JP3086543B2 - Method for producing fine particle dispersed glass - Google Patents

Method for producing fine particle dispersed glass

Info

Publication number
JP3086543B2
JP3086543B2 JP04258550A JP25855092A JP3086543B2 JP 3086543 B2 JP3086543 B2 JP 3086543B2 JP 04258550 A JP04258550 A JP 04258550A JP 25855092 A JP25855092 A JP 25855092A JP 3086543 B2 JP3086543 B2 JP 3086543B2
Authority
JP
Japan
Prior art keywords
glass
mol
cds
matrix
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04258550A
Other languages
Japanese (ja)
Other versions
JPH06107433A (en
Inventor
智恵美 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP04258550A priority Critical patent/JP3086543B2/en
Publication of JPH06107433A publication Critical patent/JPH06107433A/en
Application granted granted Critical
Publication of JP3086543B2 publication Critical patent/JP3086543B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は微粒子分散ガラスの製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine particle-dispersed glass.

【0002】[0002]

【従来技術】粒径が100オングストローム程度のCd
x Se1-X (0≦x≦1)半導体微粒子がマトリクス
ガラス中に分散されているシャープカットフィルター
は、比較的大きな三次の光学的非線形感受率|χ(3)
と比較的速い応答速度を示すため、光スイッチや光コン
ピュータ用演算素子への応用が検討されている。
2. Description of the Related Art Cd having a particle size of about 100 angstroms
A sharp cut filter in which S x Se 1-x (0 ≦ x ≦ 1) semiconductor fine particles are dispersed in a matrix glass has a relatively large third-order optical nonlinear susceptibility | χ (3) |
Therefore, application to optical switches and arithmetic elements for optical computers has been studied.

【0003】これら非線形光電子素子に用いうるCdS
x Se1-X 微粒子分散ガラスとしては、たとえば特開平
4−46038号公報に記載されたものがある。同公報
は、P2 5 及び/又はB2 3 と、ZnO及び/又は
CdOとを必須構成成分とし、かつP2 5 とB2 3
の合量が35〜65mol%であり、ZnOとCdOの
合量が65〜25mol%であるガラスをマトリクスと
して、その中にCdSx Se1-x (0≦x≦1)微粒子
を析出させた非線形光電子素子用ガラスを開示してい
る。
CdS which can be used in these nonlinear optoelectronic devices
As xSe1 -X fine particle-dispersed glass, for example, there is a glass described in JP-A-4-46038. The publication discloses that P 2 O 5 and / or B 2 O 3 , ZnO and / or CdO are essential components, and P 2 O 5 and B 2 O 3
Of 35 to 65 mol% and a total of 65 to 25 mol% of ZnO and CdO as a matrix, and CdS x Se 1-x (0 ≦ x ≦ 1) fine particles were precipitated therein. A glass for a nonlinear optoelectronic device is disclosed.

【0004】このような目的に用いられるガラスには、
光学的非線形感受率(非線形定数)|χ(3) |が充分大
きく、かつ非線形応答時間がより短かいものが求められ
ている。特に、実用的な材料としては、数psecの応
答速度が必要とされる。
[0004] Glass used for such purposes includes:
There is a demand for an optical nonlinear susceptibility (nonlinear constant) | χ (3) | that is sufficiently large and the nonlinear response time is short. In particular, as a practical material, a response speed of several psec is required.

【0005】[0005]

【発明が解決しようとする課題】この種の半導体微粒子
分散ガラスの応答速度は、光励起キャリアの緩和速度に
依存する。固体中の電子、正孔、励起子のボーア半径程
度のサイズ(100オングストローム程度)にまで微細
化された半導体結晶では、いわゆる量子サイズ効果が発
現して、伝導帯および価電子帯の状態密度が離散的にな
り量子化される。ガラスマトリクス中に析出した半導体
微粒子のエネルギ帯も量子化されていると考えられる。
光励起されたキャリアの再結合発光は量子化された準位
を介して生ずる。図4は半導体微粒子の光励起キャリア
の遷移を説明するための図である。
The response speed of this type of semiconductor particle-dispersed glass depends on the relaxation speed of photoexcited carriers. In a semiconductor crystal miniaturized to a size (about 100 angstroms) of the Bohr radius of electrons, holes, and excitons in a solid, a so-called quantum size effect appears, and the state density of the conduction band and the valence band is reduced. Discrete and quantized. It is considered that the energy band of the semiconductor fine particles deposited in the glass matrix is also quantized.
Recombination emission of photoexcited carriers occurs via quantized levels. FIG. 4 is a diagram for explaining the transition of the photoexcited carriers of the semiconductor fine particles.

【0006】図4(A)は、CdSx Se1-X 微粒子分
散ガラス(P2 5 系マトリクス)の典型的な光励起発
光(PL)スペクトルを示す。光励起によって、吸収ス
ペクトル(点線)よリ長波側に二つの発光ピーク,
が生じていることがわかる。特に、長波長側発光ピーク
は支配的な蛍光強度を示す。
FIG. 4A shows a typical photoexcited light emission (PL) spectrum of CdS x Se 1 -x fine particle dispersed glass (P 2 O 5 based matrix). By photoexcitation, two emission peaks on the long-wave side from the absorption spectrum (dotted line),
It can be seen that the occurrence has occurred. In particular, the emission peak on the long wavelength side shows a dominant fluorescence intensity.

【0007】図4(B)は、CdSx Se1-X 微粒子の
光励起キャリアの主要緩和過程を説明するためのエネル
ギ帯図である。上記したように、ガラスマトリクス(絶
縁物)の中に分散したCdSx Se1-X 微粒子の量子化
準位Ee1はバルク結晶の伝導帯底よりエネルギ的に高い
位置にある。また正孔に対する量子化準位Eh1はバルク
結晶の価電子帯底よりエネルギ的に低い位置にある。す
なわち、最低量子準位間の遷移エネルギ|Ee1−Eh1
は、CdSx Se1-X バルク結晶のバンドギャップEg
より大きい。図4(A)のPLスペクトルで発光ピーク
は、図4(B)のEe1→Eh1の発光遷移に対応してい
ると考えられる。この準位間遷移には、競合プロセスと
して非輻射的遷移が伴っていると考えられる。
FIG. 4B is an energy band diagram for explaining the main relaxation process of the photoexcited carriers of the CdS x Se 1-X fine particles. As described above, the quantization level E e1 of the CdS x Se 1-x fine particles dispersed in the glass matrix (insulator) is at a position higher in energy than the conduction band bottom of the bulk crystal. In addition, the quantization level E h1 for holes is located at a position lower in energy than the bottom of the valence band of the bulk crystal. That is, the transition energy between the lowest quantum levels | E e1 −E h1 |
Is the band gap E g of the CdS x Se 1-X bulk crystal
Greater than. The emission peak in the PL spectrum of FIG. 4A is considered to correspond to the emission transition from E e1 → E h1 in FIG. 4B. It is considered that this interlevel transition is accompanied by a nonradiative transition as a competitive process.

【0008】一方、図4(A)で長波長側にある発光ピ
ークは、図4(B)で示したように、バンドギャップ
内に形成された欠陥準位ED から正孔準位Eh1への輻射
遷移に対応していると考えられる。この準位間遷移にも
で示す非輻射競合プロセスが付随していると考えられ
る。
On the other hand, as shown in FIG. 4B, the emission peak on the long wavelength side in FIG. 4A changes from the defect level E D formed in the band gap to the hole level E h1. It is thought that it corresponds to the radiation transition to. It is considered that the non-radiation competition process shown in FIG.

【0009】欠陥準位ED のキャリア(電子)は、で
示す遷移によって電子準位Ee1から非輻射的にED に供
給されるものである。発光ピークの蛍光強度が発光ピ
ークに比べて大きいことは、欠陥準位ED へのキャリ
アの遷移確率が高いことおよびED でのキャリア寿命が
長いことを意味する。また一般にフォノン関与の熱的過
程である非輻射遷移は、輻射遷移に比べて非常に速い。
たとえば、図4(B)において、プロセスおよびが
psecオーダーであるのに対して、プロセスは数十
nsec、プロセスは10μsec〜10msecで
ある。プロセスに比べてプロセスの緩和時間が数桁
も長いのは、始準位におけるキャリア寿命の差である。
以上のことから、プロセスの緩和時間はpsecのオ
ーダーになると予測される。
[0009] carriers defect levels E D (electrons) are those supplied to the non-radiative manner E D from electron level E e1 by a transition indicated by. The fluorescence intensity of the emission peak is larger than the emission peak means that longer carrier lifetime in by and E D high transition probability of the carrier to the defect level E D. Non-radiative transitions, which are generally phonon-related thermal processes, are much faster than radiative transitions.
For example, in FIG. 4B, the process is on the order of psec, whereas the process is on the order of tens of nsec and the process is on the order of 10 μsec to 10 msec. The reason that the relaxation time of the process is several orders of magnitude longer than that of the process is the difference in carrier lifetime at the initial level.
From the above, the process relaxation time is expected to be on the order of psec.

【0010】上記したように、前記した特開平4−46
038号公報記載のCdSx Se1- x (0≦x≦1)微
粒子分散ガラスの場合を含めて、従来のCdSx Se
1-X 微粒子分散ガラスの応答速度は、プロセスが律速
となって10μsec以上になることは不可避であっ
た。
[0010] As described above, Japanese Patent Application Laid-Open No. 4-46
Including the case of CdS x Se 1- x (0 ≦ x ≦ 1) particles dispersed glass 038 described in JP, conventional CdS x Se
It was inevitable that the response speed of the 1-X fine particle-dispersed glass would be 10 μsec or more because the process was rate-determining.

【0011】応答速度を高速化する方法として、微粒子
分散ガラスにレーザ光を長時間照射する方法が開示され
ている。これは、レーザアニーリング(J.Opt.S
oc.Am.B5(1988)1448)またはホトダ
ークニング(J.Opt.Soc.Am.B4(198
7)5)と呼ばれており、その機構は解明されていない
が、微粒子状半導体に欠陥準位を誘起して非輻射遷移プ
ロセス、たとえばによる緩和を優勢にしようとするも
のと考えられる。
As a method of increasing the response speed, there is disclosed a method of irradiating a fine particle-dispersed glass with laser light for a long time. This is because laser annealing (J. Opt.
oc. Am. B5 (1988) 1448) or photodarkening (J. Opt. Soc. Am. B4 (198)
7) 5), the mechanism of which has not been elucidated, but is thought to induce defect levels in the particulate semiconductor to predominate relaxation by a non-radiative transition process, for example.

【0012】しかし、この方法では高密度のレーザ光を
照射する必要があるため、ガラス全体に亘って均一かつ
大面積にホトダークニングすることが困難という問題点
がある。また、ガラス調製後にレーザアニーリングとい
う工程が付加されるため、大幅なコストアップにつなが
る。
However, in this method, since it is necessary to irradiate a high-density laser beam, there is a problem that it is difficult to uniformly and large-area photodarkening over the entire glass. In addition, a step called laser annealing is added after glass preparation, which leads to a significant increase in cost.

【0013】本発明の目的は、レーザアニーリングのよ
うな付加工程を必要とせずガラス製造工程において速い
光応答を示すCdSx Se1-X 微粒子分散ガラスの製造
を可能とする方法を提供することにある。
An object of the present invention is to provide a method capable of producing a CdS x Se 1 -X fine particle dispersed glass exhibiting a fast optical response in a glass production process without requiring an additional step such as laser annealing. is there.

【0014】[0014]

【課題を解決するための手段】上記目的を達成する本発
明は、マトリクスとなるガラス原料、微粒子となるCd
x Se1-X (0≦x≦1)の原料およびSb2 Se3
を含む混合物から成る原料組成物を溶融後冷却、熱処理
して、CdSx Se1-X 微粒子がマトリクスガラス中に
分散した微粒子分散ガラスを得ることを特徴とする微粒
子分散ガラスの製造方法を要旨とする。
In order to achieve the above object, the present invention provides a glass material serving as a matrix and Cd serving as fine particles.
Raw material of S x Se 1-X (0 ≦ x ≦ 1) and Sb 2 Se 3
A method for producing a fine particle-dispersed glass, characterized by obtaining a fine-particle-dispersed glass in which CdS x Se 1-X fine particles are dispersed in a matrix glass by cooling and heat-treating a raw material composition comprising a mixture containing I do.

【0015】[0015]

【作用】本発明は、ガラス原料の一成分として、Sb2
Se3 を添加することをポイントとするものであり、こ
のことにより溶融、キャスティング、、熱処理(熱処理
後徐冷)によって得られたガラス中に分散するCdSx
Se1-X 微粒子の粒径が増大し、かつ均一に分散する効
果を生ずる。
According to the present invention, Sb 2
The point is to add Se 3 , whereby CdS x dispersed in the glass obtained by melting, casting, and heat treatment (slow cooling after heat treatment).
This has the effect of increasing the particle size of the Se 1-X fine particles and dispersing them uniformly.

【0016】微粒子の粒径Rが量子サイズ効果を示す範
囲で増大すると、図4(B)で示した量子化準位間エネ
ルギ差|Ee1−Eh1|がR2 に逆比例して低下すること
が知られている。すなわち、図4(A)の発光ピークエ
ネルギが1/R2 に比例する。
When the particle size R of the fine particles increases in a range showing the quantum size effect, the energy difference | E e1 −E h1 | between the quantized levels shown in FIG. 4B decreases in inverse proportion to R 2. It is known to That is, the emission peak energy in FIG. 4A is proportional to 1 / R 2 .

【0017】本発明者らは、Rの増大に伴なうより重要
な効果として、非輻射遷移プロセス、の確率増大と
輻射プロセス、の確率減少を見出した。そのデータ
を図1に示した。図1(A)は、半径Rの異なる二つの
例についての蛍光スペクトル、強度を示す。なお粒径R
は、粒径半径rで示した(R=2r)。この二つの例は
同一励起条件下で測定されたものである。粒径Rの増大
にしたがってピーク波長のレッドシフトと発光強度の著
しい減少が観測される。
The present inventors have found that as a more important effect with increasing R, the probability of the non-radiative transition process increases and the probability of the radiative process decreases. The data is shown in FIG. FIG. 1A shows the fluorescence spectra and the intensities of two examples having different radii R. The particle size R
Is represented by a particle diameter radius r (R = 2r). These two examples were measured under the same excitation conditions. A red shift of the peak wavelength and a remarkable decrease in the emission intensity are observed as the particle size R increases.

【0018】粒径Rを様々に変化させて、同一励起条件
下で測定した蛍光ピークのデータをまとめて示したの
が、図1(B)である。上記したように、Rの増大に伴
ってピークエネルギは1/R2に比例してレッドシフト
し、その蛍光強度はr>20オングストロームの領域で
粒径と共に著しく減少することが示されている。
FIG. 1B collectively shows the data of the fluorescence peaks measured under the same excitation conditions while changing the particle diameter R variously. As described above, it is shown that as R increases, the peak energy red-shifts in proportion to 1 / R 2 , and that the fluorescence intensity decreases significantly with the particle size in the region of r> 20 angstroms .

【0019】本発明は、Rの増大に伴なう非輻射遷移確
率の増大を拠りどころとしている。非輻射プロセスが優
勢になることで、微粒子分散ガラスの光応答特性は格段
に改善される。
The present invention relies on an increase in the non-radiative transition probability with an increase in R. As the non-radiation process becomes dominant, the optical response characteristics of the fine particle-dispersed glass are significantly improved.

【0020】[0020]

【実施例】以下本発明を、実施例に基づいてより詳しく
述べる。本発明の微粒子分散ガラス組成物はマトリクス
であるガラス原料としてP2 5 および/又はB2 3
と、ZnOおよび/又はCdOとを必須構成要件として
含む組成であることが好ましい。これは、ガラスの熱的
安定性、化学的耐久性およびガラスへの半導体成分Cd
x Se1-X の溶解度を考慮した結果である。また、ガ
ラス原料は酸化物原料を用いるのが好ましい。この他に
も水酸化物、炭酸塩、硝酸塩等通常のガラス溶融時使用
の材料も用いうる。しかし、これらは溶融時にガスを発
生し、蒸気圧の高い硫黄および/又はセレン成分を揮発
させ易いので、結果的にガラス中に分散するCdSx
1-X 微粒子の密度を減少させることになる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail based on embodiments. The fine particle-dispersed glass composition of the present invention contains P 2 O 5 and / or B 2 O 3 as a glass material as a matrix.
And ZnO and / or CdO as an essential component. This is because of the thermal stability, chemical durability and the semiconductor component Cd of the glass.
This is a result in consideration of the solubility of S x Se 1-X . Further, it is preferable to use an oxide material as the glass material. In addition to the above, materials used for ordinary melting of glass, such as hydroxides, carbonates, and nitrates, can also be used. However, these generate gas during melting and tend to volatilize sulfur and / or selenium components having a high vapor pressure, and as a result, CdS x S dispersed in glass.
The density of e 1-X fine particles will be reduced.

【0021】ガラスマトリクス用原料のP2 5 及び/
又はB2 3 の合量は35〜65mol%であり、Zn
O及び/又はCdOの合量が65〜25mol%である
ことが好ましい。これは、P2 5 とB2 3 の合量が
35mol%より低いと、ガラスの熱的安定性が悪くな
り、キャスティング後の熱処理工程でマトリクスガラス
から結晶が析出しやすくなる。また、P2 5 とB2
3 の合量が65mol%を超えると、ガラスの化学的耐
久性が低下し、使用時に問題となる。より好ましくは、
2 5 とB2 3 の合量は40〜65mol%の範囲
となる。
The raw materials for the glass matrix, P 2 O 5 and / or
Alternatively, the total amount of B 2 O 3 is 35 to 65 mol%, and Zn
It is preferable that the total amount of O and / or CdO is 65 to 25 mol%. If the total amount of P 2 O 5 and B 2 O 3 is lower than 35 mol%, the thermal stability of the glass is deteriorated, and crystals are easily precipitated from the matrix glass in the heat treatment step after casting. P 2 O 5 and B 2 O
If the total amount of 3 exceeds 65 mol%, the chemical durability of the glass will decrease, and this will cause a problem during use. More preferably,
The total amount of P 2 O 5 and B 2 O 3 is in the range of 40~65mol%.

【0022】更に、ZnOとCdOの合量が65mol
%を超えると、ガラスの熱的安定性が、またその合量が
25mol%未満ではガラスの化学的安定性が損われる
ので、いずれも好ましくない。より好ましくは、ZnO
とCdOの合量は60〜35mol%の範囲となる。
Further, the total amount of ZnO and CdO is 65 mol.
%, The thermal stability of the glass is impaired, and when the total amount is less than 25 mol%, the chemical stability of the glass is impaired, so that both are not preferred. More preferably, ZnO
And the total amount of CdO is in the range of 60 to 35 mol%.

【0023】一方、前記したマトリクスガラス用原料の
他の成分として、アルカリ金属酸化物、アルカリ土類金
属酸化物、ZrO2 ,TiO2 ,PbO,SiO2 ,A
23 ,As2 3 ,Sb2 3 などを含むことが可
能であるが、その合量は25mol%以下でなければな
らない。その理由は、これら成分の合量が25mol%
を超えると、硫黄及び/又はセレンのガラス融液に対す
る溶解度が低下し、過剰成分は揮発して失なわれるので
ガラスに分散するCdSx Se1-X 微粒子密度が低下す
るためである。
On the other hand, as other components of the matrix glass raw material, alkali metal oxides, alkaline earth metal oxides, ZrO 2 , TiO 2 , PbO, SiO 2 , A
It is possible to include l 2 O 3 , As 2 O 3 , Sb 2 O 3, etc., but the total amount must be 25 mol% or less. The reason is that the total amount of these components is 25 mol%
If the ratio exceeds 1, the solubility of sulfur and / or selenium in the glass melt decreases, and excess components are volatilized and lost, so that the density of CdS x Se 1-X fine particles dispersed in the glass decreases.

【0024】CdSxSe1-Xの混晶比xは、原料に混入
するSb2Se3の量を考慮した上で、CdSとCSe
粉末を所定割合で混合し、マトリクスに混ぜることで決
めることが出来る。ただし、CdSxSe1-X微粒子がガ
ラスマトリクス中に如何なる状態で析出するかは、マト
リクス中へのCdSxSe1-X混入濃度による。これを説
明するために、本発明の比較例としてSb2Se3を入れ
ず、また簡単のためにx=0、すなわちCdSeのみを
半導体原料として用いた場合のデータを、図2に示す。
図2は、マトリクスガラス原料にP25,ZnO,Cd
Oを用い、これにCdSeを加えて原料組成物とし、ガ
ラス化した時のガラス中へのCdSe微粒子析出量と原
料添加CdSe量の関係を示す。
The mixed crystal ratio x of CdS x Se 1-X is determined by taking into account the amount of Sb 2 Se 3 mixed in the raw material, with CdS and C d Se.
It can be determined by mixing powders in a predetermined ratio and mixing them in a matrix. However, the state in which the CdS x Se 1-X fine particles are precipitated in the glass matrix depends on the concentration of CdS x Se 1-X mixed in the matrix. To explain this, FIG. 2 shows data as a comparative example of the present invention in which Sb 2 Se 3 was not added, and for simplicity, x = 0, that is, only CdSe was used as a semiconductor material.
FIG. 2 shows that P 2 O 5 , ZnO, and Cd are used as matrix glass raw materials.
The relationship between the amount of CdSe fine particles deposited in glass and the amount of CdSe added to the raw material when vitrification is performed is shown below.

【0025】CdSe微粒子の析出可能なCdSe溶解
度は、たとえばマトリクス組成が50P2 5 −50Z
nO(mol%)の時3〜6mol%、50P2 5
30ZnO−20CdO(mol%)の時8〜16mo
l%、50P2 5 −50CdO(mol%)の時30
〜50mol%となる。これより、低濃度の領域では微
結晶が析出しにくい。また、これより高濃度領域ではガ
ラスマトリクスが不安定となる。
The solubility of CdSe that can precipitate CdSe fine particles is, for example, that the matrix composition is 50P 2 O 5 -50Z.
3 to 6 mol% when nO (mol%), 50 P 2 O 5
8-16mo when 30ZnO-20CdO (mol%)
l%, 30 at the time of 50P 2 O 5 -50CdO (mol% )
5050 mol%. Thus, microcrystals are unlikely to be precipitated in a low concentration region. In the higher concentration region, the glass matrix becomes unstable.

【0026】CdSe微結晶析出領域は、図示したよう
になるが、斜線部は粒径の大きなものが得やすいが不均
一析出領域となる。図示した均一析出領域では粒径が小
さく、したがって蛍光強度は大きく光応答性が悪い。
The CdSe fine crystal precipitation region is as shown in the figure, but the hatched portion is easy to obtain one having a large grain size, but is a non-uniform precipitation region. In the illustrated uniform precipitation region, the particle size is small, and therefore, the fluorescence intensity is large and the light response is poor.

【0027】図2で示した斜線部の不均一析出領域に少
量のSb2 Se3 を添加すると、粒径が大きくかつ均一
な微粒子が析出したガラスを得ることが出来る。また、
大粒径、均一析出領域は図2の非析出領域に迄広がるこ
とがわかった。粒径は、Sb2 Se3 添加濃度、熱処理
温度および時間によって制御することが出来る。
When a small amount of Sb 2 Se 3 is added to the non-uniform precipitation region shown by the hatched portion in FIG. 2, a glass having a large particle size and uniform fine particles can be obtained. Also,
It was found that the large grain size, uniform precipitation region extended to the non-precipitation region in FIG. The particle size can be controlled by the concentration of Sb 2 Se 3 added, the heat treatment temperature and the time.

【0028】図2で示したマトリクス組成に比べて、P
2 5 およびB2 3 の合量を増加させるとCdSx
1-X の溶解度は低下し、逆に原料中のCdOやCd
S,CdSeの含有量を増すとCdSx Se1-X の溶解
度は増加するが、いずれの場合も図2と同様な傾向を示
す。
As compared with the matrix composition shown in FIG.
When the total amount of 2 O 5 and B 2 O 3 is increased, CdS x S
The solubility of e 1-X decreases, and conversely CdO and Cd
As the content of S and CdSe increases, the solubility of CdS x Se 1- x increases, but in any case, the same tendency as in FIG. 2 is exhibited.

【0029】本発明のSb2 Se3 を添加した例を図3
に示す。図3は、マトリクス組成が50P2 5 −30
ZnO−20CdO(mol%)で析出微粒子がCdS
e(混合半導体原料がCdSe)の場合につき、Sb2
Se3 の添加効果を示すものである。
FIG. 3 shows an example in which Sb 2 Se 3 of the present invention is added.
Shown in FIG. 3 shows that the matrix composition is 50P 2 O 5 -30.
ZnO-20CdO (mol%) and deposited fine particles are CdS
e (mixed semiconductor material is CdSe), Sb 2
This shows the effect of adding Se 3 .

【0030】図3の斜線領域は、図2で示したSb2
3 無添加の場合の不均一析出領域である。Sb2 Se
3 無添加の場合、CdSe原料が11〜16mol%の
領域は均一析出領域で粒径制御も可能であるが、粒径が
小さい。大粒径のCdSe微結晶を析出させるには、非
常に長時間熱処理する必要があり、実用性を欠く。ま
た、長時間の熱処理によってマトリクスも不安定とな
る。
The hatched area in FIG. 3 is the Sb 2 S shown in FIG.
e 3 is nonuniform deposition region of the case of no addition. Sb 2 Se
(3) In the case of no addition, the region where the CdSe raw material is 11 to 16 mol% is a uniform precipitation region and the particle size can be controlled, but the particle size is small. In order to precipitate CdSe fine crystals having a large particle size, it is necessary to perform heat treatment for a very long time, and this is not practical. Further, the matrix becomes unstable due to the long-term heat treatment.

【0031】しかるに、図示したように、0.1〜0.
8mol%のSb2 Se3 を原料に添加することにより
斜線領域外迄析出領域が広がり、かつ点線で示した析出
領域では、図の斜線部も含めて大粒径で均一な析出が得
られることがわかった。この結果は、CdSを更に加え
たCdSx Se1-X 微粒子析出の場合も、全く同様であ
る。
However, as shown in FIG.
By adding 8 mol% of Sb 2 Se 3 to the raw material, the precipitation region is expanded to outside the shaded region, and in the precipitation region indicated by the dotted line, uniform precipitation with a large grain size including the shaded portion in the figure is obtained. I understood. This result is completely the same in the case of depositing CdS x Se 1-x fine particles further containing CdS.

【0032】Sb2 Se3 添加によって得られた均質で
大粒径のCdSx Se1-X 微粒子分散ガラスにおいて
は、光励起の蛍光強度は無添加の場合(図1)に比較し
て約2桁小さくなり、その分だけ非輻射遷移確率が増大
して光応答性は大きく改善された。すなわちSb2 Se
3 添加によって速い光応答性を示す均質なCdSx Se
1-X 微粒子分散ガラスが得られる。
In the homogeneous and large-diameter CdS x Se 1 -X fine particle dispersed glass obtained by adding Sb 2 Se 3 , the fluorescence intensity of photoexcitation is about two orders of magnitude as compared with the case of no addition (FIG. 1). As a result, the non-radiative transition probability increased by that much, and the optical response was greatly improved. That is, Sb 2 Se
3 Homogeneous CdS x Se showing fast photoresponse by addition
1-X fine particle dispersed glass is obtained.

【0033】以下に、CdSx Se1-X 微粒子分散ガラ
スの製造例と得られた微粒子分散ガラスの物性測定結果
について、具体的に述べる。 製造例1 マトリックスとなるガラスの原料として、50mol%
のP2 5 、30mol%のZnOと20mol%のC
dOからなる組成物を用い、この組成物100mol%
に対して、1.0mol%のSb2 Se3 と微粒子の原
料として6mol%のCdSeを加えた混合物を、耐火
坩堝中で1200℃において、15分間加熱して均質な
ガラス融液とした後、鉄板上にキャストして無色透明な
ガラスを得た。この様にして得たガラスの化学分析によ
りガラス中のSbの残存量は1.9wt%でバッチでの
濃度1.8wt%とほぼ同等であった。
Hereinafter, a production example of the CdS x Se 1-X fine particle-dispersed glass and a result of measurement of physical properties of the obtained fine particle-dispersed glass will be specifically described. Production Example 1 50 mol% as a raw material of glass to be a matrix
P 2 O 5 , 30 mol% ZnO and 20 mol% C
Using a composition consisting of dO, 100 mol% of this composition
On the other hand, a mixture obtained by adding 1.0 mol% of Sb 2 Se 3 and 6 mol% of CdSe as a raw material of fine particles was heated at 1200 ° C. for 15 minutes in a refractory crucible to obtain a homogeneous glass melt. It was cast on an iron plate to obtain a colorless and transparent glass. According to the chemical analysis of the glass thus obtained, the residual amount of Sb in the glass was 1.9 wt%, which was almost equivalent to the concentration of 1.8 wt% in the batch.

【0034】次に、得られたガラスを、あらかじめ43
0℃に保持した電気炉の中に入れ、この温度で30時間
熱処理した後、このガラスを室温まで徐冷したところ均
一褐色に着色していた。
Next, the obtained glass was previously converted to 43
The glass was placed in an electric furnace maintained at 0 ° C., heat-treated at this temperature for 30 hours, and then gradually cooled to room temperature.

【0035】こうして得られたガラスをX線回折法を用
いて測定したところ、CdSe結晶のピークが観察さ
れ、CdSe微粒子分散ガラスが得られたことが確認さ
れた。さらに、CdSe微粒子分散ガラスに含まれるC
dSe結晶微粒子の大きさをX線回折法を用いて測定し
たところCdSe結晶微粒子の平均粒径(直径)は70
オングストロームであった。
When the glass thus obtained was measured by the X-ray diffraction method, a peak of CdSe crystal was observed, and it was confirmed that CdSe fine particle dispersed glass was obtained. Furthermore, C contained in CdSe fine particle dispersed glass
The average particle size (diameter) of the CdSe crystal fine particles was determined by measuring the size of the dSe crystal fine particles using an X-ray diffraction method.
Angstrom.

【0036】また、得られたCdSe微粒子分散ガラス
を50μmの厚さに光学研磨しその吸収スペクトル及び
蛍光スペクトルを測定したところ、図5に示すように吸
収スペクトル(破線)からは量子閉じ込め効果発現によ
るサブバンドピークが認められ、蛍光スペクトル(実
線)からはバンド端近傍の発光と深い準位からの発光が
認められる。ここで蛍光強度を図1のSb2 Se3 無添
加の場合と比較すると相対強度で約1/200(HOY
A株式会社製R68の蛍光強度を104 としたときの相
対値と比較して、約1/2000の強度)となってお
り、励起キャリアの緩和における非輻射過程が増加して
いることがわかる。また、蛍光寿命測定からは吸収端近
傍の発光(PLH)は約170psec、深い準位から
の発光(PLL)は測定系の分解能以下であり、Sb2
Se3 無添加の場合と比較して充分に短いことが確認さ
れた。また、光学的非線形感受率|χ(3) |は、|χ
(3) |/α値(αは吸収係数)で6×10-11 esu・
cmとなった。この値は、レーザーアニーリング後の値
と同等である。
The obtained CdSe fine particle-dispersed glass was optically polished to a thickness of 50 μm, and its absorption spectrum and fluorescence spectrum were measured. As shown in FIG. A subband peak is observed, and light emission near the band edge and light emission from a deep level are recognized from the fluorescence spectrum (solid line). Here, when comparing the fluorescence intensity with the case where Sb 2 Se 3 was not added in FIG. 1, the relative intensity was about 1/200 (HOY).
The intensity is about 1/2000 compared to the relative value when the fluorescence intensity of R68 manufactured by A Corporation is 10 4 ), indicating that the non-radiative process in the relaxation of the excited carriers is increased. . Further, luminescence of the vicinity of the absorption edge from fluorescent lifetime measurements (PLH) is about 170Psec, luminescence (PLL) from a deep level below the resolution of the measurement system, Sb 2
It was confirmed that the length was sufficiently shorter than the case where Se 3 was not added. Also, the optical nonlinear susceptibility | χ (3) |
(3) | / α value (α is the absorption coefficient) is 6 × 10 −11 esu ·
cm. This value is equivalent to the value after laser annealing.

【0037】製造例2〜20 表1〜5に示すマトリックス原料を用い、CdSx Se
1-X の原料としてCdSeとCdSを用い、さらにSb
2 Se3 を用いて製造例1と同様にしてガラスを得た。
その後、これらのガラスをそれぞれ表1〜5に示す条件
で熱処理した後、室温まで徐冷したところガラスはむら
なく均一に着色した。
Production Examples 2 to 20 Using the matrix raw materials shown in Tables 1 to 5, CdS x Se
CdSe and CdS were used as raw materials for 1-X , and Sb
Glass was obtained in the same manner as in Production Example 1 using 2 Se 3 .
Thereafter, these glasses were each heat-treated under the conditions shown in Tables 1 to 5, and then gradually cooled to room temperature, whereby the glasses were uniformly colored.

【0038】この様にして得られた製造例2〜20の着
色ガラスをX線回折法を用いて測定したところ、製造例
2〜18のガラスについては、CdSeの結晶ピーク
が、そして製造例19、20のガラスについてはCdS
xSe1-Xの混晶ピークが観察され、微粒子分散ガラスが
得られたことが確認された。また、X線回折法より評価
した微粒子の粒径は表1〜5に示すように70〜150
オングストロームと比較的大きなものとなっている。さ
らに、吸収スペクトルからは製造例1と同様に量子閉じ
込め効果発現によるサブバンドの吸収ピークが確認され
た。これらの微粒子分散ガラスの蛍光強度は表1〜5に
示すようにSCF(HOYA株式会社製R68の蛍光強
度を104としたときの相対値)と比較して2〜3オー
ダー小さくなっており、製造例1と同様に励起キャリア
ーの緩和における非輻射過程が増加していることがわか
る。また、蛍光寿命測定からは吸収端近傍の発光、深い
準位からの発光共にそれぞれの測定系の分解能程度にあ
るいはそれ以上に短いことが確認された。また、光学的
非線形感受率|χ(3)|は、|χ(3)|/α値(αは吸収
係数)で5〜8×10-11esu・cmとなった。この
値は、レーザーアニーリング後の値と同等である。
When the colored glasses of Production Examples 2 to 20 obtained as described above were measured by an X-ray diffraction method, the glasses of Production Examples 2 to 18 had a CdSe crystal peak and Production Example 19 , 20 for CdS
x Se 1-X mixed crystal peak of was observed, that the fine particle dispersion glass was obtained was confirmed. The particle diameter of the fine particles evaluated by the X-ray diffraction method was 70 to 150 as shown in Tables 1 to 5.
Angstrom is relatively large. Further, from the absorption spectrum, the absorption peak of the sub-band due to the quantum confinement effect was confirmed as in Production Example 1. As shown in Tables 1 to 5, the fluorescence intensity of these fine particle-dispersed glasses is smaller by 2 to 3 orders than SCF (relative value when the fluorescence intensity of R68 manufactured by HOYA Corporation is 10 4 ), As in Production Example 1, it can be seen that the number of non-radiative processes in the relaxation of excited carriers is increased. In addition, the fluorescence lifetime measurement confirmed that both the emission near the absorption edge and the emission from the deep level were shorter than or about the resolution of each measurement system. The optical non-linear susceptibility | χ (3) | was 588 × 10 −11 esu · cm as | χ (3) | / α value (α is an absorption coefficient). This value is equivalent to the value after laser annealing.

【0039】比較例1 マトリックスとなるガラスの原料として、50mol%
のP2 5 、50mol%のZnOからなる組成物を用
い、この組成物100mol%に対して、微粒子の原料
として4mol%のCdSeを加えた混合物を用いて、
製造例1と同様にガラスを得た。このガラスはSb2
3 を含んでおらず本発明の限定範囲外である。その後
このガラスを450度で64時間熱処理したところ均質
に着色した。こうして得られた着色ガラスをX線回折法
を用いて測定したところ、CdSeの結晶ピークが認め
られ、かつその粒径は50オングストロームと評価され
た。さらに、吸収スペクトルからは製造例1と同様に量
子閉じ込め効果発現によるサブバンドの吸収ピークが確
認された。これらの微粒子分散ガラスの蛍光強度は表5
に示すように全体に大きくかつ低エネルギー側の発光も
強くなっており、輻射遷移の寄与が大きいことがわか
る。そして、蛍光寿命測定からは吸収端近傍の発光(P
LH)で800psec〜数10nsecと長く、ま
た、低エネルギー側の発光(PLL)も数10msec
と非常に長くなっていることが確認された。すなわちこ
の材料ではレーザーアニーリング無しには高速応答には
用いることができないことがわかる。
Comparative Example 1 As a raw material of glass serving as a matrix, 50 mol% was used.
Of a composition comprising P 2 O 5 and 50 mol% of ZnO, and using a mixture of 100 mol% of this composition and 4 mol% of CdSe as a raw material of fine particles,
Glass was obtained in the same manner as in Production Example 1. This glass is Sb 2 S
not contain e 3 is limited outside the scope of the present invention. Thereafter, when the glass was heat-treated at 450 ° C. for 64 hours, it was uniformly colored. When the colored glass thus obtained was measured by the X-ray diffraction method, a crystal peak of CdSe was recognized, and the particle size was evaluated to be 50 Å. Further, from the absorption spectrum, the absorption peak of the sub-band due to the quantum confinement effect was confirmed as in Production Example 1. Table 5 shows the fluorescence intensity of these fine particle-dispersed glasses.
As shown in the figure, the emission is large and the emission on the low energy side is also strong, which indicates that the contribution of the radiation transition is large. From the fluorescence lifetime measurement, the emission (P
LH), which is as long as 800 psec to several tens of nsec.
And it was confirmed that it was very long. That is, it can be seen that this material cannot be used for high-speed response without laser annealing.

【0040】比較例2 比較例1と同様に、原料としてSb2 Se3 を含んでお
らず本発明の限定範囲外である表5に示す組成の混合物
を用いた以外は製造例1と同様にしてガラスを得た。そ
の後、このガラスを450℃で64時間熱処理を行った
が着色ガラスは得られなかった。X線回折法および光吸
収スペクトルからもCdSe結晶微粒子の析出は確認で
きなかった。
Comparative Example 2 In the same manner as in Comparative Example 1, except that a mixture having the composition shown in Table 5 which did not contain Sb 2 Se 3 as a raw material and was outside the scope of the present invention, was used. To get the glass. Thereafter, the glass was heat-treated at 450 ° C. for 64 hours, but no colored glass was obtained. No precipitation of CdSe crystal fine particles was confirmed from the X-ray diffraction method or the light absorption spectrum.

【0041】比較例3 比較例1と同様に、原料としてSb2 Se3 を含んでお
らず本発明の限定範囲外である表5に示す組成の混合物
を用いた以外は製造例1と同様にしてガラスを得た。そ
の後、このガラスを450℃で64時間熱処理を行った
ところ、不均質な着色ガラスが得られた。X線回折法か
らはCdSe結晶のピークが認められたが光学測定を行
えるような材料とはならなかった。
Comparative Example 3 In the same manner as in Comparative Example 1, except that a mixture having the composition shown in Table 5 which did not contain Sb 2 Se 3 as a raw material and was outside the scope of the present invention was used, the same procedure as in Production Example 1 was performed. To get the glass. Thereafter, when this glass was subjected to a heat treatment at 450 ° C. for 64 hours, a heterogeneous colored glass was obtained. An X-ray diffraction method showed a peak of CdSe crystal, but it was not a material capable of performing optical measurement.

【0042】比較例4〜8 比較例1と同様に、原料としてSb2 Se3 を含んでお
らず本発明の限定範囲外である表5〜6に示す組成の混
合物を用いた以外は製造例1と同様にしてガラスを得
た。その後、これらのガラスを表5〜6に示す条件でそ
れぞれ熱処理したところ、比較例4、5では、均質なC
dSe微結晶の析出を認めたものの、その蛍光寿命は表
2に示すように非常に遅いものとなっていた。また、比
較例6〜8では、CdSeやCdSx Se1-X の微結晶
の析出は認められなかった。
Comparative Examples 4 to 8 As in Comparative Example 1, the production examples were the same as those in Comparative Examples 1 to 4 except that mixtures containing Sb 2 Se 3 as raw material and having compositions shown in Tables 5 and 6, which were outside the scope of the present invention, were used. Glass was obtained in the same manner as in Example 1. Thereafter, these glasses were heat-treated under the conditions shown in Tables 5 and 6, respectively.
Although the precipitation of dSe microcrystals was observed, the fluorescence lifetime was very slow as shown in Table 2. In Comparative Example 6-8, the precipitation of fine crystals of CdSe and CdS x Se 1-X was observed.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【表4】 [Table 4]

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【表6】 [Table 6]

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
発光強度の弱い、すなわち、励起キャリアの緩和過程に
おいて非輻射過程の寄与の大きなCdSx Se1-X 微粒
子分散ガラス組成物を得ることができる。そして、この
材料は、蛍光寿命が短く、かつ、光学的非線形感受率|
χ(3) |は、|χ(3) |/α値(αは吸収係数)で、レ
ーザーアニーリング後の値と同等であるため、応答の速
い良好な非線形特性の非線形光電子材料として有用であ
る。
As described above, according to the present invention,
Weak emission intensity, i.e., can be in the relaxation process of excited carriers to obtain the contribution of the large CdS x Se 1-X particle dispersion glass composition of the non-radiation process. This material has a short fluorescence lifetime and an optical nonlinear susceptibility |
χ (3) │ is | χ (3) │ / α value (α is the absorption coefficient), which is equivalent to the value after laser annealing, and is therefore useful as a nonlinear optoelectronic material with a fast response and good nonlinear characteristics. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】CdSx Se1-X 微粒子分散ガラスの微粒子径
と蛍光の関係を示すPLデータ図である。
FIG. 1 is a PL data diagram showing the relationship between the particle size and fluorescence of CdS x Se 1-X particle-dispersed glass.

【図2】Sb2 Se3 未添加の場合の、原料添加CdS
e量とガラス中のCdSe微粒子析出量の関係を示す図
である。
FIG. 2 CdS added with raw material when Sb 2 Se 3 is not added
It is a figure which shows the relationship between e quantity and CdSe fine particle precipitation amount in glass.

【図3】Sb2 Se3 添加によるCdSe微結晶析出領
域の変化を示す図である。
FIG. 3 is a diagram showing a change in a CdSe microcrystal precipitation region due to the addition of Sb 2 Se 3 .

【図4】CdSx Se1-X 微粒子分散ガラスの光励起緩
和を示す図である。
FIG. 4 is a diagram showing photoexcitation relaxation of CdS x Se 1-X fine particle dispersed glass.

【図5】実施例によるCdSe微粒子分散ガラスの光学
特性図である。
FIG. 5 is an optical characteristic diagram of CdSe fine particle dispersed glass according to an example.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 マトリクスとなるガラス原料、微粒子と
なるCdSx Se1- X (0≦x≦1)の原料およびSb
2 Se3 を含む混合物から成る原料組成物を溶融後冷
却、熱処理して、CdSx Se1-X 微粒子がマトリクス
ガラス中に分散した微粒子分散ガラスを得ることを特徴
とする微粒子分散ガラスの製造方法。
1. A glass material to be a matrix, a CdS x Se 1- x (0 ≦ x ≦ 1) material to be fine particles, and Sb
After melting the raw material composition comprising a mixture containing 2 Se 3 cooled and heat treatment method for producing a particle-dispersed glass CdS x Se 1-X fine particles and obtaining a fine particle dispersion glass dispersed in a matrix in the glass .
【請求項2】 前記マトリクスとなるガラス原料が、必
須構成成分としてP2 5 及び/又はB2 3 を合量で
35〜65mol%、ZnO及び/又はCdOを合量で
65〜25mol%含み、かつ前記原料組成物が、前記
マトリクスガラス100mol%に対して前記Sb2
3 を0.005〜5.0mol%含有する、請求項1
記載の微粒子分散ガラスの製造方法。
2. The glass raw material serving as the matrix comprises 35 to 65 mol% in total of P 2 O 5 and / or B 2 O 3 as essential components, and 65 to 25 mol% of ZnO and / or CdO in total. And the raw material composition contains the Sb 2 S based on 100 mol% of the matrix glass.
The e 3 containing 0.005~5.0mol%, claim 1
A method for producing the fine particle-dispersed glass according to the above.
【請求項3】 CdSx Se1-X の量が、マトリクスガ
ラス100mol%に対し2〜50mol%である、請
求項1または2記載の微粒子分散ガラスの製造方法。
3. The method according to claim 1, wherein the amount of CdS x Se 1-X is 2 to 50 mol% based on 100 mol% of the matrix glass.
【請求項4】 前記マトリクスとなるガラス原料として
酸化物原料を用いる、請求項1〜3のいずれか一項記載
の微粒子分散ガラスの製造方法。
4. The method for producing fine particle-dispersed glass according to claim 1, wherein an oxide raw material is used as the glass raw material serving as the matrix.
JP04258550A 1992-09-28 1992-09-28 Method for producing fine particle dispersed glass Expired - Fee Related JP3086543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04258550A JP3086543B2 (en) 1992-09-28 1992-09-28 Method for producing fine particle dispersed glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04258550A JP3086543B2 (en) 1992-09-28 1992-09-28 Method for producing fine particle dispersed glass

Publications (2)

Publication Number Publication Date
JPH06107433A JPH06107433A (en) 1994-04-19
JP3086543B2 true JP3086543B2 (en) 2000-09-11

Family

ID=17321793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04258550A Expired - Fee Related JP3086543B2 (en) 1992-09-28 1992-09-28 Method for producing fine particle dispersed glass

Country Status (1)

Country Link
JP (1) JP3086543B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087162A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Wavelength conversion member and light source comprising using the same
CN117894882B (en) * 2024-03-15 2024-05-28 河北大学 Optical annealing device and method for heterojunction of antimony selenide solar cell

Also Published As

Publication number Publication date
JPH06107433A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
US3717583A (en) Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm.
US5420080A (en) Wavelength up-conversion transparent glass ceramics
US6800574B2 (en) Glass beads and uses thereof
US3714059A (en) Neodymium glass laser having room temperature output at wavelengths shorter than 1060 nm
Mechergui et al. Coupling between surface plasmon resonance and Sm3+ ions induced enhancement of luminescence properties in fluoro-tellurite glasses
Razak et al. Impact of Eu3+ ions on physical and optical properties of Li2O-Na2O-B2O3 glass
Hazlin et al. Absorption and emission analysis of zinc borotellurite glass doped with dysprosium oxide nanoparticles for generation of white light
JP2006512274A (en) ZnO-based glass ceramic
Dan et al. Effects of gold nanoparticles on the enhancement of upconversion and near-infrared emission in Er3+/Yb3+ co-doped transparent glass–ceramics containing BaF2 nanocrystals
Zalamin et al. Comprehensive study on optical and luminescence properties of Sm3+ doped magnesium borotellurite glasses
Shasmal et al. Enhancement and tuning of photoluminescence properties in Pr3+/Au co-doped antimony oxide glass nanocomposites by thermal treatment
JP3086543B2 (en) Method for producing fine particle dispersed glass
Shasmal et al. Enhanced photoluminescence up and downconversions of Sm 3+ ions by Ag nanoparticles in chloroborosilicate glass nanocomposites
US5122178A (en) Process for producing glass doped with dispersed microcrystallites
JP3086490B2 (en) Method for producing fine particle dispersed glass
JP4374434B2 (en) Transition metal-containing chalcogenide glass phosphor
WO2010024447A2 (en) Color center-containing magnesium oxide and thin film of same, wavelength-variable laser medium, laser device, and light source device
US5134095A (en) Matrix glass composition for glass doped with dispersed microcrystallites
CN115286252B (en) ZnSe/ZnS core-shell structure quantum dot glass and preparation method thereof
JP2813393B2 (en) Method for producing semiconductor-containing glass
Heo et al. Optoelectronics: Active Chalcogenide Glasses
CN111362580B (en) Glass ceramic and preparation method thereof
Madhu et al. Influence of tellurite on lifetime for samarium doped lanthanum lead borate glass
JP3737290B2 (en) Optical fiber and manufacturing method thereof
JP3086530B2 (en) Composition for glass with dispersed fine metal particles and glass with dispersed fine metal particles

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000612

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees