JP3084964B2 - Method for producing cyclobutenedione derivative crystals - Google Patents

Method for producing cyclobutenedione derivative crystals

Info

Publication number
JP3084964B2
JP3084964B2 JP04260634A JP26063492A JP3084964B2 JP 3084964 B2 JP3084964 B2 JP 3084964B2 JP 04260634 A JP04260634 A JP 04260634A JP 26063492 A JP26063492 A JP 26063492A JP 3084964 B2 JP3084964 B2 JP 3084964B2
Authority
JP
Japan
Prior art keywords
crystal
cyclobutenedione derivative
cyclobutenedione
producing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04260634A
Other languages
Japanese (ja)
Other versions
JPH0687802A (en
Inventor
孝夫 友野
龍淳 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP04260634A priority Critical patent/JP3084964B2/en
Publication of JPH0687802A publication Critical patent/JPH0687802A/en
Application granted granted Critical
Publication of JP3084964B2 publication Critical patent/JP3084964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レーザー発振機能と基
本波をその1/2の波長の第2高調波に変換する機能
や、優れた焦電性、圧電性を持つシクロブテンジオン結
晶を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cyclobutenedione crystal having excellent pyroelectric and piezoelectric properties, a function of converting a fundamental wave into a second harmonic having a half wavelength, and a laser oscillation function. It relates to a method of manufacturing.

【0002】[0002]

【従来の技術】従来より、レーザー光を短波長変換する
試みがなされている。この様な光波長変換を行う光波長
変換素子として、具体的には、例えば、「光エレクトロ
ニクスの基礎」A.Yariv著、多田邦雄、神谷武志
訳(丸善(株))第200〜204頁に示されるような
バルク結晶を用いたものがよく知られている。光波長変
換素子を構成する結晶として、従来リン酸チタン酸カリ
ウム(KTP=KTiOPO4 )やニオブ酸リチウム
(LN=LiNbO3 )等の無機非線形光学結晶が知ら
れている。ところで、変換効率は、材料の持つ非線形光
学定数の2乗に比例して高い値となるために、無機非線
形光学材料よりも非線形が大きく、応答速度が速い有機
非線形光学材料に関して、近年研究が盛んになされてい
る。有機分子は分子1個で分極構造を取るため、非中心
対称の結晶を育成することにより、非線形光学結晶とし
て使用することができる。
2. Description of the Related Art Conventionally, attempts have been made to convert laser light into short wavelength light. As an optical wavelength conversion element that performs such optical wavelength conversion, specifically, for example, “Basics of Optoelectronics” The one using a bulk crystal as shown in Yariv, Kunio Tada, translated by Takeshi Kamiya (Maruzen Co., Ltd.), pp. 200-204, is well known. As a crystal constituting the light wavelength conversion element, an inorganic nonlinear optical crystal such as potassium phosphate titanate (KTP = KTiOPO 4 ) or lithium niobate (LN = LiNbO 3 ) is conventionally known. By the way, since the conversion efficiency has a higher value in proportion to the square of the nonlinear optical constant of the material, organic nonlinear optical materials having larger nonlinearity and a higher response speed than inorganic nonlinear optical materials have been actively studied in recent years. Has been made. Since an organic molecule takes a polarized structure by itself, it can be used as a nonlinear optical crystal by growing a non-centrosymmetric crystal.

【0003】本発明者等は、既に粉末法によりシクロブ
テンジオン誘導体分子が高い非線形効果を持つことを報
告してきた(特開平2−333172号、同2−333
173号、同2−333174号、2−333175号
公報)。また、X線解析の結果、下記構造式(I)
The present inventors have already reported that a cyclobutenedione derivative molecule has a high nonlinear effect by a powder method (Japanese Patent Application Laid-Open Nos. 2-333172 and 2-333).
173, 2-333174 and 2-333175). As a result of X-ray analysis, the following structural formula (I)

【化2】 (式中、Rはメチル基を表し、*は不整炭素原子を意味
する。)で示されるシクロブテンジオン結晶が三斜晶
系、空間群P1、分子が完全に一次元に並んだ結晶であ
ることが解明されている(L.S.Pu,ln“Mat
erials for Nonlinear Opti
cs”:ChemicalPerspectives;
S.Marder, J.Sohn and G.S
tucky Rd.; ACS Symposium
Series No.455; American C
hemical Society: Washingt
on DC,p331〜342(1991), L.
S.Pu, J.Chem.Comm.,429(19
91))。
Embedded image ( Wherein , R represents a methyl group and * represents an asymmetric carbon atom). A cyclobutenedione crystal represented by the formula: triclinic system, space group P1, and a crystal in which molecules are completely one-dimensionally arranged. (LS Pu, ln “Mat”
erials for Nonlinear Opti
cs ": ChemicalPerspectives;
S. Marder, J.A. Sohn and G.S. S
tucky Rd. ACS Symposium
Series No. 455; American C
chemical Society: Washingt
on DC, p331-342 (1991);
S. Pu, J. et al. Chem. Comm. , 429 (19
91)).

【0004】[0004]

【発明が解決しようとする課題】これまで、報告されて
いる有機単結晶は、上記したように無機単結晶よりも高
い非線形光学定数(d定数)を持つが、100pm/V
以上の非線形光学定数を持つ単結晶は余り知られていな
い。上記一般式(I)で示されるシクロブテンジオン誘
導体についても、高い非線形効果を持つために、それを
光波長変換素子として利用すれば高い交換効率が期待で
きる。しかしながら、従来、シクロブテンジオン誘導体
については、大きな結晶を製造する方法が知られておら
ず、したがって、シクロブテンジオン誘導体を光波長変
換素子として利用することができなかった。したがっ
て、本発明の目的は、光波長変換素子として使用可能な
大きさを持つシクロブテンジオン誘導体の単結晶を製造
する方法を提供することにある。
The organic single crystal reported so far has a higher nonlinear optical constant (d constant) than the inorganic single crystal as described above, but has a value of 100 pm / V.
Single crystals having the above nonlinear optical constants are not known. Since the cyclobutenedione derivative represented by the general formula (I) also has a high nonlinear effect, a high exchange efficiency can be expected by using it as an optical wavelength conversion element. However, conventionally, a method for producing a large crystal of a cyclobutenedione derivative has not been known, and therefore, the cyclobutenedione derivative cannot be used as a light wavelength conversion element. Accordingly, an object of the present invention is to provide a method for producing a single crystal of a cyclobutenedione derivative having a size usable as a light wavelength conversion element.

【0005】[0005]

【課題を解決するための手段】本発明者等は、シクロブ
テンジオン誘導体について、極性溶媒を使用して特定の
条件下で結晶成長を行うことにより、上記目的が達成で
きることを見出した。本発明のシクロブテンジオン誘導
体結晶の製造方法は、上記構造式(I)で示されるシク
ロブテンジオン誘導体を極性溶媒中に溶解し、雰囲気温
度10〜40℃の範囲において、温度変動幅を±1℃以
内に保ちながら、1分間に0.1〜100mm3 の蒸発
速度で溶媒を蒸発させることを特徴とする。
Means for Solving the Problems The present inventors have found that the above object can be achieved by performing crystal growth of cyclobutenedione derivatives under specific conditions using a polar solvent. In the method for producing a cyclobutenedione derivative crystal of the present invention, the cyclobutenedione derivative represented by the above structural formula (I) is dissolved in a polar solvent, and the temperature fluctuation range is ± 1 within an atmosphere temperature of 10 to 40 ° C. The method is characterized in that the solvent is evaporated at an evaporation rate of 0.1 to 100 mm 3 per minute while keeping the temperature within ° C.

【0006】本発明において、極性溶媒としては、液温
10〜40℃の範囲において上記構造式(I)で示され
るシクロブテンジオン誘導体を溶解するものが使用で
き、具体的には、アセトン、メタノール、エタノール等
があげられるが、メタノールが特に好ましい。
In the present invention, as the polar solvent, those which dissolve the cyclobutenedione derivative represented by the above structural formula (I) at a liquid temperature of 10 to 40 ° C. can be used. , Ethanol and the like, and methanol is particularly preferred.

【0007】本発明において、結晶の成長は、雰囲気温
度10〜40℃の範囲において、温度変動幅を±1℃以
内に保ちながら、1分間に0.1〜100mm3 の蒸発
速度で行うことが必要である。特に、雰囲気温度10〜
25℃の範囲において、温度変動幅を±0.5℃以内に
保ちながら、1分間に3〜10mm3 の蒸発速度で行う
のが好ましい。雰囲気温度が10℃よりも低くなると、
溶解度が小さくなり過ぎて結晶を作るのに時間がかかり
過ぎ、また40℃よりも高くなると、巣が多くはいった
り、多結晶化してしまい、結晶の質が悪くなる。温度の
変動幅が±1℃を越えると、核が多く発生して結晶が大
きくならない。また、蒸発速度が0.1mm3 よりも低
いと、結晶作製に時間がかかり過ぎ、、100mm3
りも高いと、核が多く発生して所望の大きさの結晶が得
られなくなる。
In the present invention, the crystal is grown at an evaporation rate of 0.1 to 100 mm 3 per minute while keeping the temperature fluctuation range within ± 1 ° C. in an atmosphere temperature range of 10 to 40 ° C. is necessary. In particular, the ambient temperature is 10
In the range of 25 ° C., it is preferable to perform the evaporation at a rate of 3 to 10 mm 3 per minute while keeping the temperature fluctuation range within ± 0.5 ° C. When the ambient temperature drops below 10 ° C,
If the solubility is too low, it takes too much time to form a crystal, and if it is higher than 40 ° C., many nests are formed or polycrystallization occurs, and the quality of the crystal deteriorates. If the fluctuation range of the temperature exceeds ± 1 ° C., many nuclei are generated and the crystal does not become large. Further, the rate of evaporation Below the 0.1 mm 3, the higher than crystals produced takes time only ,, 100 mm 3, nucleus crystals of greatly occurs to a desired size can not be obtained.

【0008】[0008]

【作用】上記の条件で製造されたシクロブテンジオン誘
導体の単結晶は、通常、1〜30mm3 の大きさを有す
るものであり、そのd定数(d33)は、理論上、約45
4pm/Vの値を有し、高い非線形光学定数を持ってい
る。また、X線解析により、この単結晶は、3斜晶系で
空間群がP1であり、分子が平行に並んだ結晶であるこ
とが確認されている。
The single crystal of the cyclobutenedione derivative produced under the above conditions usually has a size of 1 to 30 mm 3 , and its d constant (d 33 ) is theoretically about 45
It has a value of 4 pm / V and has a high nonlinear optical constant. Further, X-ray analysis confirmed that this single crystal was a triclinic crystal having a space group of P1 and molecules in parallel.

【0009】この単結晶は、屈折率によりタイプIとタ
イプIIの角度位相整合が可能であり、そして、この単結
晶を位相整合方向にカットするとバルクの状態で光波長
変換素子を組み立てることができる。したがって、この
単結晶は、3斜晶系で空間群がP1であり、分子が平行
に並んだ結晶であるため、導波路として用いることがで
き、d33を十分に利用した光波長変換素子として高い変
換効率を示す。
This single crystal can perform type I and type II angular phase matching based on the refractive index, and when this single crystal is cut in the phase matching direction, an optical wavelength conversion element can be assembled in a bulk state. . Therefore, the single crystal is a space group with 3 monoclinic system P1, since molecules are parallel aligned crystals, it can be used as a waveguide, an optical wavelength conversion element utilizing thoroughly d 33 Shows high conversion efficiency.

【0010】[0010]

【実施例】【Example】

実施例1 前記構造式(I)で示されるシクロブテンジオン誘導体
(DAD)のメタノール、エタノール、アセトンに対す
る溶解度曲線を図1に示す。この図で明らかなようにD
ADはメタノールによく溶解するので、溶剤としてメタ
ノールを用いた。次に、溶解度曲線と過溶解度曲線を図
2に示す。この図で明らかなように、22℃で溶解度曲
線1と過溶解度曲線2がほぼ等しくなるので、22℃で
溶媒蒸発法を試みた。22℃で温度変動幅を±0.1℃
以内に保った室内で、1℃以内に保ち、溶媒の蒸発速度
を所定の値に設定し、三角フラスコの中で種結晶を育成
させた。その結果、3〜5mm3 /minの蒸発速度の
とき、0.5〜1mm角の形のよい結晶を得ることがで
きた。その後、DADの飽和メタノール溶液を三角フラ
スコに入れ、その三角フラスコを温度が一定に保たれた
囲いの中に入れた。そして、この三角フラスコの中に上
記のようにして得られた種結晶を入れ、22℃の温度
で、温度変動幅を±0.1℃以内に保って、3〜5mm
3 /minの蒸発速度で育成させた。その結果、最大で
1×4×4mm3 の大きさのDAD結晶を得ることがで
きた。ジオキサンを溶媒として、ソルバトクロミック法
で測定したDADの超分子分極率(β)は171×10
-30 esuであるため、DADのd定数はかなり高い値
であることが推測される。
Example 1 FIG. 1 shows the solubility curves of the cyclobutenedione derivative (DAD) represented by the structural formula (I) in methanol, ethanol, and acetone. As is apparent from FIG.
Since AD is well dissolved in methanol, methanol was used as a solvent. Next, the solubility curve and the super solubility curve are shown in FIG. As is clear from this figure, since the solubility curve 1 and the supersolubility curve 2 become almost equal at 22 ° C., the solvent evaporation method was attempted at 22 ° C. ± 0.1 ° C at 22 ° C
The temperature was kept within 1 ° C. in a room kept within, the evaporation rate of the solvent was set to a predetermined value, and seed crystals were grown in an Erlenmeyer flask. As a result, when the evaporation rate was 3 to 5 mm 3 / min, crystals having a good shape of 0.5 to 1 mm square could be obtained. Thereafter, a saturated methanol solution of DAD was placed in an Erlenmeyer flask, and the Erlenmeyer flask was placed in an enclosure where the temperature was kept constant. Then, the seed crystal obtained as described above is put into this Erlenmeyer flask, and at a temperature of 22 ° C., the temperature fluctuation range is kept within ± 0.1 ° C. and 3 to 5 mm
They were grown at an evaporation rate of 3 / min. As a result, a DAD crystal having a maximum size of 1 × 4 × 4 mm 3 was obtained. The supramolecular polarizability (β) of DAD measured by the solvatochromic method using dioxane as a solvent is 171 × 10
-30 esu, it is estimated that the d constant of DAD is a considerably high value.

【0011】[0011]

【発明の効果】本発明の方法によれば、大きなサイズの
シクロブテンジオン誘導体単結晶を得ることができ、得
られた単結晶は、光波長変換素子として種々の用途に使
用することができる。例えば、精密走査を行う光走査記
録装置や、光走査読取り装置等において、波長変換の技
術を利用する素子として使用することができる。また、
優れた焦電性、圧電性を有し、例えば圧電素子として使
用することができる。
According to the method of the present invention, a single crystal of a cyclobutenedione derivative having a large size can be obtained, and the obtained single crystal can be used for various applications as a light wavelength conversion element. For example, it can be used as an element utilizing a wavelength conversion technique in an optical scanning recording device that performs precision scanning, an optical scanning reading device, and the like. Also,
It has excellent pyroelectricity and piezoelectricity, and can be used, for example, as a piezoelectric element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 種々の溶媒に対するシクロブテンジオン誘導
体の溶解度曲線。
FIG. 1. Solubility curves of cyclobutenedione derivatives in various solvents.

【図2】 メタノールに対するシクロブテンジオン誘導
体の溶解度曲線および過溶解度曲線。
FIG. 2 shows a solubility curve and a super solubility curve of a cyclobutenedione derivative in methanol.

【符号の説明】[Explanation of symbols]

1…溶解度曲線、2…過溶解度曲線。 1 ... Solubility curve, 2 ... Super solubility curve.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−333172(JP,A) 特開 平2−333173(JP,A) 特開 平2−333174(JP,A) 特開 平2−333175(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 225/22 C07C 221/00 CA(STN) REGISTRY(STN)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-333172 (JP, A) JP-A-2-333173 (JP, A) JP-A-2-333174 (JP, A) JP-A-2-333 333175 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 225/22 C07C 221/00 CA (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記構造式(I) 【化1】 (式中、Rはメチル基を表し、*は不整炭素原子を意味
する。)で示されるシクロブテンジオン誘導体を極性溶
媒中に溶解し、雰囲気温度10〜40℃の範囲におい
て、温度変動幅を±1℃以内に保ちながら、1分間に
0.1〜100mm3 の蒸発速度で溶媒を蒸発させるこ
とを特徴とするシクロブテンジオン誘導体結晶の製造方
法。
1. The following structural formula (I): ( Wherein , R represents a methyl group, and * represents an asymmetric carbon atom). A cyclobutenedione derivative represented by the following formula: A method for producing a cyclobutenedione derivative crystal, comprising evaporating a solvent at an evaporation rate of 0.1 to 100 mm 3 per minute while maintaining the temperature within ± 1 ° C.
JP04260634A 1992-09-04 1992-09-04 Method for producing cyclobutenedione derivative crystals Expired - Fee Related JP3084964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04260634A JP3084964B2 (en) 1992-09-04 1992-09-04 Method for producing cyclobutenedione derivative crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04260634A JP3084964B2 (en) 1992-09-04 1992-09-04 Method for producing cyclobutenedione derivative crystals

Publications (2)

Publication Number Publication Date
JPH0687802A JPH0687802A (en) 1994-03-29
JP3084964B2 true JP3084964B2 (en) 2000-09-04

Family

ID=17350650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04260634A Expired - Fee Related JP3084964B2 (en) 1992-09-04 1992-09-04 Method for producing cyclobutenedione derivative crystals

Country Status (1)

Country Link
JP (1) JP3084964B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3797385B2 (en) 2003-09-10 2006-07-19 アステラス製薬株式会社 Solvent evaporation pattern analysis method and solvent vacuum evaporation apparatus

Also Published As

Publication number Publication date
JPH0687802A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
JP3084964B2 (en) Method for producing cyclobutenedione derivative crystals
US5130844A (en) Optical wavelength converter system
US5229038A (en) Organic nonlinear optical material and method of converting the wavelength of light using said material
JPH06306027A (en) Cyclobutenedionyl derivative crystal and production thereof
EP0500050B1 (en) Non-linear optical materials, method of manufacturing the same and optical wave length converter
EP0570250B1 (en) Crystalline structure of monohydrogentartrates, process for its preparation and application thereof
US5383050A (en) Organic nonlinear optical material
US5397508A (en) 2-amino-5-nitropyridinium salts usable in non-linear optics and in electroptics and a process for preparing the same
US5514807A (en) 5-amino-5-nitropyridinium halide crystal structure
JPH06308550A (en) Alpha-cyano-methyl cinnamate derivative, organic non-linear optical material and material for generating second harmonic
JPH0438335B2 (en)
JP2725935B2 (en) Organic nonlinear optical material
JPH06308549A (en) Molecular crystalline body and wavelength changing device using the same
JPH07181531A (en) Molecular crystal and wavelength conversion device using the same
JP2729673B2 (en) Novel organic nonlinear optical material and method of converting light wavelength using the same
JP2763224B2 (en) Organic nonlinear optical material
JPH0565277A (en) Molecular crystal and conversion of wavelength of light using the same
JP2725929B2 (en) Organic nonlinear optical material
JPH07225402A (en) Organic nonlinear optical material and optical functional element using the same
JPH03287135A (en) Organic nonlinear optical material
JPH06345713A (en) Molecular crystal
JPH04156515A (en) Light wavelength converting element
JPH06130435A (en) Organic nonlinear optical material
JPH05173208A (en) Organic non-linear optical material
JPH03287136A (en) Organic nonlinear optical material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees