JP3076186B2 - Method for measuring surface area of galvanic anode - Google Patents

Method for measuring surface area of galvanic anode

Info

Publication number
JP3076186B2
JP3076186B2 JP06015697A JP1569794A JP3076186B2 JP 3076186 B2 JP3076186 B2 JP 3076186B2 JP 06015697 A JP06015697 A JP 06015697A JP 1569794 A JP1569794 A JP 1569794A JP 3076186 B2 JP3076186 B2 JP 3076186B2
Authority
JP
Japan
Prior art keywords
anode
surface area
galvanic anode
current
polarization resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06015697A
Other languages
Japanese (ja)
Other versions
JPH07208910A (en
Inventor
博二 中内
Original Assignee
株式会社ナカボーテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ナカボーテック filed Critical 株式会社ナカボーテック
Priority to JP06015697A priority Critical patent/JP3076186B2/en
Publication of JPH07208910A publication Critical patent/JPH07208910A/en
Application granted granted Critical
Publication of JP3076186B2 publication Critical patent/JP3076186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流電陽極方式のカソー
ド防食において、供用中の流電陽極の現在までの消耗量
を測定し、残余寿命を測定する流電陽極の表面積測定方
法に関するものある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the surface area of a galvanic anode which measures the amount of consumption of the galvanic anode in service up to the present and measures the remaining life in cathodic protection of the galvanic anode system. It is.

【0002】[0002]

【従来の技術】電気防食法は、海水中、河川水中や地中
等に設置された金属構造物や埋設管、あるいはコンクリ
ート中の鉄筋、さらに工業用水や有機・無機の液体に接
する化学装置等の腐食を防止する方法として利用され、
港湾、橋梁等のインフラストラクチャや各分野の産業で
の防食に大きな効果を挙げている。
2. Description of the Related Art The cathodic protection method is used for metal structures and buried pipes installed in seawater, river water or underground, reinforcing steel in concrete, chemical devices in contact with industrial water and organic and inorganic liquids, and the like. Used as a way to prevent corrosion,
It has a great effect on corrosion prevention in infrastructure such as harbors and bridges and industries in various fields.

【0003】電気防食法の適用形態としての流電陽極方
式では、マグネシウム合金、アルミニウム合金あるいは
亜鉛合金等の卑電位の合金の流電陽極と被防食体とが接
続され、流電陽極はアノード溶解して被防食体に防食電
流を供給し被防食体の腐食を防止する。流電陽極は容積
または重量、発生電流等の設計条件により耐用年数が決
められる。従って、供用中の流電陽極ついて、その時点
までの消耗量を知り、残余の耐用年数を推定すること
は、防食設計の適正さを確認すると共に、その陽極の交
換時期の把握のためにも必要である。
In the galvanic anode system as an application of the cathodic protection method, a galvanic anode of a base potential alloy such as a magnesium alloy, an aluminum alloy, or a zinc alloy is connected to a body to be protected, and the galvanic anode is formed by melting the anode. In this way, an anticorrosion current is supplied to the anticorrosion body to prevent corrosion of the anticorrosion body. The service life of the galvanic anode is determined by design conditions such as volume or weight, generated current, and the like. Therefore, knowing the amount of wear and tear of the current-carrying anode during service and estimating the remaining service life is not only to confirm the appropriateness of the anticorrosion design, but also to grasp the time to replace the anode. is necessary.

【0004】現在は、残余寿命を測定するためには、陽
極の胴回りを測り表面積を求め、相当半径から陽極の容
積を計算する方法が採られているが、この方法は水中の
陽極では潜水作業となり、土壌中のバックフィル内の陽
極については適正な位置での周長測定による容積計測は
殆ど不可能である。
At present, in order to measure the remaining life, a method is adopted in which the circumference of the anode is measured to determine the surface area, and the volume of the anode is calculated from the equivalent radius. Therefore, it is almost impossible to measure the volume of the anode in the backfill in the soil by measuring the circumference at an appropriate position.

【0005】[0005]

【発明が解決しようとする課題】本発明は、これら従来
技術の課題を解消し、流電陽極方式のカソード防食にお
いて、供用中の流電陽極の残余の耐用年数を電気化学的
方法で簡単かつ迅速に測定する流電陽極の表面積測定方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and in a cathodic protection of a galvanic anode system, the remaining service life of the galvanic anode in service can be easily and electrochemically determined. An object of the present invention is to provide a method for measuring the surface area of a galvanic anode that can be measured quickly.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記目的に
沿って鋭意検討の結果、金属材料の腐食速度を電気化学
的に測定する分極抵抗法を適用することにより、流電陽
極の表面積を迅速かつ簡単に測定する方法を見出し、表
面積を知ることにより供用中の流電陽極の測定時までの
溶解消耗量および残余の耐用年数を評価する測定方法を
導いた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned object, and as a result, have applied a polarization resistance method for electrochemically measuring the corrosion rate of a metallic material, thereby obtaining the surface area of a galvanic anode. A method for quickly and easily measuring the amount of dissolution consumed until the measurement of the galvanic anode in service and the remaining useful life by knowing the surface area was led.

【0007】すなわち、本発明の流電陽極の表面積測定
方法は、流電陽極方式のカソード防食において、供用中
の流電陽極の陽極電流を停止し、自然腐食状態において
該流電陽極の分極抵抗を測定し、供用開始後300〜4
00時間経過した後に測定した見掛けの分極抵抗値をそ
れ以後の任意の時点において測定した分極抵抗値で除
し、これに該流電陽極の供用前の表面積を乗じることに
より、該流電陽極の任意の時点における表面積を測定す
ることを特徴とする。
That is, in the method for measuring the surface area of a galvanic anode according to the present invention, in cathodic protection of the galvanic anode system, the anodic current of the galvanic anode in operation is stopped, and the polarization resistance of the galvanic anode in a natural corrosion state is stopped. And 300 to 4 after the start of operation
The apparent polarization resistance measured after the lapse of 00 hours was divided by the polarization resistance measured at an arbitrary time thereafter, and the resultant value was multiplied by the surface area of the current-flow anode before operation to obtain the current-flow anode. It is characterized in that the surface area at any time is measured.

【0008】水中等の環境に置かれたこれらー1V(飽
和カロメル電極基準)以下にも及ぶ卑電位の流電陽極の
表面では水素ガス発生を伴う自己腐食反応が常に進行
し、防食電流を発生している稼働中は電流に対応する陽
極金属のファラデー溶解反応と重畳して、そして不通電
中にはそれのみ単独に、自己腐食反応によるある程度の
陽極金属のアノード溶解がある。この反応の速度は、流
電陽極の使用開始後の初期の期間を除き定常状態では長
期にわたりほぼ一定の状態で経過することが知られてい
る。従って、供用中の大部分の時間ほぼ一定の値で経過
する流電陽極の自己腐食速度を分極抵抗法で追跡するこ
とにより、陽極の表面積の変化を数値的に測定する方法
を見出した。
A self-corrosion reaction involving the generation of hydrogen gas always progresses on the surface of a current-carrying anode having a base potential of less than -1 V (based on a saturated calomel electrode) placed in an environment such as water, thereby generating an anticorrosion current. During operation, there is some anodic dissolution of the anodic metal due to the self-corrosion reaction, which overlaps with the Faraday dissolution reaction of the anodic metal corresponding to the current and during the de-energization alone. It is known that the rate of this reaction elapses in an almost constant state over a long period of time in a steady state except for an initial period after the use of the galvanic anode. Therefore, the present inventors have found a method for numerically measuring the change in the surface area of the anode by tracking the self-corrosion rate of the galvanic anode, which elapses at a substantially constant value for most of the operation, by the polarization resistance method.

【0009】分極抵抗法においては、自然腐食状態にあ
る表面積S(cm2)の金属に外部から微少な電流△I
(A)を加え、金属の電位に僅かな変化すなわち分極△
E(V)を生じさせる。この分極を電流で除した△E/
△Iを見掛けの分極抵抗Rap(Ω)といい、これを単
位面積に割り付けるため、分極を電流密度で除した△E
/(△I/S)を単位面積当たりの分極抵抗Rp(Ω・
cm2)という。金属の単位面積当たりの腐食速度をI
corr(A/cm2)と表記すると、IcorrとR
pとの間に定数K(V)を用いてSternの式が成立
する。
In the polarization resistance method, a small current ΔI is applied to a metal having a surface area S (cm 2 ) in a natural corrosion state from the outside.
(A), a slight change in the potential of the metal, ie, polarization
E (V). ΔE /
ΔI is referred to as apparent polarization resistance Rap (Ω), and polarization is divided by current density in order to allocate this to a unit area.
/ (△ I / S) is the polarization resistance Rp (Ω ·
cm 2 ). The corrosion rate per unit area of metal is I
When expressed as corr (A / cm 2 ), I corr and R
The equation of Stern is established by using a constant K (V) between p and p.

【0010】[0010]

【数1】 上述の定義により Rp=Rap・S となるので
(2)式が成立する。
(Equation 1) Since Rp = Rap · S according to the above definition, the expression (2) is satisfied.

【0011】[0011]

【数2】 従って、(3)式が導かれる。(Equation 2) Therefore, equation (3) is derived.

【0012】[0012]

【数3】 (Equation 3)

【0013】ここにKはSternのK値といわれる金
属材料についての定数であり、Icorrを流電陽極の
自己腐食速度とすれば大部分の供用期間の間は一定とみ
なし得るので(K/Icorr)も定数となり、(3)
式により流電陽極の表面積が見掛けの分極抵抗の測定か
ら求めることができることが分かる。
[0013] Here, K is a constant for a metal material called the K value of Stern, and if Icorr is the self-corrosion rate of the galvanic anode, it can be considered to be constant during most of the service period (K / Icorr ) Is also a constant, (3)
It can be seen from the equation that the surface area of the galvanic anode can be determined from the apparent polarization resistance measurement.

【0014】(3)式で流電陽極の表面積は見掛けの分
極抵抗の測定値に反比例することが導かれる。通電初期
において、表面が多少溶解して定常状態に達し、Ico
rrがほぼ一定とみなし得る状態になっており、しかも
陽極の表面積が製造時の表面積Soと殆ど変わらない状
態の基準時の見掛けの分極抵抗をRapoとし、任意の
測定時の見掛けの分極抵抗Raptを比較すると(4)
式が成立する。
In equation (3), it is derived that the surface area of the galvanic anode is inversely proportional to the measured value of the apparent polarization resistance. In the initial stage of energization, the surface slightly dissolves and reaches a steady state,
rr is in a state where it can be regarded as substantially constant, and the apparent polarization resistance at the time of reference in a state where the surface area of the anode is almost the same as the surface area So at the time of manufacture is Rapo, and the apparent polarization resistance Rapt at the time of arbitrary measurement. Comparing (4)
The equation holds.

【0015】[0015]

【数4】 で任意の測定時の表面積St が計算できる。(Equation 4) Can be used to calculate the surface area St at any measurement.

【0016】ところで、(4)式の分子は前述の定義に
より単位面積当たりの分極抵抗Rpであって、これは同
種類の流電陽極が置かれた環境が同じようなときには、
定常状態では自己腐食速度は殆ど変わらないので、何時
もほぼ一定の値を示すものと考えてよい。従って、同種
類の流電陽極の同種類の環境中でのRpの値が確定して
いるときには一々その陽極についてRapoを測定して
おかなくとも、任意の時点でRaptを測定して(5)
式で直ちにStが求められる。
By the way, the numerator of the formula (4) is the polarization resistance Rp per unit area according to the above definition.
Since the self-corrosion rate hardly changes in a steady state, it can be considered that the self-corrosion rate always shows a substantially constant value. Therefore, when the value of Rp of the same type of galvanostatic anode in the same type of environment is determined, Rap is measured at an arbitrary time without measuring Rapo for each anode (5).
St is immediately obtained from the equation.

【0017】[0017]

【数5】 (Equation 5)

【0018】このようにして、任意の時点での表面積が
求められれば、流電陽極を円筒状とみなすとか、その形
状に従って均一溶解する等の仮定の下に陽極の容積の計
算が可能となり、測定時までの溶解消耗量や残余の耐用
年数の評価ができるのである。
In this way, if the surface area at an arbitrary time is obtained, the volume of the anode can be calculated on the assumption that the galvanic anode is regarded as cylindrical or that the anode is uniformly dissolved in accordance with the shape. It is possible to evaluate the amount of dissolution and consumption up to the time of measurement and the remaining service life.

【0019】以下、本発明の流電陽極の表面積測定によ
る残余寿命の測定方法について図1の構成図に基づいて
説明する。
The method for measuring the remaining life of a galvanic anode according to the present invention by measuring the surface area will be described below with reference to the block diagram of FIG.

【0020】同図において、1はマグネシウム合金、ア
ルミニウム合金や亜鉛合金等の流電陽極、2は流電陽極
1の接地抵抗を下げ陽極の溶解を均一にするために土壌
中等において特に設置される硫酸ナトリウム、ベントナ
イト等を主流とするバックフィル、3は土壌等の環境、
4は埋設管等の被防食体、5は流電陽極1の導線と被防
食体4の導線とを接続しあるいは分極抵抗を測定すると
き一時接続を切るための導線接続部である。また、6は
分極抵抗測定に必要な測定電流を流電陽極1に流すため
に環境3中におかれた適当な材料の対極、7は被防食体
1の分極を計測するために流電陽極1の近傍に置かれた
照合電極、8は分極抵抗を3電極方式または2電極方式
で測定する測定装置である。さらに、分極抵抗測定装置
8におけるCは対極接続端子、Rは照合電極接続端子、
Wは作用電極接続端子をそれぞれ示す。
In FIG. 1, reference numeral 1 denotes a galvanic anode made of a magnesium alloy, an aluminum alloy, a zinc alloy, or the like; Backfill mainly using sodium sulfate, bentonite, etc., 3 is environment such as soil,
Reference numeral 4 denotes an anticorrosion body such as a buried pipe, and reference numeral 5 denotes a conductor connection portion for connecting the conductor of the galvanic anode 1 to the conductor of the anticorrosion body 4 or for temporarily disconnecting when measuring polarization resistance. Reference numeral 6 denotes a counter electrode made of an appropriate material placed in the environment 3 to allow a measurement current required for polarization resistance measurement to flow through the current-carrying anode 1. Reference numeral 7 denotes a current-carrying anode used to measure the polarization of the protection target 1. A reference electrode 8 near the reference numeral 1 is a measuring device for measuring the polarization resistance by a three-electrode system or a two-electrode system. Further, C in the polarization resistance measuring device 8 is a counter electrode connection terminal, R is a reference electrode connection terminal,
W indicates working electrode connection terminals.

【0021】測定は以下のように行う。すなわち、流電
陽極1と被防食体4とが導線接続部5において接続され
流電陽極1が供用中にあるとき、導線接続部5を切り離
し流電陽極1の通電を停止する。不通電になった流電陽
極1の自然電位が安定するのを待って分極抵抗を測定す
る。測定は、分極抵抗測定装置8より適当な量の測定電
流△Iを流し、照合電極7と流電陽極1との間で発生す
る分極△Eを測定し、△E/△Iを計算して見掛けの分
極抵抗Rapを求める。測定電流は直流または低周波の
矩形波あるいは正弦波のいずれかの波形の電流を使用
し、生じる分極(使用する電流の波形に従って直流ある
いは交流の分極となる)の値としては10mV程度にな
るような電流の値が選ばれるのが好ましい。環境3が海
水のように導電率が高いときは分極の値をそのまま用い
て見掛けの分極抵抗Rapを計算してよいが、環境3が
淡水や土壌等の導電率が小さいときは、分極の測定値に
環境の抵抗と測定電流による電圧降下が含まれているの
で、これを差し引いて真の見掛けの分極抵抗を測定する
必要がある。
The measurement is performed as follows. That is, when the galvanic anode 1 and the anticorrosion-protected body 4 are connected at the wire connecting portion 5 and the galvanic anode 1 is in operation, the wire connecting portion 5 is disconnected and the energization of the galvanic anode 1 is stopped. The polarization resistance is measured after the self-potential of the non-energized current carrying anode 1 is stabilized. In the measurement, an appropriate amount of measurement current ΔI is passed from the polarization resistance measuring device 8, the polarization ΔE generated between the reference electrode 7 and the galvanic anode 1 is measured, and ΔE / ΔI is calculated. Obtain the apparent polarization resistance Rap. The measurement current uses a current of either a DC or low-frequency rectangular wave or a sine wave, and the resulting polarization (DC or AC polarization according to the waveform of the current used) has a value of about 10 mV. It is preferable to select an appropriate current value. When the environment 3 has high conductivity such as seawater, the apparent polarization resistance Rap may be calculated using the polarization value as it is, but when the environment 3 has low conductivity such as fresh water or soil, the polarization measurement is performed. The values include the resistance of the environment and the voltage drop due to the measured current, which must be subtracted to determine the true apparent polarization resistance.

【0022】環境抵抗による誤差を補正する方法として
は交流インピーダンス測定によることが多い。すなわ
ち、1kHz以上の高周波電流を用いて流電陽極1の分
極を照合電極7で測定し、それを測定電流で除したもの
は流電陽極1と照合電極7との間の環境抵抗を示すの
で、前述の分極抵抗の値からこの環境抵抗の分を差し引
くと補正された真の見掛けの分極抵抗を求めることがで
きる。
As a method of correcting an error due to environmental resistance, AC impedance measurement is often used. That is, the polarization of the galvanic anode 1 is measured with the reference electrode 7 using a high-frequency current of 1 kHz or more, and a value obtained by dividing the polarization by the measured current indicates the environmental resistance between the galvanic anode 1 and the collation electrode 7. By subtracting the value of the environmental resistance from the value of the polarization resistance described above, a corrected true apparent polarization resistance can be obtained.

【0023】分極抵抗の測定においては、測定電流はm
A程度の僅かなものであり、測定時間も数十秒以内で測
定電気量が極めて僅かであるので、対極6には鉄棒等の
可溶性電極でも良く、また、流電陽極1から切り離され
た被防食体4を臨時の対極として利用しても差し支えな
い。照合電極7には飽和カロメル電極や硫酸銅電極のよ
うな本格的な照合電極が通常使用されるが、分極の測定
であるので電位の絶対値の正確さは要求されず、また、
測定時間も短いので、その間の電位の安定性が確保され
れば良いので、流電陽極1の近傍に置いた鉄棒や亜鉛等
の金属電極でも十分照合電極の役を果す。
In the measurement of the polarization resistance, the measured current is m
Since the amount of electricity measured is very small within a few tens of seconds and the amount of electricity measured is extremely small, the counter electrode 6 may be a soluble electrode such as an iron bar. The anticorrosion body 4 may be used as a temporary counter electrode. As the reference electrode 7, a full-scale reference electrode such as a saturated calomel electrode or a copper sulfate electrode is usually used. However, since it is a polarization measurement, the absolute value of the potential is not required to be accurate.
Since the measurement time is short, it is only necessary to ensure the stability of the potential during that time. Therefore, a metal electrode such as an iron bar or zinc placed near the galvanic anode 1 can sufficiently serve as a reference electrode.

【0024】このような3電極方式の測定に対し、隣接
する2個の流電陽極の間に測定装置8からの測定電流を
流し、両流電陽極間の電位を測定し、この浴電圧を測定
電流で除して求めた抵抗の1/2を各陽極の分極抵抗と
する2電極方式の測定法もあるが、測定の精度は3電極
方式より劣る。
For such a three-electrode measurement, a measuring current from the measuring device 8 is passed between two adjacent current-carrying anodes to measure a potential between the two current-carrying anodes. There is also a two-electrode method in which half of the resistance obtained by dividing by the measurement current is used as the polarization resistance of each anode, but the measurement accuracy is inferior to that of the three-electrode method.

【0025】分極抵抗の測定が終われば導線接続部5の
接続を復帰して流電陽極1を再び供用状態に戻す。
When the measurement of the polarization resistance is completed, the connection of the conductor connecting portion 5 is restored, and the current carrying anode 1 is returned to the service state again.

【0026】流電陽極1の表面積は以下のようにして求
める。流電陽極1の供用開始後の初期において陽極の表
面が多少溶解し自己腐食速度がほぼ一定の定常状態にな
っており、しかも陽極の表面積が製造時の表面積Soと
殆ど変わらない状態(以下、基準時という)のときに
(環境抵抗の影響を補正した)見掛けの分極抵抗Rap
oを測定し、それ以後の任意の測定時に再び基準時と同
じ測定方法により見掛けの分極抵抗Raptを測定し、
(4)式にて任意の測定時の流電陽極の表面積Stが計
算できる。
The surface area of the galvanic anode 1 is determined as follows. In the initial stage after the start of the operation of the galvanic anode 1, the surface of the anode is slightly melted, and the self-corrosion rate is in a substantially constant steady state. Apparent polarization resistance Rap (correcting the effect of environmental resistance)
o, and at any subsequent measurement, the apparent polarization resistance Rapt is measured again by the same measurement method as the reference time,
The surface area St of the galvanic anode at the time of arbitrary measurement can be calculated by the equation (4).

【0027】ここで基準時とは、流電陽極の溶解状態が
定常になり、従って、自己腐食速度も一定となり、長期
にわたりこの自己腐食速度を基準として差し支えないと
判断される時期のことである。この基準時を定めるた
め、流電陽極の表面で発生している水素ガス量を測定す
る化学的測定方法で、種々の合金の流電陽極の自己腐食
速度の経時変化を計測した結果、水素ガスの発生速度
は、一般に、最初は小さいが、次第に大きくなり、30
0〜400時間程度で水素ガスの発生速度はほぼ一定と
なり、この自己腐食速度の定常状態はその後も持続し
た。従って、流電陽極の供用開始後この程度経過したと
ころで、Rapoの測定をするのが望ましいことが分か
った。
Here, the reference time is a time when it is judged that the dissolution state of the galvanic anode becomes steady, the self-corrosion rate becomes constant, and this self-corrosion rate may be used as a reference for a long period of time. . In order to determine this reference time, as a result of measuring the change over time of the self-corrosion rate of the flowing anode of various alloys by a chemical measurement method that measures the amount of hydrogen gas generated on the surface of the flowing anode, hydrogen gas Is generally small at first but gradually increases,
The generation rate of hydrogen gas became almost constant in about 0 to 400 hours, and this steady state of the self-corrosion rate continued thereafter. Therefore, it was found that it is desirable to measure Rapo at this point after the start of operation of the galvanic anode.

【0028】基準時を決める他の方法として耐用年数か
ら概算する方法も考えられる。流電陽極が端面が絶縁さ
れた円柱形で側面からのみ溶解すると仮定すると、溶解
により直径が1%減少するとき、容積は約2%減少する
のに対し、表面積は1%程度の減少である。すなわち、
耐用年数の2%の時間にわたり流電陽極が使用されて
も、その表面積の減少は1%程度で、表面積は製造時と
殆ど変化がないとみなしてよいことを示している。従っ
て、例えば、耐用年数が5年の流電陽極のときには、そ
の1%は、1.2カ月で上記定常到達時間を十分満足し
ているので、供用開始1.2カ月経過した時点でのRa
pはRapoとみなしても誤差は1%以内で、この時点
を基準時と決めても問題はない。
As another method of determining the reference time, a method of estimating from the service life may be considered. Assuming that the galvanic anode melts from the side only in a cylindrical shape with insulated end faces, when melting reduces the diameter by 1%, the volume decreases by about 2%, while the surface area decreases by about 1%. . That is,
Even when the galvanic anode is used for 2% of the service life, the surface area is reduced by only about 1%, indicating that the surface area can be regarded as being almost the same as that at the time of manufacture. Therefore, for example, in the case of a galvanic anode having a service life of 5 years, 1% of the current anode sufficiently satisfies the above-mentioned steady arrival time in 1.2 months.
Even if p is considered as Rapo, the error is within 1%, and there is no problem if this point is determined as the reference time.

【0029】また、流電陽極1の単位面積当たりの分極
抵抗Rpの定常値が確定しているときには、上記基準時
以降において測定したRaptを用いて(5)式により
その時点のStは直ちに計算できる。
When the steady-state value of the polarization resistance Rp per unit area of the galvanic anode 1 is determined, St at that time is immediately calculated by the equation (5) using Rapt measured after the reference time. it can.

【0030】[0030]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0031】実施例 図2は、それぞれ80cm2、800cm2および160
0cm2の表面積(So)を有するアルミニウム合金流
電陽極の試験片に、海水中で1mA/cm2の電流密度
のアノード電流を流しながら、1200時間にわたり分
極抵抗を間欠的に測定し、その経時変化を示すものであ
る。見掛けの分極抵抗(Rap)は通電電流を切った後
30分経過した時点において周期4秒の矩形波交流法で
測定した。いずれの試験片のRapの値も試験の初期に
は急速に減少したが、200〜300時間でほぼ定常状
態となり、その後はほぼ一定の値となった。試験片の表
面積が小さいほどRapの定常値は大きくなった。
EXAMPLE FIG. 2 shows the results for 80 cm 2 , 800 cm 2 and 160 cm 2 , respectively.
The polarization resistance was measured intermittently for 1200 hours while flowing an anode current of a current density of 1 mA / cm 2 in seawater on a test piece of an aluminum alloy galvanic anode having a surface area (So) of 0 cm 2 , It shows the change. Apparent polarization resistance (Rap) was measured by a rectangular wave alternating current method having a period of 4 seconds at a point of time when 30 minutes had passed after the current was turned off. The Rap values of all the test pieces rapidly decreased at the beginning of the test, but became almost steady in 200 to 300 hours, and thereafter became almost constant. The smaller the surface area of the test piece, the larger the steady value of Rap.

【0032】3試験片とも300時間を基準時として求
めたRapo、400時間以後のRapt、および
(4)式で計算した評価面積(St)の結果を表1に示
す。
Table 1 shows the results of Rapo obtained from 300 hours as a reference time, Rapt after 400 hours, and the evaluation area (St) calculated by the equation (4).

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示されるように、各試験片とも設定
した試験面積に対しほぼ一致する表面積を評価し、その
誤差は3%以内という結果を得た。また、図2に示す点
線はSo・Rapt(=Rp)の計算結果の経時変化を
示すもので、300時間以後では3試験片ともほぼ一定
の値となっていて、その平均値は1244Ω・cm2
変動は7%程度であった。
As shown in Table 1, each test piece was evaluated for a surface area that almost coincides with the set test area, and the result was that the error was within 3%. Further, the dotted line shown in FIG. 2 shows a change with time of the calculation result of So · Rapt (= Rp), and after 300 hours, all three test pieces have almost constant values, and the average value is 1244 Ω · cm. In 2 , the fluctuation was about 7%.

【0035】これらの結果を総合すると、供用中の流電
陽極の残余の耐用年数を評価するため、陽極の表面積を
測定する方法として、分極抵抗法に依るときは、供用開
始後少なくとも300時間経過後において測定した見掛
けの分極抵抗をその陽極についての基準値とし、それ以
後の時点での見掛けの分極抵抗との比に初期表面積を乗
じてその時点での表面積を3%程度の誤差で評価できる
ことが分かった。また、個々の陽極について基準値を測
定することなく、その種類の陽極についてRpの値が確
定しているときは、その値を測定時点の見掛けの分極抵
抗で除して7%程度の誤差でその時点での表面積が評価
できることが分かった。
When these results are combined, in order to evaluate the remaining service life of the current-carrying anode during operation, when the polarization resistance method is used as a method for measuring the surface area of the anode, at least 300 hours have passed since the start of operation. The apparent polarization resistance measured later is used as a reference value for the anode, and the surface area at that time can be evaluated with an error of about 3% by multiplying the ratio of the apparent polarization resistance at the subsequent time to the initial surface area. I understood. When the reference value is not determined for each anode and the value of Rp is determined for that type of anode, the value is divided by the apparent polarization resistance at the time of measurement and the error is about 7%. It was found that the surface area at that time could be evaluated.

【0036】[0036]

【発明の効果】以上、説明したように、流電陽極の通電
電流を切り、不通電状態で流電陽極の分極抵抗を測定す
ることにより、流電陽極のその時点での表面積を評価で
き、残余の寿命が計算できるので、陽極の交換時期の決
定に大いに役立つ。測定は簡単・迅速であり、しかも潜
水作業や土壌中の陽極の掘り出し等の作業は一切必要と
しない利点もある。
As described above, by cutting off the current flowing through the galvanic anode and measuring the polarization resistance of the galvanic anode in a non-energized state, the surface area of the galvanic anode at that time can be evaluated. The remaining life can be calculated, which is very useful in determining when to replace the anode. The measurement is simple and quick, and has the advantage that no work such as diving or excavation of the anode in the soil is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明測定方法の一例を説明するための説明
図。
FIG. 1 is an explanatory diagram for explaining an example of the measurement method of the present invention.

【図2】 流電陽極の見掛けの分極抵抗の経時変化の一
例を示すグラフ。
FIG. 2 is a graph showing an example of a temporal change in apparent polarization resistance of a galvanic anode.

【符号の説明】[Explanation of symbols]

1:流電陽極、2:バックフィル、3:環境、4:被防
食体、5:導線接続部、6:対極、7:照合電極、8:
分極抵抗測定装置、C:対極接続端子、R:照合電極接
続端子、W:作用電極接続端子。
1: Current flowing anode, 2: Backfill, 3: Environment, 4: Corrosion-proof body, 5: Conductor connection, 6: Counter electrode, 7: Reference electrode, 8:
Polarization resistance measuring device, C: counter electrode connection terminal, R: reference electrode connection terminal, W: working electrode connection terminal.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流電陽極方式のカソード防食において、
供用中の流電陽極の陽極電流を停止し、自然腐食状態に
おいて該流電陽極の分極抵抗を測定し、供用開始後30
〜400時間経過した後に測定した見掛けの分極抵抗
値をそれ以後の任意の時点において測定した分極抵抗値
で除し、これに該流電陽極の供用前の表面積を乗じるこ
とにより、該流電陽極の任意の時点における表面積を測
定することを特徴とする流電陽極の表面積測定方法。
In a cathodic protection of a galvanic anode system,
The anode current of the galvanic anode during operation was stopped, and the polarization resistance of the galvanic anode was measured in a natural corrosion state.
The apparent polarization resistance measured after 0 to 400 hours has elapsed is divided by the polarization resistance measured at an arbitrary point in time thereafter, and the resultant value is multiplied by the surface area of the current-flowing anode before operation, thereby obtaining the current-flow resistance. A method for measuring the surface area of a galvanic anode, comprising measuring the surface area of the anode at an arbitrary time point.
JP06015697A 1994-01-17 1994-01-17 Method for measuring surface area of galvanic anode Expired - Fee Related JP3076186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06015697A JP3076186B2 (en) 1994-01-17 1994-01-17 Method for measuring surface area of galvanic anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06015697A JP3076186B2 (en) 1994-01-17 1994-01-17 Method for measuring surface area of galvanic anode

Publications (2)

Publication Number Publication Date
JPH07208910A JPH07208910A (en) 1995-08-11
JP3076186B2 true JP3076186B2 (en) 2000-08-14

Family

ID=11895969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06015697A Expired - Fee Related JP3076186B2 (en) 1994-01-17 1994-01-17 Method for measuring surface area of galvanic anode

Country Status (1)

Country Link
JP (1) JP3076186B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4747084B2 (en) * 2006-12-19 2011-08-10 東京瓦斯株式会社 Cathodic protection management method and cathode protection management system
CN110095404B (en) * 2019-05-06 2022-07-29 上海电力学院 Method and device for monitoring corrosion state of stainless steel in aqueous medium

Also Published As

Publication number Publication date
JPH07208910A (en) 1995-08-11

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
US20150198518A1 (en) Cathodic protection reference cell article and method
JP4767145B2 (en) Cathodic protection system and cathodic protection method by galvanic anode method, pipeline soundness evaluation system and soundness evaluation method
KR101680798B1 (en) System of impressed current cathodic protection for realtime monitoring corrosion of coldest place pipeline, and method for the same
JP2007271501A (en) Method of evaluating corrosion protection for coating
JP4854653B2 (en) Measurement and evaluation method and measurement evaluation system for cathodic protection
JP3076186B2 (en) Method for measuring surface area of galvanic anode
JP2008297600A (en) Electrolytic protection method
JP4601155B2 (en) Anticorrosion monitoring method
WO2015108525A1 (en) Cathodic protection reference cell article and method
JP4522289B2 (en) Corrosion estimation method
JP2594246B2 (en) Anticorrosion method and anticorrosion device
JP5718850B2 (en) Cathodic protection system and cathodic protection method for metal structures
JP3177049B2 (en) Corrosion protection potential estimation method
JP5345795B2 (en) Cathodic protection system, cathodic protection method, and galvanic anode generation current stabilizer
JP7377460B2 (en) Cathodic protection methods, backfill selection methods, drainage terminal installation methods, and concrete structures
JPH09296526A (en) Method and structure of electric corrosion protection of reinforcement in reinforced concrete structure
US20220049363A1 (en) Methods for controling and monitoring the degree of cathodic rotection for metal structutres and burried pipelines using coupled mutielectrode sensors
JP5424132B2 (en) Electrical protection method
JP6600487B2 (en) How to select anti-corrosion batteries
Memon et al. Stray Current Corrosion Assessment of Utility Pipes
JPS5922118Y2 (en) Current anode device for underground pipes
JP3084131B2 (en) Over-corrosion protection measuring device
Banerjee et al. Cathodic protection-A proven corrosion control means in immersed or buried pipelines in oil, natural gas and Petrochemical Industries
Choi et al. A Galvanic Sensor for Monitoring the Corrosion Damage of Buried Pipelines: Part 3—Correlation of Probe Current to Cathodic Protection and Stray Current

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees