JP3086869B2 - Telescope system - Google Patents
Telescope systemInfo
- Publication number
- JP3086869B2 JP3086869B2 JP09175248A JP17524897A JP3086869B2 JP 3086869 B2 JP3086869 B2 JP 3086869B2 JP 09175248 A JP09175248 A JP 09175248A JP 17524897 A JP17524897 A JP 17524897A JP 3086869 B2 JP3086869 B2 JP 3086869B2
- Authority
- JP
- Japan
- Prior art keywords
- telescope
- distance
- resolution
- diffraction
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Telescopes (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は分解能が回折限界を
上回る性能を発揮する望遠鏡システムに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a telescope system having a resolution exceeding the diffraction limit.
【0002】[0002]
【従来の技術】従来、凸レンズの対物レンズ系と凹レン
ズの接眼レンズ系を有するガリレオ式望遠鏡において
は、簡単なレンズ構成でありながら正立の虚像を得るこ
とができるため、低価格の望遠鏡において頻繁に使用さ
れてきた。2. Description of the Related Art Conventionally, in a Galileo telescope having an objective lens system of a convex lens and an eyepiece system of a concave lens, an upright virtual image can be obtained with a simple lens configuration. Has been used for
【0003】[0003]
【発明が解決しようする課題】しかしながら、上記ガリ
レオ式望遠鏡においては光の回折現象によって、望遠鏡
の分解能(解像度)が決まってしまうため、光の回折現
象の影響が顕著にならない範囲でしか望遠鏡を使用でき
ないという問題を有していた。However, in the Galileo telescope, the resolution (resolution) of the telescope is determined by the light diffraction phenomenon. Therefore, the telescope is used only in a range where the influence of the light diffraction phenomenon is not remarkable. Had the problem of not being able to do so.
【0004】[0004]
【課題を解決するための手段】本発明は上記に鑑みてな
されたもので、光の送受信用いる望遠鏡の接眼レンズ系
に凹レンズを用い、有限距離を対象とする球面波の波面
を、上記凹レンズに球面収差をもたせて上記望遠鏡の開
口面で光軸より遠い程曲率が小さくなるように歪ませ、
回折限界の光強度分布よりも狭い幅をもつ特殊な回折ビ
ームを生成して、分解能を回折限界以上にする望遠鏡シ
ステムを提供するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above, and uses a concave lens in an eyepiece system of a telescope for transmitting and receiving light, and applies a wavefront of a spherical wave for a finite distance to the concave lens. With a spherical aberration, the telescope is distorted so that the curvature becomes smaller as the distance from the optical axis becomes larger at the aperture surface of the telescope,
An object of the present invention is to provide a telescope system that generates a special diffracted beam having a width smaller than the light intensity distribution at the diffraction limit to make the resolution higher than the diffraction limit.
【0005】[0005]
【発明の実施の形態】以下に本発明における一実施形態
の構成を説明する。図1に示される接眼レンズ6に凹レ
ンズを用いるガリレオ式望遠鏡を考える。対物レンズ5
に対する接眼レンズ6の位置を変えることによって、対
象物の距離に応じて無限遠及び有限距離に焦点を合わせ
ることができる。これらの状態は各々望遠鏡の光ビーム
が平行ビーム(平面波)状態及び収束ビーム(球面波)
状態になることに相当する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The configuration of one embodiment of the present invention will be described below. Consider a Galileo telescope using a concave lens for the eyepiece 6 shown in FIG. Objective lens 5
By changing the position of the eyepiece 6 with respect to, it is possible to focus on infinity and finite distance according to the distance of the object. In each of these states, the light beam of the telescope is a parallel beam (plane wave) state and a convergent beam (spherical wave).
It is equivalent to being in a state.
【0006】ここで、対物レンズ5及び接眼レンズ6の
焦点距離を各々f1,f2(凹レンズの場合は負に定義)
と、対物、接眼の両レンズの間隔をLとすると、L=f
1+f2で平行ビーム、L>f1+f2で収束ビーム状態と
なる。ここでは望遠鏡を収束ビーム(球面波)状態にし
て有限距離の対象物を扱う。Here, the focal lengths of the objective lens 5 and the eyepiece 6 are respectively f 1 and f 2 (in the case of a concave lens, they are defined as negative).
And the distance between the objective and eyepiece lenses is L, L = f
1 + f 2 a parallel beam, a convergent beam state in L> f 1 + f 2. Here, an object at a finite distance is handled by setting the telescope to a convergent beam (spherical wave) state.
【0007】次に図1の接眼レンズ6として適度な球面
収差を持った凹レンズを使用する。凹レンズの球面収差
は負の球面収差であるので、光軸に近い中心部を通る光
線より周辺部を通る光線の方が望遠鏡の焦点距離が短く
なるように作用する。Next, a concave lens having an appropriate spherical aberration is used as the eyepiece 6 in FIG. Since the spherical aberration of the concave lens is a negative spherical aberration, a ray passing through the peripheral portion acts so that a focal length of the telescope becomes shorter than a ray passing through the central portion near the optical axis.
【0008】その結果、本望遠鏡の光ビームは、有限距
離の物体を対象とする場合の球面波状態において、周辺
にいく程曲率が小さくなるように歪んだ波面となる。そ
の際における光線は図2のようになる。尚、図2におい
て1は歪んだ球面、2は球面、3は光軸である。As a result, the light beam of the present telescope has a wavefront distorted so that the curvature becomes smaller toward the periphery in a spherical wave state when an object at a finite distance is targeted. The light beam at that time is as shown in FIG. In FIG. 2, 1 is a distorted spherical surface, 2 is a spherical surface, and 3 is an optical axis.
【0009】図2に示されるような特殊な光線の状態の
場合、光の干渉効果により中心部に細い副ビーム状の強
度の大きい回折ビームが生成される。正確には、フレネ
ル積分によって任意の距離でのビーム内光強度分布を求
めることができる。近似的には、次のようにして光強度
分布が求まる。この光強度分布の中心部の幅が望遠鏡の
分解能となる。In the case of a special light beam state as shown in FIG. 2, a light beam having a large intensity is generated in the form of a narrow sub-beam at the center due to the light interference effect. To be more precise, the light intensity distribution in the beam at an arbitrary distance can be obtained by Fresnel integration. Approximately, the light intensity distribution is obtained as follows. The width at the center of this light intensity distribution is the resolution of the telescope.
【0010】強度の大きい副ビーム状の中心部の生成に
注目すると、図2からも理解できるように、波面の各部
分(軸対象のため環状になる)が、波面の法線の光軸3
と交わる距離に最も寄与してベッセルビームが形成され
ると考えることができる。長い距離にわたって生成され
る回折ビームのうち遠距離の部分は望遠鏡の開口の外側
の部分、近距離の部分は開口の内側の部分が各々生成に
寄与している。When attention is paid to the generation of the center portion in the form of a sub-beam having a high intensity, as can be understood from FIG. 2, each part of the wavefront (which is annular due to the axial symmetry) has an optical axis 3 normal to the wavefront.
It can be considered that the Bessel beam is formed most contributing to the distance intersecting with. In the diffracted beam generated over a long distance, a far portion is a portion outside the aperture of the telescope, and a short portion is a portion inside the aperture of the telescope.
【0011】ビームの中心部の形は非常に良い近似で0
次ベッセル型のJ0 2となっており、光強度分布の半値幅
(FWHM)をw0 とすると、J0 2が半値(1/2)と
なるのはJ0 の変数が1.125の時であるので、これ
を表すと数式(1)となる。The shape of the center of the beam is a very good approximation of 0
Has a J 0 2 follows Bessel, the full width at half maximum of the light intensity distribution (FWHM) and w 0, J 0 2 is half (1/2) and made of the of the J 0 variable is 1.125 Since it is time, this is represented by Equation (1).
【0012】[0012]
【数1】 (Equation 1)
【0013】但し、λは波長、zは対象物までの距離、
ρa は開口内で最も寄与する第1フレネル帯(この場合
環状になる)の平均半径である。ρa が開口半径aとな
る開口端付近が寄与する距離では、数式(2)と表され
る。但し、Dは開口の直径である。Where λ is the wavelength, z is the distance to the object,
ρ a is the average radius of the first contributing first Fresnel zone in the aperture, which in this case is annular. The distance contributed by the vicinity of the opening end where ρ a is the opening radius a is expressed by Expression (2). Here, D is the diameter of the opening.
【0014】[0014]
【数2】 (Equation 2)
【0015】一方、一般の望遠鏡の回折限界の分解能に
相当する回折パターンは良く知られているように1次ベ
ッセル型のJ1 2となり、その半値幅(FWHM)をw1
とすると、有限距離zでは数式(3)と表される。Meanwhile, J 1 2 next 1 Bessel type as diffraction pattern corresponding to the resolution of the diffraction limit of a general telescope is well known, the half width (FWHM) w 1
Then, the finite distance z is represented by Expression (3).
【0016】[0016]
【数3】 (Equation 3)
【0017】数式(2)、(3)より、w0 /w1 =
2.25/π≒0.72となり、ビーム幅が回折限界の
70%程度となり、その分だけ分解能が良くなることに
なる。数式(1)、(3)より、開口内半径ρa がρa
≧0.72aとなる開口周辺部の寄与する距離に対して
超回折限界の分解能が得られることが分かる。(但し、
遠距離になる程本回折ビームの主ローブの強度が小さく
なるので、無限遠相当の距離に対しては本システムは有
効でない。)From equations (2) and (3), w 0 / w 1 =
2.25 / π ≒ 0.72, the beam width is about 70% of the diffraction limit, and the resolution is improved accordingly. From equations (1) and (3), the radius ρ a in the opening is ρ a
It can be seen that the resolution of the super-diffraction limit can be obtained with respect to the distance of the periphery of the opening that satisfies ≧ 0.72a. (However,
Since the intensity of the main lobe of the diffracted beam decreases as the distance increases, the system is not effective for a distance equivalent to infinity. )
【0018】従って、本発明の望遠鏡システムを用いた
場合、上記の距離に対しては、従来の望遠鏡の回折限界
の分解能を超えた、超高分解能を得ることができる。Therefore, when the telescope system of the present invention is used, an ultra-high resolution exceeding the diffraction-limited resolution of the conventional telescope can be obtained for the above distance.
【0019】[0019]
【実施例】本実施例では本発明の光学望遠鏡システムを
用い、対物レンズ(口径10cm、焦点距離40cm)
と、接眼レンズ(使用有効径1.25cm、有効径端で
の球面収差=−0.58mm)を用いた場合の正確なフ
レネル積分により得られたビーム内の光強度分布の例を
示す。EXAMPLE In this example, the optical telescope system of the present invention was used, and an objective lens (aperture: 10 cm, focal length: 40 cm)
And an example of the light intensity distribution in the beam obtained by accurate Fresnel integration when an eyepiece lens (used effective diameter: 1.25 cm, spherical aberration at the effective diameter end = −0.58 mm) is used.
【0020】1kmの距離での本発明の望遠鏡システム
による光強度分布を、一般の望遠鏡で1kmにビームを
集光した(1kmに焦点を合わせたことに相当)場合の
光強度分布(図4)と比較できるように図3に示した。
図3の主ローブの幅は、図4の回折限界の光強度分布の
幅より小さく(≒80%)なっており、超回折限界の分
解能となっていることが分かる。The light intensity distribution of the telescope system of the present invention at a distance of 1 km is shown in FIG. 4 when the beam is condensed to 1 km with a general telescope (corresponding to focusing on 1 km) (FIG. 4). 3 is shown in FIG.
The width of the main lobe in FIG. 3 is smaller than the width of the light intensity distribution at the diffraction limit in FIG. 4 (≒ 80%), which indicates that the resolution is at the super diffraction limit.
【0021】以上、本発明を実施形態に基づいて説明し
たが、本発明は上記した実施形態に限定されるものでは
なく、特許請求の範囲に記載した構成を変更しない限
り、どのようにでも実施できる。As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and may be implemented in any manner unless the configuration described in the claims is changed. it can.
【0022】[0022]
【発明の効果】以上述べたように、本発明におけるにお
いては、超回折限界の望遠鏡を光の送受信に用いたの
で、レーザー光等の送信に用いると従来以上の細い光ビ
ームが遠距離で得られ、また、受信に用いると従来以上
の高分解能が得られる等、多大な効果を奏する。As described above, in the present invention, a super-diffraction-limited telescope is used for transmitting and receiving light, so that when it is used for transmitting laser light or the like, a thinner light beam than before can be obtained at a long distance. Also, when used for reception, a great effect is obtained, such as higher resolution than before can be obtained.
【図1】本発明の一実施形態における望遠鏡システムの
構成を示す概念図である。FIG. 1 is a conceptual diagram illustrating a configuration of a telescope system according to an embodiment of the present invention.
【図2】本発明における歪んだ球面の光波面における光
束の軌跡を示す概念図である。FIG. 2 is a conceptual diagram showing a trajectory of a light beam on a light wavefront of a distorted spherical surface according to the present invention.
【図3】本発明の望遠鏡システムにおける光強度分布を
示す特性図である。FIG. 3 is a characteristic diagram showing a light intensity distribution in the telescope system of the present invention.
【図4】従来の望遠鏡システムにおける光強度分布を示
す特性図である。FIG. 4 is a characteristic diagram showing a light intensity distribution in a conventional telescope system.
1 歪んだ球面 2 球面 3 光軸 4、4′ 光線 5 対物レンズ系 6 接眼レンズ系 DESCRIPTION OF SYMBOLS 1 Distorted spherical surface 2 Sphere 3 Optical axis 4, 4 'ray 5 Objective lens system 6 Eyepiece system
Claims (1)
に凹レンズを用い、有限距離を対象とする球面波の波面
を、上記凹レンズに球面収差をもたせて上記望遠鏡の開
口面で光軸より遠い程曲率が小さくなるように歪ませ、
回折限界の光強度分布よりも狭い幅をもつ特殊な回折ビ
ームを生成して、分解能を回折限界以上にすることを特
徴とする望遠鏡システム。1. A concave lens is used in an eyepiece system of a telescope for transmitting and receiving light, and a wavefront of a spherical wave intended for a finite distance is made to have a spherical aberration so that the concave lens has a spherical aberration. Distort the curvature to be small,
A telescope system characterized in that a special diffraction beam having a width narrower than a diffraction-limited light intensity distribution is generated and the resolution is equal to or higher than the diffraction limit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09175248A JP3086869B2 (en) | 1997-06-17 | 1997-06-17 | Telescope system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09175248A JP3086869B2 (en) | 1997-06-17 | 1997-06-17 | Telescope system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH116966A JPH116966A (en) | 1999-01-12 |
JP3086869B2 true JP3086869B2 (en) | 2000-09-11 |
Family
ID=15992857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09175248A Expired - Lifetime JP3086869B2 (en) | 1997-06-17 | 1997-06-17 | Telescope system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3086869B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7349164B2 (en) | 2005-03-10 | 2008-03-25 | Itochu Aviation Co., Ltd. | Imaging system and optical components thereof |
WO2008126339A1 (en) | 2007-03-27 | 2008-10-23 | Itochu Aviation Co., Ltd. | Optical plate for imaging camera |
-
1997
- 1997-06-17 JP JP09175248A patent/JP3086869B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH116966A (en) | 1999-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4240707A (en) | All-reflective three element objective | |
JP2598501B2 (en) | Method and apparatus for receiving an optical signal | |
JP2019105720A5 (en) | ||
JPH0572477A (en) | Afocal optical device | |
JPH043528B2 (en) | ||
US9746681B2 (en) | Laser beam combining device | |
WO2012017788A1 (en) | Optical system for laser optical rectification and wave front control | |
JP2004126510A (en) | Reflective optical system | |
JPS6113205B2 (en) | ||
US2485345A (en) | Reflecting telescopic objective of the cassegrainian type | |
JP3063485B2 (en) | Reflective optical system | |
US5016995A (en) | Radiation gathering and focusing apparatus and devices | |
US5570232A (en) | Anamorphic single lens for use in an optical scanner | |
JP3086869B2 (en) | Telescope system | |
JPH0682720A (en) | Double bessel generating method and device therefor | |
JP2008298866A (en) | Imaging optical system | |
JP3073790B2 (en) | Optical scanning device | |
US7349164B2 (en) | Imaging system and optical components thereof | |
JP6713639B2 (en) | Projection optical system and projection device | |
JP3635079B2 (en) | Imaging device and its optical system | |
JPS63188115A (en) | Beam shaping optical system | |
JPH0125046B2 (en) | ||
JP3345234B2 (en) | Scanning optical system | |
JPH05307151A (en) | Method and device for deflection scanning | |
JPS61156017A (en) | Diopter adjusting finder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |