixed. C a 〇 mixing amount at this time, when expressed the Kei-containing components in the Soviet one Dalai preparative S i 0 2, was added to the power sale by a C a O / S i 〇 2 molar ratio = 3. This mixture was calcined in a kiln at 1200 ° C. for a residence time of 60 minutes, then put into a cooling device, cooled, and then pulverized by a pulverizer. The pulverized product was put into an elution tank, water was added at 20 times the weight of the calcined product (pulverized product), and the mixture was mixed well at 90 ° C for 60 minutes to perform elution. Next, the elution slurry was supplied to a filter to perform solid-liquid separation, and the separated cake was thoroughly washed with water. The obtained recovered liquid and The sodium component concentration in the cake was chemically analyzed to determine the sodium component recovery rate and the residual sodium concentration in the cake. As a result, a high sodium recovery of 93.4% was obtained, and the sodium concentration of the insoluble residue was extremely low at 0.66 dry%. Useful materials that can be used as cement raw materials were obtained. Table 2 Analytical values of zeolite (used synthetic zeolite 4A)
Figure imgf000014_0001
As described above, according to the present invention, the following effects can be obtained.
( 1 ) 廃棄物あるいは未利用天然資源のアルミ ノ珪酸ソーダから (1) From waste or unused natural resources of sodium aluminosilicate
、 有用成分であるナ ト リ ゥムをほぼ完全に回収するこ とが可能であ る。 However, it is possible to almost completely recover sodium, which is a useful component.
( 2 ) 廃棄物あるいは未利用天然資源のアルミ ノ珪酸ソーダから 、 ナ ト リ ウム含有濃度が非常に低いセメ ン ト原料を製造するこ とが できる。 産業上の利用分野  (2) Cement raw materials with very low sodium content can be produced from waste or sodium aluminosilicate, an unused natural resource. Industrial applications
本発明によれば、 現在廃棄されている、 も しく は有効利用されて いないアルミ ノ珪酸ソーダ、 例えばアルミナおよびアルミニウム製 造時に発生する赤泥やソーダライ ト、 各種用途で利用されたゼオラ ィ ト、 または天然に存在するゼォライ トおよびソーダライ トを、 そ れらに含有するナ ト リ ウムを分離するこ とで、 ナ ト リ ウムの回収利 用とナ ト リ ウムを除去した残渣をセメ ン ト原料等と して有効利用す るこ とができる。  According to the present invention, sodium aluminosilicate which is currently discarded or not effectively used, such as red mud and soda light generated during the production of alumina and aluminum, zeolite used in various applications, Alternatively, by separating sodium contained in naturally occurring zeolite and sodalite, sodium can be recovered and sodium-removed residue can be cemented. It can be effectively used as a raw material.

Claims

請 求 の 範 囲 The scope of the claims
1 . アルミ ノ珪酸ソ一ダにカルシウム化合物を加え、 1. Add calcium compound to sodium aluminosilicate,
アルミ ノ珪酸ソ一ダとカルシウム化合物の混合物を加熱処理し、 得られる加熱処理物を水または水溶液で溶出処理して、 アルミ ノ 珪酸ソーダ中のナ ト リ ゥム分を溶出させ、 そして  Heat-treating a mixture of sodium aluminosilicate and a calcium compound, eluting the resulting heat-treated product with water or an aqueous solution to elute sodium in the sodium aluminosilicate, and
前記溶出処理生成物から、 溶出ナ ト リ ゥムを回収する と と もに、 ナ ト リ ゥム含有量が非常に少ない有用物を得る  The elution sodium is recovered from the elution-treated product, and a useful substance having a very low sodium content is obtained.
工程を含むアルミ ノ珪酸ソーダの処理方法。  A method for treating sodium aluminosilicate including a process.
2. カルシウム化合物が、 酸化カルシウム、 炭酸カルシウム、 水 酸化カルシウム、 も しく は硫酸カルシウムの単体も しく はこれら 2 種類以上の混合物、 またはそれらを含む混合物である請求項 1記載 のアルミ ノ珪酸ソーダの処理方法。  2. The sodium aluminosilicate according to claim 1, wherein the calcium compound is calcium oxide, calcium carbonate, calcium hydroxide, calcium sulfate alone, or a mixture of two or more thereof, or a mixture containing them. Processing method.
3. アルミ ノ珪酸ソーダとカルシウム化合物の混合比率が、 ァ ルミ ノ珪酸ソーダ中のナ ト リ ウム成分を N a 2 Oで、 ケィ素成分を S i O2 で表し、 またカルシウム化合物中のカルシウム成分を C a Oで表した時、 以下のモル比である請求項 1又は 2記載のアルミ ノ 珪酸ソーダの処理方法。 3. The mixing ratio of sodium aluminosilicate and calcium compound is such that the sodium component in sodium aluminum silicate is represented by Na 2 O, the silicon component is represented by Sio 2 , and the calcium content in calcium compound is 3. The method for treating sodium aluminosilicate according to claim 1, wherein the components have the following molar ratio when expressed as C a O.
C a OZN a 2 0 = l〜5 または C a 〇Z S i 〇2 = l〜 5C a OZN a 2 0 = l~5 or C a 〇_ZS i 〇 2 = l to 5
4. アル ミ ノ珪酸ソ一ダぉよびアルミ ノ珪酸ソ一ダに添加混合す るカルシウム化合物の粒径は少なく と も 6 0重量%以上が 3 0 0 μ m以下である請求項 1〜 3のいずれか 1項に記載のアルミ ノ珪酸ソ —ダの処理方法。 4. The calcium compound to be added to and mixed with sodium aluminosilicate and sodium aluminosilicate has a particle diameter of at least 60% by weight or more and 300 μm or less. The method for treating sodium aluminosilicate according to any one of the above.
5. アルミ ノ珪酸ソーダとカルシウム化合物の混合を、 混合物が 湿った状態で行なう請求項 1〜 4のいずれか 1項に記載のアルミ ノ 珪酸ソーダの処理方法。  5. The method for treating sodium aluminosilicate according to any one of claims 1 to 4, wherein the mixing of the sodium aluminosilicate and the calcium compound is performed in a wet state of the mixture.
6. アルミ ノ珪酸ソーダとカルシウム化合物との混合物の加熱処 理において、 加熱処理温度が 1 0 0 0〜 1 3 5 0 °Cであ り 、 加熱処 理時間が 5〜 1 8 0分である請求項 1 〜 5のいずれか 1 項に記載の アルミ ノ珪酸ソーダの処理方法。 6. Heat treatment of the mixture of sodium aluminosilicate and calcium compound The aluminum according to any one of claims 1 to 5, wherein the heat treatment temperature is 100 to 135 ° C and the heat treatment time is 5 to 180 minutes. How to treat sodium silicate.
7 . アルミ ノ珪酸ソーダとカルシウム化合物との混合加熱処理物 からのナ ト リ ゥム溶出において、 上記混合加熱処理物を解砕または 粉砕し、 その解碎物または粉砕物に添加する水または水溶液が加熱 処理物の 1 〜 3 0重量倍であり、 溶出処理温度が 5 0 °C以上であり 、 溶出時間が 5〜 1 2 0分である請求項 1 〜 6のいずれか 1 項に記 载のアルミ ノ珪酸ソーダの処理方法。  7. In the elution of sodium from the mixed heat-treated product of sodium aluminosilicate and calcium compound, the above mixed heat-treated product is crushed or pulverized, and water or an aqueous solution added to the crushed or pulverized material. Is 1 to 30 times the weight of the heat-treated product, the elution temperature is 50 ° C. or higher, and the elution time is 5 to 120 minutes. Processing method of sodium aluminosilicate.
8 . 前記溶出処理操作で得られるス ラ リ ー (ナ ト リ ウム溶出液と 溶出残渣の懸濁液) を固液分離し、 得られたケーキを水で十分洗浄 して、 ナ ト リ ゥム含有量 1 %以下のナ ト リ ゥム回収残渣を得る請求 項 7記載のアルミ ノ珪酸ソーダの処理方法。  8. The slurry (a suspension of the sodium eluate and the elution residue) obtained by the above-mentioned elution treatment is subjected to solid-liquid separation, and the obtained cake is sufficiently washed with water. 8. The method for treating sodium aluminosilicate according to claim 7, wherein a sodium recovery residue having a sodium content of 1% or less is obtained.
9 . 前記ナ ト リ ウム回収残渣、 すなわち、 アルミ ノ珪酸ソーダと カルシウム化合物との混合加熱処理物からナ ト リ ゥムを全ても しく は一部除去したナ ト リ ゥム含有量が 1 。/。以下の残渣をセメ ン ト生産 の原料と して用いる請求項 1 〜 8のいずれか 1 項に記載のアルミ ノ 珪酸ソーダの処理方法。  9. The content of sodium obtained by removing all or part of sodium from the sodium-recovered residue, that is, the mixed and heat-treated product of sodium aluminosilicate and a calcium compound is 1. /. The method for treating sodium aluminosilicate according to any one of claims 1 to 8, wherein the following residue is used as a raw material for cement production.
1 0 . 前記ナ ト リ ウム回収をした水溶液を、 アルカ リ溶液または 水酸化ナ ト リ ウムを必要とする設備、 例えばバイヤー法で再利用す る請求項 1 〜 9のいずれか 1 項に記載のアルミ ノ珪酸ソーダの処理 方法。  10. The method according to any one of claims 1 to 9, wherein the aqueous solution from which the sodium has been recovered is reused by equipment requiring an alkali solution or sodium hydroxide, for example, by a Bayer method. Treatment of sodium aluminosilicate.
PCT/JP2000/009443 1999-12-28 2000-12-28 Process for treating sodium aluminosilicate WO2001047809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001549292A JP4480317B2 (en) 1999-12-28 2000-12-28 Aluminosilicate soda treatment method
AU22318/01A AU2231801A (en) 1999-12-28 2000-12-28 Process for treating sodium aluminosilicate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/375467 1999-12-28
JP37546799 1999-12-28

Publications (1)

Publication Number Publication Date
WO2001047809A1 true WO2001047809A1 (en) 2001-07-05

Family

ID=18505563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009443 WO2001047809A1 (en) 1999-12-28 2000-12-28 Process for treating sodium aluminosilicate

Country Status (3)

Country Link
JP (1) JP4480317B2 (en)
AU (1) AU2231801A (en)
WO (1) WO2001047809A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU753833B2 (en) * 1999-12-28 2002-10-31 Showa Denko Kabushiki Kaisha Process for treating bauxite
JP2007261834A (en) * 2006-03-27 2007-10-11 Kimura Chem Plants Co Ltd Method and apparatus for manufacturing zeolite
CN111072035A (en) * 2020-01-16 2020-04-28 刘文治 Complete equipment for producing sodium-free silica sol by resource treatment of burning siliceous residues

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051834A (en) * 1973-09-14 1975-05-08
JPH05238727A (en) * 1992-02-24 1993-09-17 Showa Denko Kk Production of improved alumina

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051834A (en) * 1973-09-14 1975-05-08
JPH05238727A (en) * 1992-02-24 1993-09-17 Showa Denko Kk Production of improved alumina

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUO AKAISHI: "Sekidei no riyou ni kansuru saikin no kenkyu doukou", KEIKINZOKU, vol. 26, no. 3, 1976, pages 150 - 163, XP002944146 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU753833B2 (en) * 1999-12-28 2002-10-31 Showa Denko Kabushiki Kaisha Process for treating bauxite
JP2007261834A (en) * 2006-03-27 2007-10-11 Kimura Chem Plants Co Ltd Method and apparatus for manufacturing zeolite
JP4520957B2 (en) * 2006-03-27 2010-08-11 木村化工機株式会社 Zeolite production method and production apparatus
CN111072035A (en) * 2020-01-16 2020-04-28 刘文治 Complete equipment for producing sodium-free silica sol by resource treatment of burning siliceous residues
CN111072035B (en) * 2020-01-16 2023-08-29 刘文治 Complete equipment for producing sodium-free silica sol by incineration of silicon-containing ash and recycling treatment

Also Published As

Publication number Publication date
AU2231801A (en) 2001-07-09
JP4480317B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
RU2644169C1 (en) Method of recovery of alkali and aluminum during processing of the red mud obtained in the bayer process using liming and carbonization technology
CN110668482B (en) Dry-process aluminum fluoride production method
CN113247932A (en) System for preparing polyaluminum chloride from aluminum ash and manufacturing method of polyaluminum chloride
CN102153070A (en) Method for purifying calcined petroleum coke
CN107500325A (en) A kind of gangue produces nano alumina powder jointed method
KR101711363B1 (en) Apparatus and method for recycling black dross of aluminium scrap
GB2056425A (en) Treatment of wastes containing water-leachable fluorides
US2627452A (en) Preparation of lithium chloride from spodumene
JP2003171114A (en) Method for manufacturing silica gel
WO2001047809A1 (en) Process for treating sodium aluminosilicate
US20010005497A1 (en) Process for treating sodium aluminosilicate
US3927172A (en) Method of concentrating gallium
EP0880467A1 (en) Red mud processing
JP2019108251A (en) Manufacturing method for cement raw material
JPS6260833A (en) Treatment of rare earth metal ore
JP4349711B2 (en) Bauxite processing method
JP2002285255A (en) Method for manufacturing zinc oxide calcine or zinc oxide briquette
CN112374522A (en) Barite high-purity purification process
RU2200708C2 (en) Alumina production process
JP4191038B2 (en) Process for producing finely divided calcium carbonate from calcium carbonate enriched industrial by-products
CN111017974A (en) Mineral processing technology for resource utilization of low-grade celestite
US6528028B2 (en) Process for treating bauxite in which a desilication product and an insoluble residure are separately precipitated
CN106755966A (en) A kind of method that gas-based reduction processes red mud
GB1571264A (en) Production of finely divided zeolite
AU719126B2 (en) Red mud processing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 549292

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase