JP3090841B2 - Electric deionized water production equipment - Google Patents

Electric deionized water production equipment

Info

Publication number
JP3090841B2
JP3090841B2 JP06082420A JP8242094A JP3090841B2 JP 3090841 B2 JP3090841 B2 JP 3090841B2 JP 06082420 A JP06082420 A JP 06082420A JP 8242094 A JP8242094 A JP 8242094A JP 3090841 B2 JP3090841 B2 JP 3090841B2
Authority
JP
Japan
Prior art keywords
exchange membrane
deionized water
water
concentrated
concentrated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06082420A
Other languages
Japanese (ja)
Other versions
JPH07265865A (en
Inventor
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP06082420A priority Critical patent/JP3090841B2/en
Publication of JPH07265865A publication Critical patent/JPH07265865A/en
Application granted granted Critical
Publication of JP3090841B2 publication Critical patent/JP3090841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は脱イオン水を用いる半導
体製造工業、製薬工業、食品工業等の各種の工業或いは
発電所(復水処理や補給水処理等)、研究所等で利用さ
れる電気式脱イオン水製造装置に関する。
The present invention is used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, etc. using deionized water, in power plants (condensation treatment, makeup water treatment, etc.), in laboratories, etc. The present invention relates to an electric deionized water production device.

【0002】[0002]

【従来の技術】脱イオン水を製造する装置として古くか
ら、イオン交換樹脂に被処理水を通して脱イオンを行な
う脱イオン水製造装置が知られているが、被処理水の通
水量の増加に伴ってイオン交換樹脂がイオンで飽和され
るため酸及びアルカリ水溶液にて再生しなければなら
ず、この操作上の不利を解消すべく近年、薬剤による再
生が全く不要な電気式脱イオン水製造装置が実用化され
ている。
2. Description of the Related Art As an apparatus for producing deionized water, a deionized water producing apparatus for deionizing water by passing water to be treated through an ion exchange resin has been known for a long time. Since the ion exchange resin is saturated with ions, the ion exchange resin must be regenerated with an acid and alkali aqueous solution. Has been put to practical use.

【0003】この従来の電気式脱イオン水製造装置は図
9に示すように、枠体40の両面にそれぞれ陽イオン交
換膜41、陰イオン交換膜42を接着し、その内部空間
にイオン交換樹脂43(陽イオン交換樹脂及び陰イオン
交換樹脂)を充填してなる脱イオンモジュール44を枠
体40の周囲に付設したゴムパッキン45を介して複数
並設し、各脱イオンモジュール相互間の空間部を濃縮室
46として構成し、これら複数の脱イオンモジュール4
4と濃縮室46との交互配列体の両側部に陽極47と陰
極48を配置してなるものである。なお、上記脱イオン
モジュール44は、具体的には、枠体40内の空間部に
図示しない複数のリブを縦設または横設して枠体40内
の空間部を複数の小室に区画し、これらの小室に上記イ
オン交換樹脂を充填してなるものである。また、濃縮室
46内には、特に図示していないが例えば合成樹脂製ネ
ット等の流路形成材が収納されている。そしてこの装置
において、陽極47と陰極48間に直流電流を通じ、且
つ被処理水を被処理水流入ライン49を通して脱イオン
モジュール44によって形成される脱塩室内に流入せし
め、また濃縮水を濃縮水流入ライン50を通して濃縮室
46内に流入せしめ、更に両電極における電極室にはそ
れぞれ電極水流入ライン51、52を経て電極水を流入
せしめる。
As shown in FIG. 9, a cation exchange membrane 41 and an anion exchange membrane 42 are bonded to both surfaces of a frame 40, respectively, and an ion exchange resin A plurality of deionization modules 44 filled with 43 (cation exchange resin and anion exchange resin) are juxtaposed via a rubber packing 45 provided around the frame 40, and a space between the deionization modules is provided. Is configured as a concentration chamber 46, and the plurality of deionization modules 4
An anode 47 and a cathode 48 are arranged on both sides of an alternately arranged body 4 and the concentration chamber 46. Note that, specifically, the deionization module 44 vertically or horizontally lays a plurality of ribs (not shown) in a space inside the frame 40 to partition the space inside the frame 40 into a plurality of small chambers, These chambers are filled with the ion exchange resin. Although not shown, a flow path forming material such as a synthetic resin net is accommodated in the concentration chamber 46. In this apparatus, a direct current is passed between the anode 47 and the cathode 48, and the water to be treated is caused to flow into the desalination chamber formed by the deionization module 44 through the water inflow line 49 to be treated. The electrode water flows into the concentration chamber 46 through the line 50, and the electrode water flows into the electrode chambers of both electrodes via the electrode water inflow lines 51 and 52, respectively.

【0004】脱塩室内に流入した被処理水はイオン交換
樹脂43の充填層を流下し、その際、該被処理水中の不
純物イオンが除かれ、脱イオン水流出ライン53を経て
脱イオン水が得られる。また濃縮室46内に流入した濃
縮水は濃縮室46内を流下するとき、イオン交換膜4
1、42を介して移動してくる不純物イオンを受け取
り、不純物イオンを濃縮した濃縮水として濃縮水流出ラ
イン57より流出し、更に両電極室内に流入した電極水
は電極水流出ライン54、55より流出する。
[0004] The water to be treated that has flowed into the deionization chamber flows down the packed bed of the ion exchange resin 43, whereupon the impurity ions in the water to be treated are removed, and the deionized water is discharged through a deionized water outflow line 53. can get. When the concentrated water flowing into the concentration chamber 46 flows down in the concentration chamber 46, the ion exchange membrane 4
1 and 42, the impurity ions move through the electrode water outflow lines 54 and 55, receive the impurity ions, flow out of the concentrated water outflow line 57 as concentrated water in which the impurity ions are concentrated, and flow into the electrode chambers. leak.

【0005】以上のような操作によって被処理水中の不
純物イオンは電気的に除去されるので、充填したイオン
交換樹脂を薬液による再生を行なうことなく脱イオン水
を連続的に得ることができる。
[0005] Since the impurity ions in the water to be treated are electrically removed by the above operation, deionized water can be continuously obtained without regenerating the charged ion exchange resin with a chemical solution.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来の装置においては適正な運転条件の設定が困難で
あり、運転状態が極めて不安定であった。即ち、いま脱
塩室56の圧力をPd 、濃縮室46の圧力をPc とする
と、構造上の観点からはPd ≦Pc が好ましい。その理
由は、Pd ≧Pc とするとイオン交換膜41、42の剥
れの問題が生じるからである。イオン交換膜41、42
は枠体40に接着されているが、脱塩室56内の圧力P
d が濃縮室46内の圧力Pc よりも高くなると上記接着
が剥れる方向に力が働くため、甚だしい場合には接着剥
れが生じるか或いは接着部はそのまま残り、その付近の
イオン交換膜が破れるという事態を生じ、その結果、脱
イオン水が漏出したり、脱イオン性能に支障をきたすと
いう不具合を生じる(接着面とは反対の面においてイオ
ン交換膜はゴムパッキン45によって押さえられている
が、シールの不完全な部分があるためこのような問題が
生じる)。
However, in the above-mentioned conventional apparatus, it is difficult to set appropriate operating conditions, and the operating state is extremely unstable. That is, assuming now that the pressure in the desalting chamber 56 is P d and the pressure in the concentration chamber 46 is P c , it is preferable that P d ≦ P c from the structural point of view. The reason is that if P d ≧ P c , the problem of peeling of the ion exchange membranes 41 and 42 occurs. Ion exchange membranes 41, 42
Is bonded to the frame 40, but the pressure P in the desalting chamber 56 is
When d is higher than the pressure Pc in the concentration chamber 46, a force acts in a direction in which the adhesive is peeled off. In severe cases, the adhesive is peeled off or the adhesive part is left as it is, and the ion exchange membrane in the vicinity thereof is removed. The deionized water may leak, resulting in a problem that deionized water leaks or impairs the deionization performance. Such problems arise because of incomplete seals).

【0007】また電気抵抗の観点からもPd ≦Pc が好
ましい。脱塩室56の電気抵抗は、イオン交換膜自体の
電気抵抗及びイオン交換樹脂自体の電気抵抗の外に、イ
オン交換樹脂同士の接触状態に起因する抵抗と、イオン
交換膜とイオン交換樹脂との接触状態に起因する抵抗と
いう要素によってもその大小が決定されるのであり、こ
の場合、外部より強く押し付けられることにより、イオ
ン交換樹脂同士或いはイオン交換膜とイオン交換樹脂と
がより強く接触すると電気抵抗は小さくなる。反対にそ
の接触時の押圧力が弱いと電気抵抗は大きくなり、接触
が解かれて離間すると電気抵抗は更に大きくなる。ここ
において脱塩室56内の圧力Pd が濃縮室46内の圧力
c よりも高い場合には、イオン交換膜41、42が外
方に膨出し、その分脱塩室の内容積が拡がるため、イオ
ン交換樹脂同士或いはイオン交換膜とイオン交換樹脂と
の間の接触が緩むか或いは甚だしい場合にはそれらの接
触が解かれて一部離間する事態が生じ、その結果、電気
抵抗が増大する。電気抵抗が増大すれば、一定の電流を
流すためには高電圧を必要とし、電源部のコスト上昇を
招くこととなる。
From the viewpoint of electric resistance, it is preferable that P d ≦ P c . The electric resistance of the desalting chamber 56 is determined by the resistance caused by the contact state between the ion exchange resins and the ion exchange resin, in addition to the electric resistance of the ion exchange membrane itself and the electric resistance of the ion exchange resin itself. The magnitude is also determined by the resistance element due to the contact state. In this case, when the ion exchange resin is more strongly pressed from the outside, and the ion exchange resin or the ion exchange membrane and the ion exchange resin are more strongly in contact with each other, the electric resistance is reduced. Becomes smaller. Conversely, if the pressing force at the time of the contact is weak, the electric resistance increases, and if the contact is released and the contact is separated, the electric resistance further increases. If the pressure P d desalting chamber 56 wherein is higher than the pressure P c in the concentrating compartment 46, ion exchange membrane 41 bulges outward, expanding the internal volume of that amount demineralizing compartment Therefore, if the contact between the ion-exchange resins or between the ion-exchange membrane and the ion-exchange resin is loose or severe, the contact is released and the ion-exchange resin is partially separated, and as a result, the electric resistance increases. . If the electric resistance increases, a high voltage is required to flow a constant current, which leads to an increase in the cost of the power supply unit.

【0008】上記したように構造面及び電気抵抗の観点
からPd ≦Pc が好ましいが、Pd≦Pc の条件で運転
すると、不純物イオンを高濃度に含む濃縮水が圧力差に
よってイオン交換膜41、42を通って脱塩室56内に
入り込む虞れがある。これはイオン交換膜が完全には液
の透過を阻止し得る性能を有するものではないからであ
る。また濃縮室46内の濃縮水の塩濃度は脱塩室56内
の脱イオン水の塩濃度よりも高いから、両者間に濃度勾
配が生じ、濃度の高い濃縮水側から濃度の低い脱イオン
水側へイオンがイオン交換膜41、42を通して拡散す
る傾向があり、ここにおいて、濃縮室46内の圧力Pc
が脱塩室56内の圧力Pd よりも高いとその傾向は顕著
となる。
[0008] Ion-exchange by but above P d ≦ P c in terms of the structure surface and electrical resistance as is preferred, when operating under the conditions of P d ≦ P c, the pressure differential concentrated water containing impurity ions at a high concentration There is a risk of entering the desalination chamber 56 through the membranes 41 and 42. This is because the ion exchange membrane does not have the ability to completely prevent liquid permeation. Further, since the salt concentration of the concentrated water in the concentration chamber 46 is higher than the salt concentration of the deionized water in the desalination chamber 56, a concentration gradient is generated between the two, and the deionized water having a low concentration is shifted from the concentrated water side having a high concentration. The ions tend to diffuse through the ion exchange membranes 41, 42 to the side, where the pressure P c in the concentration chamber 46
There high when its tendency than the pressure P d desalting chamber 56 becomes remarkable.

【0009】濃縮水が脱イオン水に混入すると、脱イオ
ン水の水質を悪化させ、装置の性能を著しく低下させて
しまう。このような観点からみると運転条件はPd ≧P
c が好ましいことになる。しかしながらPd ≧Pc
は、上記した通りイオン交換膜の剥れや破壊の問題及び
電気抵抗増大に伴う電力コストの上昇という問題を生じ
る。
When the concentrated water mixes with the deionized water, the quality of the deionized water is deteriorated, and the performance of the apparatus is remarkably reduced. From such a viewpoint, the operating condition is P d ≧ P
c will be preferred. However, when P d ≧ P c , as described above, problems such as peeling and destruction of the ion exchange membrane and an increase in electric power cost due to an increase in electric resistance occur.

【0010】このように従来の装置においては、二律相
反する運転条件が存在するため適正な運転条件を設定す
ることが困難であり、運転状態が不安定で、流量や圧力
のわずかな変動でも脱イオン水の性状に影響が及ぼされ
るという問題点があった。
As described above, in the conventional apparatus, it is difficult to set appropriate operating conditions because there are two opposing operating conditions, the operating state is unstable, and even a slight change in the flow rate or pressure is caused. There is a problem that the properties of deionized water are affected.

【0011】また脱イオンモジュール44内にイオン交
換樹脂43を均一に充填する作業は極めて面倒且つ困難
であり作業効率の悪いものであった。更に脱イオンモジ
ュール44と濃縮室46との交互配列体を製作するに当
たっては、複数の脱イオンモジュール44をゴムパッキ
ン45を介して幾重にも積み重ね、これを締付固定手段
を用いて締め付けるものであるため、脱イオンモジュー
ル44の数が多い場合には均等に締め付けることができ
ず、それによりシールの不完全さを招く虞れがあり、こ
のため脱イオンモジュールの組立て枚数にも自ずと限度
があり、大型の装置を製作することが困難であった。
Further, the operation of uniformly filling the deionization module 44 with the ion exchange resin 43 is extremely troublesome, difficult and inefficient. Further, in manufacturing an alternate array of the deionization modules 44 and the concentration chambers 46, a plurality of deionization modules 44 are stacked one upon another via a rubber packing 45, and these are fastened using fastening means. Therefore, when the number of the deionization modules 44 is large, the deionization modules cannot be uniformly tightened, which may cause incomplete sealing, and the number of deionization modules to be assembled is naturally limited. It was difficult to manufacture a large-sized device.

【0012】本発明は叙上の点に鑑みなされたもので、
適正な運転条件を設定でき且つ運転状態の安定化を実現
でき、また製作が容易で装置の大型化も可能である電気
式脱イオン水製造装置を提供することを目的とする。
The present invention has been made in view of the above points,
It is an object of the present invention to provide an electric deionized water producing apparatus that can set appropriate operating conditions, stabilize the operating state, and can be easily manufactured and can be increased in size.

【0013】[0013]

【課題を解決するための手段】本発明は、(1)陽イオ
ン交換膜と陰イオン交換膜との対向面周囲部を直接又は
間接的に接合し、それにより形成される内部空間に濃縮
水流路を形成すると共に濃縮水の出入口を設けてなる濃
縮室ユニットを陽極と陰極との間に所定間隔をおいて複
数並設し、これら濃縮室ユニット相互間の空所内にイオ
ン交換体を充填して脱塩部を構成したことを特徴とする
電気式脱イオン水製造装置、(2)陽イオン交換膜と陰
イオン交換膜とを重ね合わせ、その対向面周囲部を接合
して袋状に構成し、該袋体の内部空間に流路形成材を収
納すると共に、濃縮水出入口を設けて濃縮室ユニットを
構成してなる上記(1)記載の電気式脱イオン水製造装
置、(3)内部がくり抜かれた形状の枠体の一方の面に
陽イオン交換膜を接合すると共に、他方の面に陰イオン
交換膜を接合し、それにより形成される内部空間に流路
形成材を収納すると共に、濃縮水出入口を設けて濃縮室
ユニットを構成してなる上記(1)記載の電気式脱イオ
ン水製造装置、(4)流路形成材がイオン交換体である
上記(2)又は(3)記載の電気式脱イオン水製造装
置、(5)イオン交換体がイオン交換繊維である上記
(4)記載の電気式脱イオン水製造装置、(6)内部が
くり抜かれた形状を有し且つ流路形成材の機能を有する
複数のリブを一体的に設けてなる枠体の一方の面に陽イ
オン交換膜を接合すると共に、他方の面に陰イオン交換
膜を接合し、濃縮水出入口を設けて濃縮室ユニットを構
成してなる上記(1)記載の電気式脱イオン水製造装置
を要旨とする。
According to the present invention, there is provided (1) a method of directly or indirectly joining a peripheral portion of a cation exchange membrane and an anion exchange membrane facing each other, and forming a concentrated water flow in an internal space formed by the joint. A plurality of enrichment chamber units, each having a passage and an inlet / outlet of concentrated water, are arranged in parallel at a predetermined interval between the anode and the cathode, and the space between the enrichment chamber units is filled with an ion exchanger. (2) a cation-exchange membrane and an anion-exchange membrane are overlapped, and the periphery of the opposing surface is joined to form a bag. The electric deionized water producing apparatus according to the above (1), wherein the flow path forming material is stored in the internal space of the bag body, and a concentrated water inlet / outlet is provided to constitute a concentrated room unit. Cation exchange membrane on one side of the hollow frame In addition to the above-mentioned (1), an anion exchange membrane is bonded to the other surface, a flow path forming material is accommodated in an internal space formed by the anion exchange membrane, and a concentrated water inlet / outlet is provided to constitute a concentrated chamber unit. And (4) the apparatus for producing deionized water according to the above (2) or (3), wherein the flow path forming material is an ion exchanger. (4) The electric deionized water production apparatus according to the above (4), which is an exchange fiber, (6) a frame integrally provided with a plurality of ribs having a hollow shape and a function of a flow path forming material. The electric deaeration device according to the above (1), wherein a cation exchange membrane is bonded to one surface of the body, and an anion exchange membrane is bonded to the other surface, and a concentrated water inlet / outlet is provided to constitute a concentration chamber unit. The gist is an ion water production system.

【0014】以下に本発明装置を図面に基づき説明す
る。図1には本発明装置の一実施例が示されている。1
はケーシングで、このケーシング1の下部に基台2が設
けられ、該基台2上に陽極3及び陰極4が相対向して設
けられていると共に、両電極間に複数の濃縮室ユニット
5及び脱塩部6が設けられている。
The apparatus of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the apparatus of the present invention. 1
Is a casing, a base 2 is provided at a lower portion of the casing 1, an anode 3 and a cathode 4 are provided on the base 2 so as to face each other, and a plurality of enrichment chamber units 5 and A desalination unit 6 is provided.

【0015】濃縮室ユニット5は、一対の陰イオン交換
膜7と陽イオン交換膜8との対向面周囲部を直接又は間
接的に接合し、その内部に濃縮水流路を形成すると共に
濃縮水の出入口を設けてなるものであるが、その態様に
は種々のものがある。図3〜図5は上記イオン交換膜相
互の対向面周囲部を間接的に接合した例を示している。
The concentrating chamber unit 5 directly or indirectly joins the peripheral portions of the pair of anion exchange membranes 7 and the cation exchange membranes 8 facing each other to form a concentrated water flow path therein and form concentrated water. Although an entrance is provided, there are various modes. 3 to 5 show an example in which the periphery of the opposing surfaces of the ion exchange membranes is indirectly joined.

【0016】即ち、図3に分解斜視図として示すよう
に、内部をくり抜いた枠体9の一方の面に陰イオン交換
膜7が接合され、該枠体9の他方の面に陽イオン交換膜
8が接合されている。接合箇所は枠体9との当接面であ
るから、上記イオン交換膜7、8においてはそれらの対
向面周囲部が枠体9を介して間接的に接合されている形
となる。接合手段としては通常、接着剤による接着が採
用されるが、他の公知の接合方法、例えば両面テープに
よる接着等を用いてもよい。
That is, as shown in FIG. 3 as an exploded perspective view, an anion exchange membrane 7 is joined to one surface of a hollow frame 9 and a cation exchange membrane is attached to the other surface of the frame 9. 8 are joined. Since the joint portion is a contact surface with the frame 9, the peripheral portions of the opposing surfaces of the ion exchange membranes 7 and 8 are indirectly joined via the frame 9. Adhesion with an adhesive is usually employed as the joining means, but other known joining methods, such as adhesion with a double-sided tape, may be used.

【0017】而して、枠体9にイオン交換膜7、8が接
合されることにより内部に空間が形成され、以て、濃縮
室10が構成される。濃縮室10は濃縮水を流す流路と
なり、この流路の形成保持のため濃縮室10内に流路形
成材が収納される。イオン交換膜7、8は柔軟材質から
なるため脱塩部6からの押圧力により容易に変形する虞
れがあり、その場合、陰イオン交換膜7と陽イオン交換
膜8が相互に接触し合って、内部空間に形成すべき濃縮
水流路が閉鎖される問題が生じる。そこで濃縮水流路を
確保すべく上記流路形成材が収納される。濃縮水流路の
厚さは1〜10mm、好ましくは2〜4mmである。流
路形成材としてはイオン交換体を用いることが好まし
い。イオン交換体を用いれば、濃縮室内の電気抵抗を低
下でき電力コストを低減できる利点がある。該イオン交
換体としてイオン交換繊維が好適に用いられるが、他に
粒状のイオン交換樹脂等を用いることも可能である。イ
オン交換繊維としてはフェルト状のものが好ましい。
Thus, the ion exchange membranes 7 and 8 are joined to the frame 9 to form a space therein, thereby forming the concentration chamber 10. The concentrating chamber 10 serves as a flow path through which the concentrated water flows, and a flow path forming material is stored in the concentrating chamber 10 for forming and maintaining the flow path. Since the ion exchange membranes 7 and 8 are made of a flexible material, there is a possibility that the ion exchange membranes 7 and 8 are easily deformed by the pressing force from the desalting unit 6, and in this case, the anion exchange membrane 7 and the cation exchange membrane 8 come into contact with each other. Thus, there arises a problem that the concentrated water flow path to be formed in the internal space is closed. Then, the above-mentioned flow path forming material is stored to secure the concentrated water flow path. The thickness of the concentrated water channel is 1 to 10 mm, preferably 2 to 4 mm. It is preferable to use an ion exchanger as the flow path forming material. The use of the ion exchanger has the advantage that the electric resistance in the concentration chamber can be reduced and the power cost can be reduced. Although ion exchange fibers are preferably used as the ion exchanger, granular ion exchange resins and the like can also be used. As the ion exchange fiber, a felt-like fiber is preferable.

【0018】図3はフェルト状のイオン交換繊維(例え
ば陽イオン交換繊維)11を用いた例を表しており、ま
た図4は図3の縦断面図を示している。これらの図に示
す如く、イオン交換繊維11は濃縮室10の空間全域を
埋め尽くす如く完全充填状態で収納されている。このよ
うにすればイオン交換繊維11と濃縮室10との間で空
間が生じず、電気抵抗を低下できる利点がある。
FIG. 3 shows an example using felt-like ion exchange fibers (for example, cation exchange fibers) 11, and FIG. 4 is a longitudinal sectional view of FIG. As shown in these figures, the ion exchange fibers 11 are stored in a completely filled state so as to fill the entire space of the concentration chamber 10. In this way, there is an advantage that no space is created between the ion exchange fiber 11 and the concentration chamber 10 and the electric resistance can be reduced.

【0019】フェルト状のイオン交換繊維11を用いる
場合、濃縮水は該繊維内の空隙部を流れることになり、
従って該空隙部が濃縮水流路を形成する。
When the felt-like ion exchange fibers 11 are used, the concentrated water flows through the voids in the fibers.
Therefore, the void forms a concentrated water flow path.

【0020】流路形成材としては上記したイオン交換体
の他に、特に図示しないがプラスチック製等の網体や布
地等を用いることもできる。
As the flow path forming material, in addition to the above-mentioned ion exchanger, although not particularly shown, a net made of plastic or the like, cloth, or the like can also be used.

【0021】本発明において、濃縮室10に流路形成材
を収納する態様としては挿入と固定の2態様がある。即
ち流路形成材は濃縮室10にその空間を埋めるように挿
入(充填)されても或いは単に挿入のみでなく、流路形
成材を例えば枠体9に何らかの固定手段を用いて固定す
るようにしてもよい。
In the present invention, there are two modes for accommodating the flow path forming material in the concentration chamber 10, namely, insertion and fixing. That is, the flow path forming material may be inserted (filled) into the concentration chamber 10 so as to fill the space, or may be simply inserted, and the flow path forming material may be fixed to the frame 9 by using some fixing means, for example. You may.

【0022】本発明は別体の流路形成材を設ける場合に
限定されず、例えば枠体と流路形成材は一体であっても
よい。即ち、図5に示すように枠体9に複数のリブ12
を一体的に設けた場合は、このリブ12が流路形成材と
して機能する。13はリブ12に設けた通水孔である。
The present invention is not limited to the case where a separate flow path forming material is provided. For example, the frame and the flow path forming material may be integrated. That is, as shown in FIG.
Are integrally provided, the rib 12 functions as a flow path forming material. Reference numeral 13 denotes a water passage hole provided in the rib 12.

【0023】14は枠体9の下端部に設けた濃縮水入
口、15は枠体上端部に設けた濃縮水出口で、これらの
出入口は濃縮室内部と連通している。
Reference numeral 14 denotes a concentrated water inlet provided at the lower end of the frame 9, and reference numeral 15 denotes a concentrated water outlet provided at the upper end of the frame. These ports communicate with the inside of the concentration chamber.

【0024】図6、図7は本発明における濃縮室ユニッ
トの別の態様、即ちイオン交換膜相互の対向面周囲部を
直接接合した例を示している。この態様においては、陰
イオン交換膜7と陽イオン交換膜8を重ね合わせ、その
対向面周囲部を接合し、袋状に構成してある。図6にお
いて斜線を施した部分Hは、接合部分を示している。こ
の場合も接合手段としては接着剤による接着、両面テー
プによる接着、その他の公知の接合方法が採用される。
袋体の内部空間が濃縮室10として構成され、該濃縮室
10が濃縮水流路となり、且つ濃縮室10内に、流路形
成材としてのフェルト状のイオン交換繊維11が収納さ
れている。イオン交換繊維以外の流路形成材としては、
図3、図4に関して上記したものと同様のものが用いら
れる。また流路形成材の収納の態様も上記したと同様、
挿入でも固定でもよい。更に図6の縦断面図として図7
に示すようにこの態様においても上記と同様に、イオン
交換繊維11は濃縮室10内に密に充填収納されてい
る。袋体の上下両端部にはそれぞれ濃縮室10内に連通
して濃縮水入口14、濃縮水出口15が設けられてい
る。
FIGS. 6 and 7 show another embodiment of the concentration chamber unit according to the present invention, that is, an example in which the peripheral portions of opposing surfaces of ion exchange membranes are directly joined. In this embodiment, the anion exchange membrane 7 and the cation exchange membrane 8 are overlapped, and the peripheral portions of the opposing surfaces are joined to form a bag. In FIG. 6, a hatched portion H indicates a joined portion. Also in this case, as a joining means, an adhesive with an adhesive, an adhesive with a double-sided tape, and other known joining methods are employed.
The inner space of the bag is configured as a concentration chamber 10, the concentration chamber 10 serves as a concentrated water flow path, and a felt-like ion exchange fiber 11 as a flow path forming material is housed in the concentration chamber 10. As flow path forming materials other than ion exchange fibers,
The same one as described above with reference to FIGS. 3 and 4 is used. Also, the manner of storing the flow path forming material is the same as described above.
It may be inserted or fixed. FIG. 7 is a longitudinal sectional view of FIG.
As described above, in this embodiment, the ion exchange fibers 11 are densely packed and stored in the concentration chamber 10 in the same manner as described above. At the upper and lower ends of the bag, a concentrated water inlet 14 and a concentrated water outlet 15 are provided to communicate with the inside of the concentration chamber 10, respectively.

【0025】上記の如く構成される濃縮室ユニット5は
基台2上に所定間隔をおいて複数並設される。図2は図
1のA−A線断面図であり、この濃縮室ユニット5の取
付固定のためケーシング1内に支持枠16、16が対向
状に設けられる。支持枠16、16はそれぞれ長手方向
に沿って複数の凹溝17、17を有し且つ長手方向両端
部にはL形溝18、18が穿設されている。濃縮室ユニ
ット5はその両側端部が支持枠の凹溝17、17に嵌合
されるように上方から下方に向けて支持枠16、16間
に挿入され、以て複数の濃縮室ユニット5が基台2上に
保持固定される。
A plurality of the concentrating chamber units 5 configured as described above are arranged on the base 2 at predetermined intervals. FIG. 2 is a sectional view taken along the line AA of FIG. 1. Support frames 16, 16 are provided in the casing 1 so as to face each other for mounting and fixing the enrichment chamber unit 5. Each of the support frames 16 has a plurality of concave grooves 17 along the longitudinal direction, and L-shaped grooves 18 are formed at both ends in the longitudinal direction. The enrichment chamber unit 5 is inserted between the support frames 16 and 16 from above to below so that both end portions are fitted into the concave grooves 17 and 17 of the support frame. It is held and fixed on the base 2.

【0026】一方、基台2は微細な網目を有する網状部
19と該網状部19を支持固定している脚部20とから
なり、網状部19には所定間隔毎に上方に突出した突状
部21が設けられている。突状部21は濃縮室ユニット
5の幅方向に沿って設けられ、濃縮室ユニット5を上記
の如く支持枠16、16間に挿入したとき、同時に前後
の突状部21、21間に形成される凹部に該ユニット5
の下端部が嵌合されるようになっている。網状部19
は、イオン交換体が通過しない程度のメッシュの網目を
有しており、従って濃縮室ユニット5、5相互間等にイ
オン交換樹脂を充填したとき該樹脂が網状部19を通り
抜けることはない。
On the other hand, the base 2 comprises a mesh portion 19 having a fine mesh and legs 20 for supporting and fixing the mesh portion 19. The mesh portion 19 has a projecting shape projecting upward at predetermined intervals. A part 21 is provided. The protruding portions 21 are provided along the width direction of the enrichment chamber unit 5, and are formed simultaneously between the front and rear protruding portions 21 when the enrichment chamber unit 5 is inserted between the support frames 16 as described above. Unit 5
Is fitted at the lower end. Net 19
Has a mesh mesh to the extent that the ion exchanger does not pass therethrough, so that when the space between the concentrating chamber units 5 and 5 is filled with the ion exchange resin, the resin does not pass through the net 19.

【0027】基台2は上記構造のものに限定されない。
要は脱イオン水は透過するがイオン交換体は透過しない
微細空孔構造を有するものであればよく、例えばウレタ
ンスポンジを用いることもできる。
The base 2 is not limited to the above structure.
In short, any material having a fine pore structure that allows deionized water to pass therethrough but does not allow the ion exchanger to pass through may be used. For example, a urethane sponge may be used.

【0028】陽極3、陰極4はそれぞれ電極支持体2
2、23の凹欠部に陽極板24、陰極板25をそれぞれ
取付けてなるもので、電極支持体22、23の前面には
通常、それぞれ仕切り膜が接着される。
The anode 3 and the cathode 4 are each an electrode support 2
An anode plate 24 and a cathode plate 25 are respectively attached to the concave portions 2 and 23, and a partition film is usually bonded to the front surfaces of the electrode supports 22 and 23, respectively.

【0029】仕切り膜としては陽イオン交換膜、陰イオ
ン交換膜、或いはイオン交換性のない単なる隔膜等が用
いられるが、本実施例においては濃縮室ユニット5のイ
オン交換膜が仕切り膜を兼ねて用いられている。即ち、
両電極部における電極支持体22、23の前面にはそれ
ぞれ濃縮室ユニット5、5が接着され、陽極3の電極支
持体22前面には濃縮室ユニットの陽イオン交換膜8
が、また陰極4の電極支持体23前面には該ユニットの
陰イオン交換膜7がそれぞれ接着された形となってお
り、それらと陽極板24、陰極板25との間にそれぞれ
陽極室26、陰極室27が形成されている。
As the partition membrane, a cation exchange membrane, an anion exchange membrane, or a mere diaphragm having no ion exchange property is used. In this embodiment, the ion exchange membrane of the concentration chamber unit 5 also serves as the partition membrane. Used. That is,
The enrichment chamber units 5 and 5 are adhered to the front surfaces of the electrode supports 22 and 23 in both electrode portions, respectively, and the cation exchange membrane 8 of the enrichment room unit is mounted on the front surface of the electrode support 22 of the anode 3.
In addition, the anion exchange membranes 7 of the unit are bonded to the front surface of the electrode support 23 of the cathode 4, respectively, and the anode chambers 26, A cathode chamber 27 is formed.

【0030】なお、陽極室26においては電気分解によ
って塩素ガスが発生する虞れがあるので、上記陽極3の
電極支持体22前面に接着する陽イオン交換膜として
は、耐酸化性に優れたフッ素樹脂系の陽イオン交換膜
(例えばナフィオン(商品名))を使用するのが好まし
い。
Since chlorine gas may be generated by electrolysis in the anode chamber 26, the cation exchange membrane adhered to the front surface of the electrode support 22 of the anode 3 is made of fluorine having excellent oxidation resistance. It is preferable to use a resin-based cation exchange membrane (for example, Nafion (trade name)).

【0031】このように構成される陽極3及び陰極4は
ケーシング1内の両端部に位置して基台2上に設置され
る。このとき電極支持体22、23の前面に接着された
濃縮室ユニット5、5はそれぞれその両側端部が支持枠
のL形溝18、18に嵌入し位置固定されるようになっ
ている。
The anode 3 and the cathode 4 configured as described above are placed on the base 2 at both ends in the casing 1. At this time, the enrichment chamber units 5 and 5 adhered to the front surfaces of the electrode supports 22 and 23 respectively have both side ends fitted into the L-shaped grooves 18 and 18 of the support frame and fixed in position.

【0032】濃縮室ユニット5、5相互間の各空所内に
イオン交換体を充填して脱塩部6が構成される。なお、
本実施例のように濃縮室ユニット5のイオン交換膜を仕
切り膜としても利用するのではなく、電極支持体の前面
に専用の仕切り膜を設ける場合は、陽極と濃縮室ユニッ
トとの間並びに陰極と濃縮室ユニットとの間の空所内に
もイオン交換体を充填して脱塩部を構成することができ
る。但し、その場合は、本実施例と異なり、陽極の電極
支持体前面に陰イオン交換膜を、また、陰極の電極支持
体前面に陽イオン交換膜を接着する必要がある。該イオ
ン交換体としては通常、イオン交換樹脂が用いられる
が、イオン交換繊維であってもよい。図1、図2には、
イオン交換体としてイオン交換樹脂28が用いられてい
る例が示されている。この場合、陽イオン交換樹脂及び
陰イオン交換樹脂が用いられるが、上記空所内に充填す
るに当たり、陽イオン交換樹脂と陰イオン交換樹脂の混
合イオン交換樹脂を充填しても或いは、陽イオン交換樹
脂と陰イオン交換樹脂を交互に層状に充填してもよい。
脱塩部6の厚さt(図1)は2〜30mm、好ましくは
4〜10mmである。
The desalting section 6 is formed by filling each space between the concentrating chamber units 5 and 5 with an ion exchanger. In addition,
Instead of using the ion exchange membrane of the concentration chamber unit 5 as a partition membrane as in the present embodiment, when a dedicated partition membrane is provided on the front surface of the electrode support, the space between the anode and the concentration chamber unit and the cathode An ion exchanger can also be filled in the space between the air conditioner and the enrichment unit to form a desalination unit. However, in this case, it is necessary to adhere an anion exchange membrane to the front surface of the anode electrode support and a cation exchange membrane to the front surface of the cathode electrode support, which is different from this embodiment. Usually, an ion exchange resin is used as the ion exchanger, but an ion exchange fiber may be used. 1 and 2 show:
An example in which the ion exchange resin 28 is used as an ion exchanger is shown. In this case, a cation-exchange resin and an anion-exchange resin are used. When filling the space, a mixed cation-exchange resin of a cation-exchange resin and an anion-exchange resin may be used. And an anion exchange resin may be alternately packed in layers.
The thickness t (FIG. 1) of the desalting section 6 is 2 to 30 mm, preferably 4 to 10 mm.

【0033】ケーシング1の上面に被処理水流入管29
が、また下面には脱イオン水流出管30がそれぞれ設け
られ、更にケーシング内下部には濃縮水流入管31及び
電極水流入管32、33がそれぞれ設けられ、これらの
流入管31、32、33は基台の網状部19を貫通し
て、流入管31は濃縮室ユニットの濃縮水入口14に連
結され、また流入管32、33はそれぞれ陽極室26、
陰極室27の各下部に連結されている。濃縮室ユニット
の濃縮水出口15には濃縮水流出管34が連結され、ま
た陽極室26、陰極室27の各上部にはそれぞれ、電極
水流出管35、36が接続され、これらの流入管31、
32、33及び流出管34、35、36はそれぞれケー
シング外方に臨んで延設されている。尚、本発明装置に
おけるケーシングは上記の如き方形状箱型の容器に限定
されず、円筒形の容器でも同様に実施できる。
The treated water inflow pipe 29 is provided on the upper surface of the casing 1.
In addition, a deionized water outflow pipe 30 is provided on the lower surface, and a concentrated water inflow pipe 31 and electrode water inflow pipes 32, 33 are respectively provided in the lower part of the casing, and these inflow pipes 31, 32, 33 are respectively provided. Through the net 19 of the table, the inflow pipe 31 is connected to the concentrated water inlet 14 of the enrichment chamber unit, and the inflow pipes 32, 33 are respectively connected to the anode chamber 26,
It is connected to each lower part of the cathode chamber 27. A concentrated water outlet pipe 34 is connected to the concentrated water outlet 15 of the concentration chamber unit, and electrode water outlet pipes 35 and 36 are connected to upper portions of the anode chamber 26 and the cathode chamber 27, respectively. ,
The outlet pipes 32, 33 and the outlet pipes 34, 35, 36 extend outward from the casing, respectively. The casing in the apparatus of the present invention is not limited to the rectangular box-shaped container as described above, and the present invention can be similarly applied to a cylindrical container.

【0034】本発明装置は上記の如く構成されるが、図
8に示すように本発明装置Jは脱炭酸装置D及び逆浸透
膜装置Kと組み合わせて用いることができる。最初に被
処理水Aを脱炭酸装置Dに通して脱炭酸処理した後、そ
の処理水を逆浸透膜装置Kに通すことにより、電気式脱
イオン水製造装置内においてスケール析出の原因となる
Caイオン、Mgイオン等の硬度成分を除去できるので
好ましい。
Although the apparatus of the present invention is configured as described above, the apparatus J of the present invention can be used in combination with a decarboxylation apparatus D and a reverse osmosis membrane apparatus K as shown in FIG. First, the water to be treated A is decarbonated by passing it through a decarbonation device D, and then the treated water is passed through a reverse osmosis membrane device K, so that Ca which causes scale deposition in the electric deionized water production device is produced. It is preferable because hardness components such as ions and Mg ions can be removed.

【0035】[0035]

【作用】次に、本発明の作用を図1に基づき説明する。
陽極3と陰極4の間に直流電流を通じ、被処理水流入管
29より被処理水を流入すると共に、濃縮水流入管31
より濃縮水を流入し、且つ電極水流入管32、33より
電極水を流入する。
Next, the operation of the present invention will be described with reference to FIG.
By passing a direct current between the anode 3 and the cathode 4, the water to be treated flows into the treated water inflow pipe 29 and the concentrated water inflow pipe 31.
More concentrated water flows in, and electrode water flows in from electrode water inflow pipes 32 and 33.

【0036】被処理水流入管29より流入した被処理水
は下向流で各脱塩部6を流下し、イオン交換樹脂28の
充填層を通過する際に不純物イオンが除かれ、以て脱イ
オン水が得られ、この脱イオン水は基台の網状部19を
通ってケーシング下方に導かれ、脱イオン水流出管30
より流出する。
The water to be treated flowing from the treated water inflow pipe 29 flows down in each of the desalting sections 6 in a downward flow, and when passing through the packed bed of the ion exchange resin 28, impurity ions are removed. Water is obtained, and this deionized water is guided to the lower part of the casing through the mesh portion 19 of the base, and the deionized water outflow pipe 30 is formed.
More outflow.

【0037】一方、濃縮水流入管31より流入した濃縮
水は各濃縮室10を上向流で流入上昇する。脱塩部6内
の不純物イオンは電気的に吸引されてイオン交換膜7、
8を通して濃縮室10に移動する。濃縮室10を流れる
濃縮水はこの移動してくる不純物イオンを受け取り、不
純物イオンを濃縮した濃縮水として濃縮水流出管34よ
り流出する。また電極水流入管32、33より流入した
電極水は電極水流出管35、36より流出する。
On the other hand, the concentrated water flowing from the concentrated water inflow pipe 31 flows upward through each of the concentration chambers 10 and rises. The impurity ions in the desalting section 6 are electrically attracted to the ion exchange membrane 7,
It moves to the concentration chamber 10 through 8. The concentrated water flowing through the concentration chamber 10 receives the moving impurity ions and flows out of the concentrated water outflow pipe 34 as concentrated water in which the impurity ions are concentrated. The electrode water flowing from the electrode water inflow pipes 32, 33 flows out of the electrode water outflow pipes 35, 36.

【0038】図8に示すように、本発明装置に供給され
る被処理水(最初に脱炭酸装置D及び逆浸透膜装置Kに
通した場合はその透過水)Aの一部を濃縮水Bとして利
用することができ、また、濃縮室より流出した濃縮水B
の一部を電極水Cとして利用することもできる。このよ
うに電極水として濃縮水を用いると、イオン量が多いた
めに電流効率が良くなり電力コストを低減できる。更に
該濃縮水Bの残部を脱炭酸装置Dと逆浸透膜装置Kとの
間の被処理水Aの供給部に還流して循環使用するように
してもよく、かくする場合、系全体の水回収率の向上に
寄与できる。尚、濃縮水の濃縮室への流れ方向は下向流
であってもよい。
As shown in FIG. 8, a part of the water A to be treated (the permeated water when first passed through the decarbonation device D and the reverse osmosis membrane device K) supplied to the apparatus of the present invention is converted into concentrated water B And the concentrated water B flowing out of the concentration chamber
Can be used as electrode water C. As described above, when the concentrated water is used as the electrode water, the current efficiency is improved due to the large amount of ions, and the power cost can be reduced. Further, the remaining part of the concentrated water B may be refluxed to the supply part of the water A to be treated between the decarboxylation device D and the reverse osmosis membrane device K for circulation and use. It can contribute to improvement of recovery rate. The flow direction of the concentrated water to the concentration chamber may be a downward flow.

【0039】本発明装置を運転するに当たり、脱塩部6
の圧力Pd と濃縮室10の圧力Pcとの関係において、
d ≧Pc の条件で運転することが可能である。即ち、
d≧Pc の場合には、濃縮室ユニット5のイオン交換
膜7、8は内方に押される方向に力を受け、外方への力
即ち剥がされる方向への力は受けないからイオン交換膜
7、8が剥がれたり、破れたりする問題は何ら生じな
い。
In operating the apparatus of the present invention, the desalination section 6
In relation to the pressure Pd of the concentration chamber 10 and the pressure Pc of the concentration chamber 10,
It is possible to operate under the condition of P d ≧ P c . That is,
When P d ≧ P c , the ion exchange membranes 7 and 8 of the enrichment chamber unit 5 receive a force in the direction of pushing inward and do not receive a force in the outward direction, that is, a force in the direction of peeling. There is no problem that the exchange membranes 7 and 8 are peeled or torn.

【0040】またPd ≧Pc では、脱塩部6が拡がる方
向に力の作用を受けるが、仮りに脱塩部6が拡がったと
しても以下の理由により問題はない。即ち、従来装置の
脱イオンモジュールの如くイオン交換膜が外方に湾曲し
て拡がるのを防止するために枠体40内の空間部に複数
のリブを縦設または横設して枠体40内の空間部を複数
の小室に区画し、この密閉状の狭い小室にイオン交換樹
脂を充填している場合と異なり、本発明における脱塩部
6は内部にリブ等の余分なものを収納しなくてもよいの
で従来の脱塩室に比べて開放状であり、脱塩部6におけ
るイオン交換樹脂の動きの自由度は上記脱イオンモジュ
ールにおけるイオン交換樹脂のそれよりも大きい。従っ
て、脱塩部6の拡がりにより一時的にイオン交換樹脂同
士或いはイオン交換膜7、8とイオン交換樹脂28との
間に接触離れの現象が生じたとしても、被処理水の流れ
により容易且つ速やかに接触状態に復帰し、それがため
電気抵抗の増大を招く虞れはない。
When P d ≧ P c , a force is exerted in the direction in which the desalting section 6 expands. Even if the desalting section 6 expands, there is no problem for the following reasons. That is, a plurality of ribs are vertically or horizontally provided in the space inside the frame 40 to prevent the ion exchange membrane from bending outward and expanding like the deionization module of the conventional device. The space portion is divided into a plurality of small chambers, and unlike the case where the hermetically sealed small chamber is filled with an ion exchange resin, the desalting section 6 of the present invention does not store extra things such as ribs inside. Therefore, the deionization chamber is open compared to the conventional deionization chamber, and the degree of freedom of movement of the ion exchange resin in the desalination section 6 is larger than that of the ion exchange resin in the deionization module. Therefore, even if the phenomenon of contact separation between the ion-exchange resins or between the ion-exchange membranes 7 and 8 and the ion-exchange resin 28 occurs temporarily due to the spread of the desalination section 6, the flow of the water to be treated easily and easily. It quickly returns to the contact state, and there is no risk of causing an increase in electric resistance.

【0041】そしてPd ≧Pc であれば、その圧力勾配
からみて、濃縮水がイオン交換膜7、8を通って脱塩部
6に入り込む虞れはない。また濃度勾配により濃縮水中
のイオンが脱イオン水の方へ拡散する傾向については、
d ≦Pc では圧力勾配の面からその傾向を増長する
が、反対にPd ≧Pc であればその傾向を抑制する方向
の物理的作用(上記圧力勾配による作用)が起こり、望
ましい条件設定となる。
If P d ≧ P c , there is no possibility that the concentrated water enters the desalting section 6 through the ion exchange membranes 7 and 8 in view of the pressure gradient. Regarding the tendency of ions in concentrated water to diffuse toward deionized water due to concentration gradient,
When P d ≦ P c , the tendency is increased from the surface of the pressure gradient. On the other hand, when P d ≧ P c , a physical action in the direction of suppressing the tendency (action by the above-described pressure gradient) occurs. Set.

【0042】このように本発明装置においては、Pd
c の条件で運転することが可能となり、それにより統
一的な且つ適正な運転条件を設定できるようになったも
のであり、安定した運転状態を維持できる効果がある。
Thus, in the device of the present invention, P d
It is possible to operate under the condition of Pc , whereby uniform and appropriate operating conditions can be set, and there is an effect that a stable operating state can be maintained.

【0043】なお、上述の説明では被処理水を下向流で
流す例について説明したが、被処理水を上向流で流す装
置構成としてもよいのは勿論である。
In the above description, an example in which the water to be treated flows in a downward flow has been described. However, it is a matter of course that the apparatus may be configured to flow the water to be treated in an upward flow.

【0044】[0044]

【実施例】本発明装置を用いて脱イオン処理を行ない、
処理水質を測定した。装置の構成及び運転条件は以下の
通りである。 陽イオン交換膜: 徳山曹達製CMH 陰イオン交換膜: 徳山曹達製AMH 陽極、陰極: 白金電極(10cm×20c
m) 濃縮室ユニットの数: 2 濃縮水流路材: 厚さ2mm、陽イオン交換繊維
(ニチビ製) 脱塩部の数: 3(但し、陽極の電極支持体前
面に上記と同じ陰イオン交換膜を、また陰極の電極支持
体前面に上記と同じ陽イオン交換膜を、それぞれ専用の
仕切り膜として接着し、陽、陰各電極と濃縮室ユニット
の間の空所内にもイオン交換樹脂を充填して脱塩部を構
成することによって脱塩部の数を3とした。) 脱塩部の厚さ: 1cm イオン交換樹脂: アンバーライトIR−120B
(商品名)とアンバーライトIRA−402(商品名)
を1:1に混合したイオン交換樹脂 直流電源: 高砂製GPO110−3 被処理水: 水道水を活性炭処理後、逆浸透
膜SU−720(東レ製)により脱イオンした透過水 透過水の水質: 電気伝導度5〜7μS/cm、
pH6.3〜6.4、水温16〜18℃ 運転圧力: 被処理水入口で1.5kgf/
cm2 、脱イオン水出口で1.3kgf/cm2 、下向
流通水 濃縮水入口で1.0kgf/cm2 、濃縮水出口で0.
9kgf/cm2 、上向流通水 運転開始して1日経過後の処理水の水質を測定した。こ
の測定に当たり、1)被処理水流量、2)濃縮水と電極
水の合計流量、3)電流、4)電圧に関する条件を表1
に示す通り種々変えて測定を行なった。結果を表1に示
す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The treated water quality was measured. The configuration and operating conditions of the device are as follows. Cation exchange membrane: CMH manufactured by Tokuyama Soda Anion exchange membrane: AMH manufactured by Tokuyama Soda Anode, cathode: Platinum electrode (10cm × 20c)
m) Number of concentrating chamber units: 2 Concentrated water channel material: 2 mm thick, cation exchange fiber (manufactured by Nichibi) Number of desalting parts: 3 (however, the same anion exchange membrane as above on the front surface of the anode electrode support) In addition, the same cation exchange membrane as above is bonded to the front surface of the electrode support of the cathode as a dedicated partition membrane, and the space between the positive and negative electrodes and the enrichment unit is filled with ion exchange resin. The number of desalted portions was set to 3 by forming a desalted portion by means of a filter.) Desalted portion thickness: 1 cm Ion exchange resin: Amberlite IR-120B
(Trade name) and Amberlite IRA-402 (trade name)
DC power supply: Takasago GPO110-3 Treated water: Permeated water de-ionized by reverse osmosis membrane SU-720 (manufactured by Toray) after treatment of tap water with activated carbon Water quality of permeated water: Electric conductivity 5-7 μS / cm,
pH 6.3 to 6.4, water temperature 16 to 18 ° C Operating pressure: 1.5 kgf /
cm 2, 1.3kgf / cm 2 with deionized water outlet, 1.0 kgf / cm 2 with downward circulation water concentrated water inlet, 0 with concentrated water outlet.
9 kgf / cm 2 , upward flowing water The quality of the treated water one day after the start of operation was measured. Table 1 shows the conditions for 1) the flow rate of the water to be treated, 2) the total flow rate of the concentrated water and the electrode water, 3) the current, and 4) the voltage.
The measurement was carried out with various changes as shown in FIG. Table 1 shows the results.

【0045】[0045]

【表1】 [Table 1]

【0046】上記結果より明らかなように良好な処理水
質が得られた。このことから本発明装置は充分実用的な
脱イオン能力を持つことが判った。また容器構造のた
め、溶液の外部への漏出は全く観察されなかった。
As is clear from the above results, good treated water quality was obtained. From this, it was found that the apparatus of the present invention has a sufficiently practical deionizing ability. Also, no leakage of the solution to the outside was observed due to the container structure.

【0047】[0047]

【発明の効果】以上説明したように本発明によれば、適
正な運転条件を設定でき、運転状態の安定化を実現で
き、流量や圧力の変動要因があっても脱イオン性能は常
に安定しており信頼性の高いものとなる上、電気抵抗を
低下せしめて電力コストの低減に寄与できる効果があ
る。
As described above, according to the present invention, appropriate operation conditions can be set, the operation state can be stabilized, and the deionization performance is always stable even when there are flow rate and pressure fluctuation factors. In addition to the high reliability, there is an effect that the electric resistance can be reduced and the power cost can be reduced.

【0048】また濃縮室ユニット相互間にイオン交換体
を充填する構造としたので従来装置のように脱イオンモ
ジュール内にイオン交換樹脂を均一に充填するという面
倒な作業は必要なく、製作が容易である。更にその製作
に当たって、従来装置の如く脱イオンモジュールと濃縮
室とを積み重ねて締付固定するという必要がなく、その
結果、大型装置を製作するのに何らの制約や困難性がな
く、容易に装置の大型化を実現できる効果がある。
Since the ion exchanger is filled between the concentrating chamber units, the troublesome work of uniformly filling the ion exchange resin in the deionization module as in the conventional apparatus is not required, and the production is easy. is there. Further, in the manufacture thereof, there is no need to stack and fix the deionization module and the concentration chamber as in the conventional apparatus, and as a result, there is no restriction or difficulty in manufacturing a large-sized apparatus, and the apparatus can be easily manufactured. This has the effect of realizing an increase in size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明装置の縦断面図である。FIG. 1 is a longitudinal sectional view of the device of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】濃縮室ユニットの分解斜視図である。FIG. 3 is an exploded perspective view of a concentration chamber unit.

【図4】図3の濃縮室ユニットの縦断面図である。FIG. 4 is a longitudinal sectional view of the concentration unit of FIG. 3;

【図5】濃縮室ユニットの別の態様の縦断面図である。FIG. 5 is a longitudinal sectional view of another embodiment of the concentration chamber unit.

【図6】濃縮室ユニットの別の態様の分解斜視図であ
る。
FIG. 6 is an exploded perspective view of another embodiment of the concentration chamber unit.

【図7】図6の濃縮室ユニットの縦断面図である。FIG. 7 is a longitudinal sectional view of the concentration unit of FIG. 6;

【図8】本発明装置を用いた脱イオンシステムのブロッ
ク図である。
FIG. 8 is a block diagram of a deionization system using the apparatus of the present invention.

【図9】従来装置の縦断面略図である。FIG. 9 is a schematic longitudinal sectional view of a conventional device.

【符号の説明】[Explanation of symbols]

3 陽極 4 陰極 5 濃縮室ユニット 6 脱塩部 7 陰イオン交換膜 8 陽イオン交換膜 14 濃縮水入口 15 濃縮水出口 28 イオン交換樹脂 3 Anode 4 Cathode 5 Concentration room unit 6 Desalination section 7 Anion exchange membrane 8 Cation exchange membrane 14 Concentrated water inlet 15 Concentrated water outlet 28 Ion exchange resin

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽イオン交換膜と陰イオン交換膜との対
向面周囲部を直接又は間接的に接合し、それにより形成
される内部空間に濃縮水流路を形成すると共に濃縮水の
出入口を設けてなる濃縮室ユニットを陽極と陰極との間
に所定間隔をおいて複数並設し、これら濃縮室ユニット
相互間の空所内にイオン交換体を充填して脱塩部を構成
したことを特徴とする電気式脱イオン水製造装置。
1. A peripheral portion of a cation exchange membrane and an anion exchange membrane, which are directly or indirectly joined to each other, to form a concentrated water flow path in an internal space formed thereby and to provide an inlet / outlet of the concentrated water. A plurality of concentrating chamber units are arranged in parallel at a predetermined interval between the anode and the cathode, and a desalting section is formed by filling an ion exchanger in a space between the concentrating chamber units. Electric deionized water production equipment.
【請求項2】 陽イオン交換膜と陰イオン交換膜とを重
ね合わせ、その対向面周囲部を接合して袋状に構成し、
該袋体の内部空間に流路形成材を収納すると共に、濃縮
水出入口を設けて濃縮室ユニットを構成してなる請求項
1記載の電気式脱イオン水製造装置。
2. A cation-exchange membrane and an anion-exchange membrane are superimposed on each other, and their peripheral portions are joined to form a bag.
2. The electric deionized water producing apparatus according to claim 1, wherein a flow path forming material is accommodated in the internal space of the bag body, and a concentrated water inlet / outlet is provided to constitute a concentrated chamber unit.
【請求項3】 内部がくり抜かれた形状の枠体の一方の
面に陽イオン交換膜を接合すると共に、他方の面に陰イ
オン交換膜を接合し、それにより形成される内部空間に
流路形成材を収納すると共に、濃縮水出入口を設けて濃
縮室ユニットを構成してなる請求項1記載の電気式脱イ
オン水製造装置。
3. A cation exchange membrane is joined to one surface of a frame having a hollowed-out shape, and an anion exchange membrane is joined to the other surface. 2. The electric deionized water producing apparatus according to claim 1, wherein the forming material is housed, and a concentrated water inlet / outlet is provided to constitute a concentrated chamber unit.
【請求項4】 流路形成材がイオン交換体である請求項
2又は3記載の電気式脱イオン水製造装置。
4. The electric deionized water producing apparatus according to claim 2, wherein the flow path forming material is an ion exchanger.
【請求項5】 イオン交換体がイオン交換繊維である請
求項4記載の電気式脱イオン水製造装置。
5. The electric deionized water producing apparatus according to claim 4, wherein the ion exchanger is an ion exchange fiber.
【請求項6】 内部がくり抜かれた形状を有し且つ流路
形成材の機能を有する複数のリブを一体的に設けてなる
枠体の一方の面に陽イオン交換膜を接合すると共に、他
方の面に陰イオン交換膜を接合し、濃縮水出入口を設け
て濃縮室ユニットを構成してなる請求項1記載の電気式
脱イオン水製造装置。
6. A cation exchange membrane is joined to one surface of a frame body integrally provided with a plurality of ribs having a hollowed-out shape and functioning as a flow path forming material, and the other side. 2. The electric deionized water producing apparatus according to claim 1, wherein an anion exchange membrane is joined to the surface of the above, and a concentrated water inlet / outlet is provided to constitute a concentrated room unit.
JP06082420A 1994-03-29 1994-03-29 Electric deionized water production equipment Expired - Lifetime JP3090841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06082420A JP3090841B2 (en) 1994-03-29 1994-03-29 Electric deionized water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06082420A JP3090841B2 (en) 1994-03-29 1994-03-29 Electric deionized water production equipment

Publications (2)

Publication Number Publication Date
JPH07265865A JPH07265865A (en) 1995-10-17
JP3090841B2 true JP3090841B2 (en) 2000-09-25

Family

ID=13774103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06082420A Expired - Lifetime JP3090841B2 (en) 1994-03-29 1994-03-29 Electric deionized water production equipment

Country Status (1)

Country Link
JP (1) JP3090841B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046491A1 (en) * 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
WO1997046492A1 (en) * 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
JP3532032B2 (en) * 1996-04-19 2004-05-31 オルガノ株式会社 Electric deionized water production equipment
US6248226B1 (en) 1996-06-03 2001-06-19 Organo Corporation Process for producing deionized water by electrodeionization technique
JP4083807B2 (en) 1996-08-12 2008-04-30 株式会社ジェイエスピー Automotive bumper core
JP4481418B2 (en) * 2000-03-23 2010-06-16 オルガノ株式会社 Electric deionized water production equipment
JP4597388B2 (en) * 2001-01-10 2010-12-15 オルガノ株式会社 Electric deionized water production apparatus and deionized water production method
DE10104771A1 (en) * 2001-02-02 2002-08-08 Basf Ag Method and device for deionizing cooling media for fuel cells
JP3983190B2 (en) * 2003-03-31 2007-09-26 オルガノ株式会社 Deionization cell water collector of electric deionized water production equipment
JP4363587B2 (en) * 2003-06-09 2009-11-11 オルガノ株式会社 Operation method of electric deionized water production apparatus and electric deionized water production apparatus
US7083733B2 (en) 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
US8377279B2 (en) 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
JP4516000B2 (en) * 2005-11-09 2010-08-04 株式会社東芝 Desalination equipment
US10213744B2 (en) 2006-06-13 2019-02-26 Evoqua Water Technologies Llc Method and system for water treatment
US10252923B2 (en) 2006-06-13 2019-04-09 Evoqua Water Technologies Llc Method and system for water treatment
US8277627B2 (en) 2006-06-13 2012-10-02 Siemens Industry, Inc. Method and system for irrigation
US20080067069A1 (en) 2006-06-22 2008-03-20 Siemens Water Technologies Corp. Low scale potential water treatment
KR20100099227A (en) 2007-11-30 2010-09-10 지멘스 워터 테크놀로지스 코포레이션 Systems and methods for water treatment
JP2015020093A (en) * 2013-07-17 2015-02-02 株式会社クラレ Integrated type cell pair, manufacturing method of the same, and electrodialytic stack
AU2018321819B2 (en) 2017-08-21 2024-04-04 Evoqua Water Technologies Llc Treatment of saline water for agricultural and potable use
JP7122910B2 (en) * 2018-08-31 2022-08-22 オルガノ株式会社 Electrodeionized water maker with cover and pure water maker

Also Published As

Publication number Publication date
JPH07265865A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
JP3090841B2 (en) Electric deionized water production equipment
US9446971B2 (en) Techniques for promoting current efficiency in electrochemical separation systems and methods
AU2003214169B2 (en) Electrodialytic water purifier with ion exchange material and method for removing ionic contaminants
JP2014004586A (en) Electric deionization device
US6436264B1 (en) Apparatus for electrically producing deionized water
EP0853972B1 (en) Electrodeionization apparatus and module
JP4303242B2 (en) Electric desalination module and apparatus equipped with the module
JP3729386B2 (en) Electric deionized water production equipment
CN212609719U (en) Electric deionization water purification device and household water purification device
JP4107750B2 (en) Desalination chamber structure and electric deionized liquid production apparatus
JPH081165A (en) Electrolytic cell
JP2001321774A (en) Electro-deionizing apparatus
JP3532032B2 (en) Electric deionized water production equipment
JP3726449B2 (en) Electric deionized water production equipment
CN114074981B (en) Electrodeionization water purification device and household water purification device
JP2001137856A (en) Electric regeneration type pure water production device
CN114074974A (en) Electric deionization water purification device and household water purification device
JPH03224688A (en) Production of pure water
CN114074975A (en) Electric deionization water purification device and household water purification device
JP2002346568A (en) Electric regeneration type pure water production apparatus
JP2003080262A (en) Electrically regenerated water purifying apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10