JP3086934B2 - Clearance sensor - Google Patents

Clearance sensor

Info

Publication number
JP3086934B2
JP3086934B2 JP04125663A JP12566392A JP3086934B2 JP 3086934 B2 JP3086934 B2 JP 3086934B2 JP 04125663 A JP04125663 A JP 04125663A JP 12566392 A JP12566392 A JP 12566392A JP 3086934 B2 JP3086934 B2 JP 3086934B2
Authority
JP
Japan
Prior art keywords
coil
plate
conductive plate
clearance
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04125663A
Other languages
Japanese (ja)
Other versions
JPH05296708A (en
Inventor
厚志 伊藤
英夫 丹羽
Original Assignee
三明電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三明電機株式会社 filed Critical 三明電機株式会社
Priority to JP04125663A priority Critical patent/JP3086934B2/en
Publication of JPH05296708A publication Critical patent/JPH05296708A/en
Application granted granted Critical
Publication of JP3086934B2 publication Critical patent/JP3086934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は二つの部材相互間のすき
まの大きさを測定する為のすきまセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a clearance sensor for measuring a clearance between two members.

【0002】[0002]

【従来の技術】上記のようなすき間の測定は例えばノギ
スにより行なわれている。しかし図4に示す如きプレス
の上型28と下型26相互間のすきまを奥まった場所29で測
定する場合、ノギス単独では目的の達成が困難である。
そこで例えば粘土を上記の場所29に置き、上型と下型を
所定の状態に合わすことにより上記粘土を潰し、その後
上型と下型を分離させて潰れた粘土を取り出し、その粘
土の厚みをノギスにより測ることによって上記すき間の
寸法を測定している。
2. Description of the Related Art The measurement of a gap as described above is performed by, for example, a caliper. However, when measuring the clearance between the upper die 28 and the lower die 26 of the press at a deep place 29 as shown in FIG. 4, it is difficult to attain the purpose by using the caliper alone.
Therefore, for example, place the clay in the above place 29, crush the clay by matching the upper mold and the lower mold to a predetermined state, then take out the crushed clay by separating the upper mold and the lower mold, and reduce the thickness of the clay. The size of the gap is measured by measuring with a caliper.

【0003】[0003]

【発明が解決しようとする課題】しかし上記のような手
法では、型を分離したり粘土を取り出したりする種々の
作業の過程で粘土が変形して寸法が狂い易く、更に、そ
の粘土にノギスを当てたときに粘土がへこんでノギスに
よる測定寸法が狂い易く、上記すきまの寸法測定精度が
極めて低下し易い問題点があった。
However, in the above-described method, the clay is easily deformed and deformed in the course of various operations such as separating the mold and removing the clay, and furthermore, the caliper is added to the clay. When applied, the clay is dented, so that the measurement size by the caliper tends to be out of order, and there is a problem that the measurement accuracy of the size of the clearance is extremely reduced.

【0004】そこで上記問題点を解決するために、細長
い挿入板の先端の両面に、夫々二つの間隔測定対象物の
各1つに対して当接させる為の円弧状に膨出させたバネ
板を配設し、更に 、上記 二つの間隔測定対象物の間に
おける隙間に上記細長い挿入板の先端を差し込んで上記
円弧状に膨出させたバネ板を押し縮めたときに、最も歪
みが大きくなる隅部の場所にひずみゲージを配設したも
のが知られている(特開平4−42002参照)。しか
し上記の歪みゲージにおいて、上記円弧状に膨出させた
バネ板における二つの間隔測定対象物の夫々の当面は、
二つの間隔測定対象物の夫々の内面の動きに対して正確
に対応するものであるが、そこの場所は最も歪の少ない
場所となり、ひずみゲージの配設は出来ない場所とな
る。したがって上記構成においては、二つの間隔測定対
象物の夫々の当面に対応する絶好の場所を避け、バネ板
における最も歪みが大きいと思われる側端の隅部に歪み
ゲージを取り付けなければならない悩みがある。そのよ
うに構成すると二つの間隔測定対象物の夫々の当面の変
化の初期においては、上記バネ板の歪量が少ない関係上
ひずみゲージの信号量は極度に少なく、正しく測定がで
きない問題点がある。また上記の技術的思想はバネ板の
物質的性質(バネ力の力量)を利用するものであるか
ら、反復利用するとバネ板におけるバネ力が逐次減少す
る。そうするとバネ板における一定の動作量に対する
バネ板自体の加圧能力が減少する。このバネ板自体の加
圧能力の減少は、バネ板の一定の変化量に対して、測定
値が逐次変化するという重大な欠点の存在を意味し、前
述の問題点と共にバネ板の性質に基づく重複的誤差が生
じる問題点もある。
In order to solve the above-mentioned problems, a spring plate bulged in an arc shape for contacting each one of two interval measurement objects on both surfaces of a tip of an elongated insertion plate. Further, when the tip of the elongated insertion plate is inserted into the gap between the two interval measurement objects and the spring plate expanded in an arc shape is compressed and contracted, the distortion is maximized. It is known that a strain gauge is provided at a corner portion (see Japanese Patent Application Laid-Open No. 4-42002). However, in the above-described strain gauge, for the time being each of the two interval measurement objects in the spring plate bulged in the arc shape,
Although it corresponds exactly to the movement of the inner surface of each of the two distance measurement objects, the location there is a place where distortion is least and a strain gauge cannot be provided. Therefore, in the above-described configuration, there is a problem that a strain gauge must be attached to a corner of a side edge of the spring plate, which is considered to have the largest distortion, by avoiding a great place corresponding to each of the two interval measurement objects. is there. With such a configuration, in the initial stage of the immediate change of each of the two distance measurement objects, the signal amount of the strain gauge is extremely small due to the small amount of distortion of the spring plate, and there is a problem that accurate measurement cannot be performed. . In addition, the above-mentioned technical idea utilizes the material properties (the amount of spring force) of the spring plate, so that the spring force in the spring plate is gradually reduced by repeated use .
You. Then , for a certain amount of movement of the spring plate ,
The pressing ability of the spring plate itself decreases. Addition of the spring plate itself
The decrease in pressure capacity is measured for a certain amount of change in the spring plate.
It means that there is a serious drawback that the value changes sequentially,
In addition to the above-described problem, there is a problem that a redundant error based on the properties of the spring plate occurs.

【0005】本願発明は上記従来技術の問題点(技術的
課題)を解決する為になされたもので、すきまの寸法を
それに対応した電気信号として得ることができて、前記
の如き奥まった場所のすきまの寸法でも高精度に測定で
きるようにしたすきまセンサを提供することを目的とし
ている。
The present invention has been made to solve the above-mentioned problems (technical problems) of the prior art. The size of the clearance can be obtained as an electric signal corresponding to the clearance, and the clearance in the above-described location can be obtained. It is an object of the present invention to provide a clearance sensor capable of measuring a clearance dimension with high accuracy.

【0006】[0006]

【課題を解決するための手段】本願発明におけるすきま
センサは、外面が間隔測定対象物の一方に当接させる為
の当面となっている板状のコイル保持体と、外面が間隔
測定対象物の他方に当接させる為の当面となっている板
状の導電板とが、各々の内面相互が対向する状態に並設
され、しかも両者は連結手段を介して相互の当面が遠近
自在でかつ相互に離反する方向に付勢された状態に連結
されており、上記コイル保持体における当面の内側で、
上記導電板の当面と対向する内面には、上記導電板との
距離の変化に応じた値のインダクタンスを生ずる平面状
のコイルを上記板状のコイル保持体の板面に平行させた
状態に付設したものである。
A clearance sensor according to the present invention comprises a plate-shaped coil holder having an outer surface which is in contact with one of the distance measurement objects, and an outer surface which is provided with the distance measurement object. A plate-shaped conductive plate serving as an abutting surface for abutting the other is provided side by side so that the respective inner surfaces face each other, and the two abutting surfaces can be freely moved toward and away from each other via connecting means. Are connected in a state where they are urged in a direction away from the coil holding body,
A flat coil that generates an inductance having a value corresponding to a change in the distance from the conductive plate is provided on an inner surface facing the contact surface of the conductive plate so as to be parallel to the plate surface of the plate-shaped coil holder. It was done.

【0007】[0007]

【作用】コイル保持体と導電板との間隔が間隔測定対象
物のすき間の大きさに応じて押し縮められる。コイル保
持体に付設したコイルは導電板との距離に応じた値のイ
ンダクタンスを示す。そのインダクタンスの大きさによ
って上記すきまの寸法を知ることができる。
The distance between the coil holder and the conductive plate is reduced according to the size of the gap of the distance measuring object. The coil attached to the coil holder has a value of inductance corresponding to the distance from the conductive plate. The size of the clearance can be known from the magnitude of the inductance.

【0008】[0008]

【実施例】以下本願の実施例を示す図面について説明す
る。図1の(A)において、1はすきまセンサを示し、
本体2と信号引出部3とから構成してある。先ず本体2
について図1の(B)、図2及び図3をも参照して説明
する。4はコイル保持体で、この例では導電性の良好な
材料例えば燐青銅を用いて構成してある。その厚みは例
えば0.1mmである。該コイル保持体4は銅、アルミニウ
ム或いは鉄等の材料を用いて形成しても良い。5は保持
体4における当面で、間隔測定対象物の一方に当接させ
る為の面である。7は上記保持体4に対して並設した導
電板で、導電性の良好な金属板例えば燐青銅板を用いて
構成してある。この導電板7の厚みも例えば0.1mm であ
る。該導電板7も銅、アルミニウム或いは鉄等の材料を
用いて形成しても良い。8は導電板における当面で、間
隔測定対象物の他方に当接させる為の面である。次に9
は上記コイル保持体4と導電板7とを遠近自在に連結す
る連結手段を示す。10は該連結手段9における連結要素
で、コイル保持体4の周囲にそれと一体に形成してあ
る。11はもう一つの連結要素で、導電板7の周囲にそれ
と一体に形成してある。上記両連結要素10, 11は円錐ば
ね状に形成された間隔保持部10a, 11aと、間隔保持部
10a, 11aの回りに周設した接合用鍔10b,11bとから
構成されており、両接合用鍔10b, 11b相互を接合する
ことによって一体化されている。上記鍔10b, 11bの接
合は例えば接着剤を用いて行われる。又その一体化した
状態において両間隔保持部10a, 11aはコイル保持体4
に対して導電板7を図2に示されるような所定の間隔に
保持すると共に、コイル保持体4と導電板7との間隔が
後に述べるように図5、図6に示される如く押し縮めら
れた場合、導電板7を保持体4から離反する方向に図2
の位置まで付勢する為の付勢手段として機能するように
なっている。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. In FIG. 1A, reference numeral 1 denotes a clearance sensor,
It comprises a main body 2 and a signal extraction section 3. First, body 2
Will be described with reference to FIG. 1B, FIG. 2 and FIG. Reference numeral 4 denotes a coil holder, which is made of a material having good conductivity, for example, phosphor bronze. Its thickness is, for example, 0.1 mm. The coil holder 4 may be formed using a material such as copper, aluminum or iron. Reference numeral 5 denotes a contact surface of the holder 4, which is to be brought into contact with one of the distance measurement objects. Reference numeral 7 denotes a conductive plate arranged side by side with respect to the holder 4, which is formed of a metal plate having good conductivity, for example, a phosphor bronze plate. The thickness of the conductive plate 7 is, for example, 0.1 mm. The conductive plate 7 may also be formed using a material such as copper, aluminum or iron. Reference numeral 8 denotes a contact surface of the conductive plate for contacting the other of the distance measurement objects. Then 9
Denotes a connecting means for connecting the coil holder 4 and the conductive plate 7 so as to be freely movable in a distance. Reference numeral 10 denotes a connecting element in the connecting means 9 which is formed around the coil holder 4 and integrally therewith. Reference numeral 11 denotes another connecting element, which is formed around the conductive plate 7 and integrally therewith. The two connecting elements 10 and 11 are provided with space holding portions 10a and 11a formed in a conical spring shape, and space holding portions.
It is composed of joining flanges 10b and 11b provided around 10a and 11a, and is integrated by joining both joining flanges 10b and 11b. The joining of the flanges 10b and 11b is performed using, for example, an adhesive. In the integrated state, the two space holding portions 10a and 11a are
2, the conductive plate 7 is held at a predetermined distance as shown in FIG. 2, and the distance between the coil holder 4 and the conductive plate 7 is compressed as shown in FIGS. In this case, the conductive plate 7 is moved away from the holder 4 in FIG.
Function as urging means for urging to the position of.

【0009】次に14はコイル基板を示し、上記コイル保
持体4に対して前記連結要素10を介して付設してある。
該コイル基板14は例えば柔軟性のあるプラスチックフィ
ルムをもって構成され、その厚みは例えば0.1mm 程度で
ある。尚この基板14は柔軟性のない硬質のものを用いて
も良い。15はコイル基板14に取付けた平面状のコイル
で、上記基板14の一面側に備えさせたコイル要素15aと
他面側に備えさせたコイル要素15bとから構成され、両
コイル要素15a, 15bは各々の中心部においてスルーホ
ールによる接続部16によって直列に接続してある。上記
コイル要素15a,15bは周知の印刷配線技術を用いてコ
イル基板14の両面に備えさせてある(例えば銅メッキ)
が、銅線を平面の渦巻状に巻いたものをコイル基板14に
取付けても良い。17, 18は夫々コイル要素15a, 15bを
保護する為の絶縁層で、例えばポリイミドによる保護膜
として形成してある。これらの絶縁層はエポキシによる
保護膜として形成しても良い。
Next, reference numeral 14 denotes a coil substrate, which is attached to the coil holder 4 via the connecting element 10.
The coil substrate 14 is made of, for example, a flexible plastic film and has a thickness of, for example, about 0.1 mm. The substrate 14 may be a rigid substrate having no flexibility. Reference numeral 15 denotes a planar coil attached to the coil substrate 14, which is composed of a coil element 15a provided on one surface side of the substrate 14 and a coil element 15b provided on the other surface side. Both coil elements 15a, 15b Each of the central portions is connected in series by a connection portion 16 by a through hole. The coil elements 15a and 15b are provided on both sides of the coil substrate 14 using a known printed wiring technique (for example, copper plating).
However, a copper wire wound in a flat spiral shape may be attached to the coil substrate 14. Reference numerals 17 and 18 denote insulating layers for protecting the coil elements 15a and 15b, respectively, and are formed, for example, as protective films made of polyimide. These insulating layers may be formed as protective films made of epoxy.

【0010】次に前記信号引出部3について説明する。
該引出部3は、前記コイル基板14と一体形成の引出部基
板20の一面と他面に、夫々前記コイル要素15a, 15bの
外周端に接続する引出導線21, 22を備えさせると共に、
それらの導線21, 22を前記絶縁層17, 18と同様(一体形
成)の絶縁層により保護した構成となっている。次に23
は上記引出部3における導線21, 22に接続したリード線
で、例えば外径1mmの被覆銅線が用いられる。上記のよ
うな構成のすきまセンサ1の寸法は、本体2の直径Dが
例えば20mm、信号引出部3の長さLが例えば70mm、本体
2の厚さTが例えば1.8mm である。
Next, the signal extracting section 3 will be described.
The lead portion 3 has lead wires 21 and 22 connected to the outer peripheral ends of the coil elements 15a and 15b, respectively, on one surface and the other surface of the lead portion substrate 20 integrally formed with the coil substrate 14,
The conductive wires 21 and 22 are protected by the same (integrally formed) insulating layers as the insulating layers 17 and 18. Then 23
Is a lead wire connected to the conducting wires 21 and 22 in the lead-out portion 3, for example, a coated copper wire having an outer diameter of 1 mm. The dimensions of the clearance sensor 1 having the above-described configuration are such that the diameter D of the main body 2 is, for example, 20 mm, the length L of the signal extraction section 3 is, for example, 70 mm, and the thickness T of the main body 2 is, for example, 1.8 mm.

【0011】次に上記すきまセンサ1の使用法及び使用
状態を説明する。上記すきまセンサ1は、例えば図4に
示されるように一対の成形型26,28相互間のすきまを測
定する為に用いられる。図4は周知のプレス装置を示す
ものであり、25は基盤、26は基盤25に取付けた下型、27
は上下動自在の昇降体、28は昇降体27に取付けた上型を
夫々示す。
Next, how to use the above clearance sensor 1 and how it is used will be described. The clearance sensor 1 is used for measuring the clearance between a pair of molding dies 26 and 28, for example, as shown in FIG. FIG. 4 shows a known press device, wherein 25 is a base, 26 is a lower die attached to the base 25, 27
Denotes a vertically movable elevating body, and 28 denotes an upper die attached to the elevating body 27, respectively.

【0012】上記のようなプレス装置において符号29で
示される場所の下型上面26aと上型下面28aとの間のす
きまを測定したい場合、上型28が下型26から離れている
状態において下型26の上面26a上に上記の場所29におい
てすきまセンサ1の本体2を置く。次にその状態におい
て上型28を所定の下降位置まで下降させる。上型28が下
降すると、本体2におけるコイル保持体4と導電板7と
の間隔は付勢手段による付勢力に抗して図5(すきま寸
法1.6mm )或いは図6(すきま寸法0.5mm )の如く押し
縮められる。このように押し縮められた状態において
は、コイル基板14に取付けられているコイル15は導電板
7との距離に応じた値のインダクタンスを示す。尚本例
ではコイル保持体4とコイル15との間隔も導電板7とコ
イル15との間隔と同様に変わる為、コイル15のインダク
タンスはコイル保持体4と導電板7との間隔の変化に対
して比較的大きい割合で変化する。上記のようなコイル
15のインダクタンスは引出導線21, 22、リード線23を介
して下型26及び上型28の外に導出し、そこでそのインダ
クタンスの大きさを測定することによって上記場所29に
おける上面26aと下面28aとの間のすきまの大きさを知
ることができる。上記のような測定終了後は、上型28を
下型26から分離させるとすきまセンサ1の本体2は元の
形に復元し、再使用が可能となる。
When it is desired to measure the clearance between the lower mold upper surface 26a and the upper mold lower surface 28a at the location indicated by the reference numeral 29 in the above-described press apparatus, the lower mold 26 is separated from the lower mold 26 while the lower mold 26 is away from the lower mold 26. The main body 2 of the clearance sensor 1 is placed on the upper surface 26a of the mold 26 at the location 29 described above. Next, in this state, the upper mold 28 is lowered to a predetermined lowering position. When the upper mold 28 is lowered, the distance between the coil holder 4 and the conductive plate 7 in the main body 2 is reduced against the urging force of the urging means, as shown in FIG. 5 (gap size 1.6 mm) or FIG. 6 (gap size 0.5 mm). It is compressed as follows. In the compressed state as described above, the coil 15 attached to the coil substrate 14 has an inductance corresponding to the distance from the conductive plate 7. In this example, the distance between the coil holder 4 and the coil 15 also changes in the same manner as the distance between the conductive plate 7 and the coil 15. Therefore, the inductance of the coil 15 changes with the change in the distance between the coil holder 4 and the conductive plate 7. Changes at a relatively large rate. Coil as above
The inductance of 15 is led out of the lower mold 26 and the upper mold 28 through the lead wires 21 and 22 and the lead wire 23, and by measuring the magnitude of the inductance there, the upper surface 26a and the lower surface 28a at the place 29 are measured. You can know the size of the gap between. After the above measurement is completed, when the upper mold 28 is separated from the lower mold 26, the main body 2 of the gap sensor 1 is restored to its original shape, and can be reused.

【0013】次に上記コイル15が導電板7との距離に応
じた値のインダクタンスを生ずる原理について説明す
る。コイル15に交流電圧を加え導電板7を近づけると、
コイル15によって作られた交流磁界によって電磁誘導の
作用が働き、導電板7内に渦電流が発生する。この際交
流電圧の周波数が高いと表皮効果によって導電板7にお
ける渦電流の浸透深さは小さくなる為、導電板7の厚さ
が薄くても充分な渦電流が流れることができる。充分な
渦電流が流れることで磁束は導電板7を貫いてその裏側
(当面8の側)まで出ることはなくなる。即ち導電板7
は電磁シールドの作用を持つ。この作用により、導電板
7の外側に他の金属材質のものが存在してもそれによる
悪影響を除くことができる。以上のような作用は、上記
実施例の場合コイル15とコイル保持体4の関係において
も同様である。コイル15を導電板7及びコイル保持体4
で囲んだ場合、それらの厚さが薄くても交流電圧の周波
数が高ければ磁束はそれら導電板7及びコイル保持体4
の外側へは漏れ出ない。即ち導電板7及びコイル保持体
4で囲んだ空間内で磁束を形成することになる。コイル
15に供給する起磁力(アンペアターン)を一定とした場
合、コイル15と導電板7の距離が接近していると上記磁
束を形成する空間が狭くなる為、磁束は減りパーミアン
スは小さくなってコイル15のインダクタンスは小さくな
る。逆に距離が離れていると磁束は増え、パーミアンス
は大きくなってコイル15のインダクタンスは大きくな
る。従ってこのコイル15のインダクタンスの変化を電圧
或いは周波数等の形で取り出すことにより、コイル15と
導電板7との距離を知ることができる。
Next, the principle that the coil 15 generates an inductance having a value corresponding to the distance from the conductive plate 7 will be described. When an AC voltage is applied to the coil 15 to bring the conductive plate 7 close to the coil 15,
An eddy current is generated in the conductive plate 7 by the action of electromagnetic induction caused by the AC magnetic field generated by the coil 15. At this time, when the frequency of the AC voltage is high, the penetration depth of the eddy current in the conductive plate 7 is reduced by the skin effect, so that a sufficient eddy current can flow even if the conductive plate 7 is thin. When a sufficient eddy current flows, the magnetic flux does not pass through the conductive plate 7 and reach the back side (the side of the contact 8). That is, the conductive plate 7
Has the function of an electromagnetic shield. By this action, even if another metal material is present outside the conductive plate 7, the adverse effect due to it can be eliminated. The above operation is the same in the case of the above embodiment in the relationship between the coil 15 and the coil holder 4. The coil 15 is connected to the conductive plate 7 and the coil holder 4.
When the frequency of the AC voltage is high, the magnetic flux is applied to the conductive plate 7 and the coil holder 4 even if their thickness is thin.
Does not leak out of the room. That is, a magnetic flux is formed in a space surrounded by the conductive plate 7 and the coil holder 4. coil
When the magnetomotive force (ampere turn) supplied to the coil 15 is constant, the space for forming the magnetic flux becomes narrow when the distance between the coil 15 and the conductive plate 7 is short, so that the magnetic flux decreases and the permeance decreases, and the coil becomes small. The inductance of 15 becomes smaller. Conversely, when the distance is large, the magnetic flux increases, the permeance increases, and the inductance of the coil 15 increases. Therefore, the distance between the coil 15 and the conductive plate 7 can be known by extracting the change in the inductance of the coil 15 in the form of a voltage or a frequency.

【0014】次に測定回路の一例を示す図7について説
明する。31は発振器で、例えば1MHz の交流信号を発生
する。Z1,Z2はブリッジ形成用の抵抗、Z3は同じ
くコイル、32は交流増幅器、33は整流並びに増幅器を夫
々示す。このような構成のものにおいては、発振器31か
らコイル15に交流信号が加えられると、コイル15のイン
ダクタンスに応じた交流信号が増幅器32に与えられる。
その信号は増幅器32で増幅された後、回路33において整
流並びに増幅され、その出力信号としてコイル15のイン
ダクタンスに応じた信号、即ち、前記すきまの寸法に対
応した信号が得られる。
Next, FIG. 7 showing an example of the measuring circuit will be described. An oscillator 31 generates an AC signal of, for example, 1 MHz. Z1 and Z2 are bridge forming resistors, Z3 is the same coil, 32 is an AC amplifier, and 33 is a rectifier and an amplifier. In such a configuration, when an AC signal is applied from the oscillator 31 to the coil 15, an AC signal corresponding to the inductance of the coil 15 is provided to the amplifier 32.
After the signal is amplified by the amplifier 32, it is rectified and amplified by the circuit 33, and a signal corresponding to the inductance of the coil 15, that is, a signal corresponding to the size of the clearance is obtained as an output signal.

【0015】次に図8はすきま寸法と前記測定回路によ
って得られる出力電圧との関係を示すものであり、前記
構成の場合、符号aで示される如き特性の出力電圧が得
られる。又上記発振器31の周波数を2MHz にした場合、
bで示される如き特性の出力電圧が得られる。一方、コ
イル保持体4及び導電板7をアルミニウムで形成した場
合、cで示される如き特性の出力電圧が得られ、鉄で形
成した場合、dで示される如き特性の出力電圧が得られ
る。尚これら何れの場合においてもすきま寸法と出力電
圧との関係は非線形なので、必要に応じてリニアライザ
ーを用いて直線性を改善すると良い。
Next, FIG. 8 shows the relationship between the clearance size and the output voltage obtained by the measuring circuit. In the case of the above configuration, an output voltage having a characteristic indicated by reference character a is obtained. When the frequency of the oscillator 31 is 2 MHz,
An output voltage having characteristics as shown by b is obtained. On the other hand, when the coil holder 4 and the conductive plate 7 are formed of aluminum, an output voltage having a characteristic indicated by c is obtained, and when the coil holder 4 and the conductive plate 7 are formed of iron, an output voltage having a characteristic indicated by d is obtained. In any of these cases, the relationship between the clearance size and the output voltage is non-linear. Therefore, it is preferable to improve the linearity by using a linearizer if necessary.

【0016】次に図9は本願の異なる実施例を示すもの
で、コイル15の平面形状を矩形の渦巻き状に形成した例
を示すものである。尚その他の形状としては楕円形の渦
巻き状あるいは三角形の渦巻き状であっても良い。
FIG. 9 shows another embodiment of the present invention, in which the coil 15 is formed in a rectangular spiral shape in plan view. The other shape may be an elliptical spiral shape or a triangular spiral shape.

【0017】次に図10は信号引出部の構造の異なる例を
示すもので、基板20の一面側と他面側の引出導線21, 22
を夫々図示の如き形状に形成し、それら相互をスルーホ
ールによる多数の接続部35において接続した例を示すも
のである。引出導線をこのように形成すると引出導線は
捻じられた構造となる為、平行パターンのキャパシタン
スを除く上において有効である。
Next, FIG. 10 shows a different example of the structure of the signal lead-out portion. The lead-out leads 21 and 22 on one side and the other side of the substrate 20 are shown in FIG.
Are formed in the shapes as shown in the drawing, and are connected to each other at a number of connection portions 35 by through holes. When the lead conductor is formed in this way, the lead conductor has a twisted structure, which is effective in eliminating the capacitance of the parallel pattern.

【0018】次に図11乃至図13は本願の更に異なる実施
例を示すもので、信号引出部に補強板37を備えさせた例
を示すものである。上記補強板37は例えば0.1mm 程度の
厚さの可撓性及び充分な強度を有する金属板例えばステ
ンレス板で形成され、その先端が図12に示されるように
本体2の連結手段9における鍔10b,11bに連結され、
かつその補強板37に信号引出部の基板20が接着手段によ
って一体化される。このような補強板37を備えさせる
と、図13の如き状態において下型上面26aと上型下面28
aとの間隔を測定する場合、補強板37を介して本体2を
前後左右に移動させながら、各部のすきまを順々に測定
していくことができる。また型合わせ後に本体2を上下
型の外からすきまに挿入することも可能である。
Next, FIGS. 11 to 13 show still another embodiment of the present invention, in which a signal extraction portion is provided with a reinforcing plate 37. FIG. The reinforcing plate 37 is formed of, for example, a metal plate having a thickness of about 0.1 mm and having sufficient flexibility and sufficient strength, for example, a stainless steel plate, and has a distal end formed with a flange 10b in the connecting means 9 of the main body 2 as shown in FIG. , 11b,
In addition, the signal extraction portion substrate 20 is integrated with the reinforcing plate 37 by an adhesive means. When such a reinforcing plate 37 is provided, the lower die upper surface 26a and the upper die lower surface 28 in the state shown in FIG.
In the case of measuring the distance from “a”, the clearance of each part can be measured sequentially while moving the main body 2 back and forth and right and left via the reinforcing plate 37. It is also possible to insert the main body 2 into the gap from outside the upper and lower molds after the mold matching.

【0019】次に図14は本願の更に異なる実施例を示す
もので、コイルが備えられた基板14を保持体4に固定的
に取付けると共に、導電板7をジャバラ状の連結手段39
によって保持体4に連結した構造を示すものである。
Next, FIG. 14 shows a still further embodiment of the present invention, in which a substrate 14 provided with a coil is fixedly attached to a holder 4 and a conductive plate 7 is connected to a bellows-like connecting means 39.
3 shows a structure connected to the holder 4.

【0020】[0020]

【発明の効果】以上のように本願発明にあっては、図4
の如く夫々凹凸形状をもった上型28と下型26相互間のす
きまを測りたい場合、すきまセンサ1は、板状のコイル
保持体と、板状の導電板と、平面状のコイルとの夫々薄
い三つの構成物から成るものであるから、上記の場所の
ように、即ち、下型26の上面26aと上型28の下面28aと
の間のように極めて狭い隙間に対しても、その狭さに対
応してすきまセンサ1を挿入できる効果がある。
As described above, in the present invention, FIG.
When it is desired to measure the clearance between the upper mold 28 and the lower mold 26 each having a concave-convex shape, the clearance sensor 1 includes a plate-shaped coil holder, a plate-shaped conductive plate, and a planar coil. Since each is composed of three thin components, it can be applied to a very narrow gap like the above-mentioned place, that is, between the upper surface 26a of the lower die 26 and the lower surface 28a of the upper die 28. There is an effect that the clearance sensor 1 can be inserted corresponding to the narrowness.

【0021】その上、上記すきまセンサ1は、上記の隙
間に置かれた状態において、コイル保持体4における当
面の内側で、上記導電板7の当面と対向する面に沿わせ
る状態に付設した平面状のコイル15が導電板7の当面に
対して、面状態で接近する特長がある。このことは、従
来のように「バネ板」の曲り量に対応する圧力の変化を
利用していたが為に、バネ板を反復利用することによ
り、「曲り量に対して逐次圧力に変化が生じ、測定誤差
が生じる」というような問題点のある技術的思想とは異
なり、導電板7の当面と平面状のコイル15の面との
「面」対「面」の「距離の変化に応じた値のインダクタ
ンスの変化を利用する」ものであるから、仮に、導電板
を反復利用することにより、導電板の復帰力が弱まり、
付勢力の値に変化が生じても、復帰力がある限り、付勢
力の力の変化には全く無関係に、正しい測定値を得るこ
とのできる効果がある。従って上記隙間の寸法の変化
を、導電板7の僅かな変化に対しても、それに対応した
正確な電気信号として得ることのできる特長がある。
In addition, when the clearance sensor 1 is placed in the clearance, the clearance sensor 1 has a flat surface provided inside the contact surface of the coil holder 4 so as to be along the surface facing the contact surface of the conductive plate 7. The shape of the coil 15 is such that it comes close to the contact surface of the conductive plate 7 in a planar state. This means that the change in pressure corresponding to the amount of bending of the "spring plate"
Because it was used, by repeatedly using the spring plate
"The pressure changes sequentially with the amount of bending, and the measurement error
Is different from the technical idea which has a problem such as "occurs", an inductor having a value corresponding to a change in "distance" between the "surface" of the current surface of the conductive plate 7 and the surface of the planar coil 15
Use the change in the resistance of the conductive plate.
By repeatedly using, the return force of the conductive plate weakens,
Even if the value of the biasing force changes, the biasing
There is an effect that a correct measurement value can be obtained irrespective of the change in force . Therefore, there is an advantage that a change in the size of the gap can be obtained as an accurate electric signal corresponding to a slight change in the conductive plate 7.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)はすきまセンサの斜視図、(B)は本体
の分解斜視図。
FIG. 1A is a perspective view of a clearance sensor, and FIG. 1B is an exploded perspective view of a main body.

【図2】本体の縦断面図(ハッチングは省略した)。FIG. 2 is a longitudinal sectional view of a main body (hatching is omitted).

【図3】(A)、(B)、(C)は夫々図2における3
A、3B、3C部分の拡大図、(D)はコイル基板の一
面及び他面に備えたコイル要素の形状を示す斜視図。
3 (A), (B), and (C) each show 3 in FIG.
FIGS. 3A and 3B are enlarged views of portions A, 3B, and 3C, and FIG. 3D is a perspective view illustrating shapes of coil elements provided on one surface and the other surface of the coil substrate.

【図4】すきまセンサの使用状態を示す縦断面図。FIG. 4 is a longitudinal sectional view showing a use state of the clearance sensor.

【図5】すきまセンサの本体が押し縮められた状態の縦
断面図。
FIG. 5 is a longitudinal sectional view showing a state where the body of the clearance sensor is compressed.

【図6】すきまセンサの本体がより一層押し縮められた
状態の縦断面図。
FIG. 6 is a longitudinal sectional view showing a state where the main body of the clearance sensor is further compressed.

【図7】インダクタンスの測定回路のブロック図。FIG. 7 is a block diagram of a circuit for measuring inductance.

【図8】すきま寸法と測定回路の出力電圧との関係を示
すグラフ。
FIG. 8 is a graph showing a relationship between a clearance dimension and an output voltage of a measurement circuit.

【図9】コイルの平面形状の異なる例を示す平面図。FIG. 9 is a plan view showing an example in which the planar shape of the coil is different.

【図10】信号引出部の構造の異なる例を示す部分図。FIG. 10 is a partial view showing another example of the structure of the signal extraction unit.

【図11】補強板を備えたすきまセンサを示す分解斜視
図。
FIG. 11 is an exploded perspective view showing a clearance sensor provided with a reinforcing plate.

【図12】補強板とすきまセンサの本体との連結構造を
示す拡大断面図。
FIG. 12 is an enlarged sectional view showing a connection structure between a reinforcing plate and a main body of the clearance sensor.

【図13】図11のすきまセンサの使用状態を示す図。FIG. 13 is a diagram showing a use state of the clearance sensor in FIG. 11;

【図14】すきまセンサの更に異なる実施例を示す縦断
面図。
FIG. 14 is a longitudinal sectional view showing still another embodiment of the clearance sensor.

【符号の説明】[Explanation of symbols]

4 コイル保持体 7 導電板 15 コイル 4 Coil holder 7 Conductive plate 15 Coil

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 7/00 - 7/34 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01B 7/ 00-7/34

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 外面が間隔測定対象物の一方に当接させ
る為の当面となっている板状のコイル保持体と、外面が
間隔測定対象物の他方に当接させる為の当面となってい
る板状の導電板とが、各々の内面相互が対向する状態に
並設され、しかも両者は連結手段を介して相互の当面が
遠近自在でかつ相互に離反する方向に付勢された状態に
連結されており、上記コイル保持体における当面の内側
で、上記導電板の当面と対向する内面には、上記導電板
との距離の変化に応じた値のインダクタンスを生ずる平
面状のコイルを上記板状のコイル保持体の板面に平行さ
せた状態に付設したことを特徴とするすきまセンサ。
1. A plate-shaped coil holder whose outer surface is in contact with one of the distance measurement objects, and whose outer surface is in contact with the other of the distance measurement objects. Plate-shaped conductive plates are arranged side by side with their respective inner surfaces facing each other, and both are in a state in which the respective contact surfaces are biased in a direction in which the respective contact surfaces are freely movable toward and away from each other via connecting means. A planar coil which is connected and has an inductance of a value corresponding to a change in the distance to the conductive plate is provided on an inner surface of the coil holding body, which is opposed to the conductive plate on the inner surface of the conductive plate. A clearance sensor provided in a state parallel to a plate surface of a coil-shaped holding member.
JP04125663A 1992-04-17 1992-04-17 Clearance sensor Expired - Lifetime JP3086934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04125663A JP3086934B2 (en) 1992-04-17 1992-04-17 Clearance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04125663A JP3086934B2 (en) 1992-04-17 1992-04-17 Clearance sensor

Publications (2)

Publication Number Publication Date
JPH05296708A JPH05296708A (en) 1993-11-09
JP3086934B2 true JP3086934B2 (en) 2000-09-11

Family

ID=14915582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04125663A Expired - Lifetime JP3086934B2 (en) 1992-04-17 1992-04-17 Clearance sensor

Country Status (1)

Country Link
JP (1) JP3086934B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949293A (en) * 1997-02-18 1999-09-07 Japan System Development Co., Ltd. Integrated circuit for measuring the distance
JP4593610B2 (en) * 2007-11-07 2010-12-08 株式会社デンソー Vehicle side collision detection device
CN114252004B (en) * 2021-12-09 2023-11-17 中国船舶重工集团公司第七0三研究所 Device and method for measuring tooth side gap of sleeve tooth based on resistance measurement

Also Published As

Publication number Publication date
JPH05296708A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
CN102709023B (en) Inductor with thermally stable resistance
JP4292711B2 (en) Low resistance resistor and manufacturing method thereof
JP4646091B2 (en) Eddy current probe with foil sensor attached to the flexible tip of the probe
US2536272A (en) Magnetic recording-reproducing head
US7087450B2 (en) Fabricating method for a fluxgate sensor integrated in printed circuit board
US5495169A (en) Clamp-on current sensor
JP3086934B2 (en) Clearance sensor
US20070107207A1 (en) Inductive proximity sensor and method of assembling the same
CN102914252B (en) Sensor and sensor element
JP2018004267A (en) Mounted structure and mounted base board for shunt resistor
US6344781B1 (en) Broadband microwave choke and a non-conductive carrier therefor
Hristoforou et al. Displacement sensors using soft magnetostrictive alloys
JP3352619B2 (en) IC for distance measurement
JPS6166104A (en) Method for measuring thickness of thin metal film
US6746785B1 (en) Device for setting a defined electric potential on a ferrite core of an inductive component and/or for reducing damping of the inductive component by losses induced by its magnetic field
JP3634281B2 (en) Magneto-impedance effect sensor
JP3052049B2 (en) Electromagnetic ultrasonic transducer for deflection shear wave
JP2000356505A (en) Strain detecting element
JP2651003B2 (en) Eddy current displacement sensor
JP3314548B2 (en) Magnetic detector
JP3423498B2 (en) Near magnetic field probe for EMC and method of manufacturing the same
JP2001336910A (en) Radio type distortion sensor
JP2952727B2 (en) Method and apparatus for measuring the thickness of thin layers
TWI740739B (en) Electromagnetic testing element and fabrication method thereof and thickness detection method
JP3075237B2 (en) High frequency filter and method of adjusting frequency characteristics thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 12