JP6600487B2 - How to select anti-corrosion batteries - Google Patents

How to select anti-corrosion batteries Download PDF

Info

Publication number
JP6600487B2
JP6600487B2 JP2015106566A JP2015106566A JP6600487B2 JP 6600487 B2 JP6600487 B2 JP 6600487B2 JP 2015106566 A JP2015106566 A JP 2015106566A JP 2015106566 A JP2015106566 A JP 2015106566A JP 6600487 B2 JP6600487 B2 JP 6600487B2
Authority
JP
Japan
Prior art keywords
current
battery
steel material
potential
necessary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015106566A
Other languages
Japanese (ja)
Other versions
JP2016216806A (en
Inventor
篤志 鹿島
一彰 赤澤
謙治 大久保
有一 二木
貴保 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Sho Bond Corp
Original Assignee
Sumitomo Osaka Cement Co Ltd
Sho Bond Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Sho Bond Corp filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2015106566A priority Critical patent/JP6600487B2/en
Publication of JP2016216806A publication Critical patent/JP2016216806A/en
Application granted granted Critical
Publication of JP6600487B2 publication Critical patent/JP6600487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼材に対して陽極材から電流を供給することにより鋼材の電気防食を行う電気防食方法において、鋼材へ電流を供給するための電池を選択する際の方法に関する。   The present invention relates to a method for selecting a battery for supplying a current to a steel material in an anticorrosion method for performing an anticorrosion method for a steel material by supplying a current from an anode material to the steel material.

水中、土壌中、またはコンクリート構造物中などに配設されている鋼材(鉄製の配管や鉄筋など)は、表面に不動態皮膜が形成されることによって、本来、腐食から保護されている。ところが、沿岸地域や凍結防止剤が頻繁に使用される地域などのように、塩素成分が多量に存在する環境下では、鋼材に塩素成分が接触して不動態皮膜が部分的に破壊される場合がある。そして、不動態皮膜が破壊された部分からは、鋼材中の鉄イオンが溶出して、鋼材の腐食(酸化)を促進させる。このような鋼材の腐食は、鋼材自体の強度を低下させると共に、コンクリート構造物中においては腐食部分の体積の膨張によってコンクリート構造物に亀裂、如いてはコンクリートの剥落を生じさせる虞がある。   Steel materials (such as iron pipes and reinforcing bars) arranged in water, soil, or concrete structures are originally protected from corrosion by forming a passive film on the surface. However, in environments where a large amount of chlorine is present, such as coastal areas and areas where anti-freezing agents are frequently used, the passive film may be partially destroyed by contact with the steel. There is. And the iron ion in steel materials elutes from the part where the passive film was destroyed, and promotes corrosion (oxidation) of steel materials. Such corrosion of the steel material reduces the strength of the steel material itself and may cause cracks in the concrete structure due to the expansion of the volume of the corroded portion in the concrete structure, and may cause the concrete to peel off.

上記のように、鋼材に部分的に腐食が生じることによって、鋼材の腐食した領域(アノード部)と腐食していない領域(カソード部)との間には電位差が生じることとなる。これにより、アノード部からカソード部へ電子が流れることで腐食電流が発生し、アノード部からの鉄イオンの溶出が更に進行する。   As described above, the partial corrosion of the steel material causes a potential difference between the corroded region (anode portion) and the non-corroded region (cathode portion) of the steel material. As a result, a corrosion current is generated by the flow of electrons from the anode portion to the cathode portion, and the elution of iron ions from the anode portion further proceeds.

このような腐食の進行を防止する方法としては、例えばチタンなどの素材を用いて形成された陽極材からコンクリートを介してコンクリート構造物中の鋼材に電流(防食電流)を供給する電気防食方法が知られている。該電気防食方法は、鋼材に対して防食電流を供給することで、アノード部とカソード部との間に生じる電位差を解消し、腐食電流が発生するのを防止する方法である。   As a method for preventing the progress of such corrosion, for example, there is an electro-corrosion prevention method for supplying current (anti-corrosion current) to a steel material in a concrete structure through concrete from an anode material formed using a material such as titanium. Are known. The electro-corrosion prevention method is a method of preventing a corrosion current from being generated by supplying an anti-corrosion current to a steel material, thereby eliminating a potential difference generated between the anode part and the cathode part.

上記のような電気防食方法において効果的な防食を行うためには、鋼材の分極量が所定値(例えば、100mV程度)となるように鋼材に電流を供給することが要求される。鋼材に電流を供給する手段(以下、外部電源とも記す)としては、太陽電池や電池(バッテリー)を用いることが可能である(特許文献1〜3参照)。   In order to perform effective corrosion protection in the above-described electrocorrosion protection method, it is required to supply current to the steel material so that the polarization amount of the steel material becomes a predetermined value (for example, about 100 mV). As means for supplying a current to the steel material (hereinafter also referred to as an external power source), a solar cell or a battery (battery) can be used (see Patent Documents 1 to 3).

特開2002−115085号公報JP 2002-115085 A 特開2002−206182号公報JP 2002-206182 A 特開2014−162963号公報JP 2014-162963 A

上述のように、効果的な電気防食を行うためには、鋼材の分極量が所定値(以下、必要分極量とも記す)となるように鋼材に電流を供給することが必要となるため、外部電源の構成を適切に選択することが要求される。具体的には、外部電源として電池(バッテリー)を用いる場合には、電気防食を施すコンクリート構造物に対して陽極材を取り付けて通電試験を行い、必要分極量が得られる電圧(以下、必要電圧とも記す)及び電流(以下、必要電流とも記す)を把握した上で、必要電圧及び必要電流が得られるように電池の構成(例えば、複数の電池の接続状態)が選択される。   As described above, in order to perform effective cathodic protection, it is necessary to supply a current to the steel material so that the polarization amount of the steel material becomes a predetermined value (hereinafter also referred to as a required polarization amount). Appropriate selection of the power supply configuration is required. Specifically, when a battery is used as an external power source, an anode material is attached to a concrete structure to be subjected to cathodic protection, and an energization test is performed to obtain a necessary polarization amount (hereinafter, necessary voltage). The battery configuration (for example, the connection state of a plurality of batteries) is selected so that the necessary voltage and the necessary current can be obtained after grasping the current and the current (hereinafter also referred to as the necessary current).

しかしながら、必要電圧や必要電流に関する情報がないままで上記のような通電試験を行うことは、種々の電圧や電流で試験を行う必要があるため、必要電圧や必要電流の値を得るまでの作業が繁雑になる。このため、電池の構成を選択する作業を効率的に行うことができない。   However, conducting the energization test as described above without information on the necessary voltage and current requires testing at various voltages and currents. Becomes complicated. For this reason, the operation | work which selects the structure of a battery cannot be performed efficiently.

そこで、本発明は、コンクリート構造物の電気防食を行う際の外部電源として電池を用いる場合に、電池の構成を効率的に選択することができる電気防食用の電池の選択方法を提供することを課題とする。   Accordingly, the present invention provides a method for selecting a battery for cathodic protection that can efficiently select the configuration of the battery when the battery is used as an external power source when performing cathodic protection of a concrete structure. Let it be an issue.

本発明に係る防食用電池の選択方法は、コンクリート構造物中の鋼材に対してコンクリート構造物に設置された陽極材から電流を供給して鋼材の電気防食を行う際に電源として用いられる電池の選択を行う防食用電池の選択方法であって、鋼材の電気防食に必要な必要分極量V1と、鋼材の分極抵抗Rと、鋼材のバイアス電位V2とから下記(1)式を用いて鋼材の単位表面積あたりの電流密度Xを算出する電流密度算出工程と、該電流密度に鋼材の表面積を乗ずることで鋼材の電気防食に必要な必要電流を算出する鋼材必要電流算出工程と、該必要電流にコンクリート構造物の電気抵抗を乗ずることで鋼材の電気防食に必要な必要電圧を算出する必要電圧算出工程と、前記必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量を算出する電池容量算出工程と、前記必要電圧及び前記電池容量に基づいて防食用電池を選択する電池選択工程とを備えることを特徴とする。

X=(V1−V2)÷R・・・(1)
The method for selecting a battery for corrosion protection according to the present invention includes a battery used as a power source when an electric current is supplied from an anode material installed in a concrete structure to the steel material in the concrete structure to perform the corrosion protection of the steel material. A method for selecting an anticorrosion battery to be selected, which is based on the necessary polarization amount V1 necessary for the electric corrosion protection of the steel material, the polarization resistance R of the steel material, and the bias potential V2 of the steel material, using the following equation (1). A current density calculation step of calculating a current density X per unit surface area, a steel material required current calculation step of calculating a necessary current necessary for the electrical protection of the steel material by multiplying the current density by the surface area of the steel material, A necessary voltage calculation step of calculating a necessary voltage required for the electrical protection of steel by multiplying the electrical resistance of the concrete structure, and the current consumption as the current consumption per unit time as the current protection. A battery capacity calculation step of calculating a battery capacity by multiplying a continuous time and an effective value of the battery, and a battery selection step of selecting an anticorrosion battery based on the necessary voltage and the battery capacity. To do.

X = (V1-V2) / R (1)

本発明に係る防食用電池の選択方法は、コンクリート構造物中の鋼材に対してコンクリート構造物に設置された陽極材から電流を供給して鋼材の電気防食を行う際に電源として用いられる防食用電池の選択を行う防食用電池の選択方法であって、前記鋼材へ電流が供給されていない状態で照合電極を基準に鋼材の自然電位を測定する自然電位測定工程と、コンクリート構造物の陽極材が設置される陽極設置領域における電流密度に対する鋼材のインスタントオフ電位を照合電極を基準に測定するインスタントオフ電位測定工程と、前記自然電位と前記インスタントオフ電位との差である分極量として鋼材の電気防食に必要な必要分極量が得られるときの前記電流密度に前記陽極設置領域の面積とを乗ずることで鋼材の電気防食に必要な必要電流を算出する構造物必要電流算出工程と、前記必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量を算出する電池容量算出工程と、前記必要分極量が得られるときのインスタントオフ電位を必要電圧として該必要電圧及び前記電池容量に基づいて防食用電池を選択する電池選択工程とを備えることを特徴とする。   The method for selecting an anticorrosion battery according to the present invention is an anticorrosion battery used as a power source when an electric current is supplied from an anode material installed in a concrete structure to the steel material in the concrete structure to perform the anticorrosion of the steel material. A method of selecting an anticorrosion battery for selecting a battery, a natural potential measuring step for measuring a natural potential of a steel material with reference to a reference electrode in a state where no current is supplied to the steel material, and an anode material for a concrete structure An instant-off potential measurement step for measuring the instant-off potential of the steel material with respect to the current density in the anode installation region where the reference electrode is used as a reference, and a polarization amount that is a difference between the natural potential and the instant-off potential as a polarization amount. By multiplying the current density when the necessary polarization required for anticorrosion is obtained by the area of the anode installation region, the necessary electric power necessary for the anticorrosion of the steel material is obtained. Battery capacity calculation for calculating the battery capacity by multiplying the current consumption by the time required to continue the anticorrosion and the effective value of the battery, using the required current as a current consumption per unit time. And a battery selection step of selecting an anticorrosion battery based on the required voltage and the battery capacity, using the instant-off potential when the required polarization amount is obtained as a required voltage.

本発明に係る防食用電池の選択方法は、コンクリート構造物中の鋼材に対してコンクリート構造物に設置された陽極材から電流を供給して鋼材の電気防食を行う際に電源として用いられる防食用電池の選択を行う防食用電池の選択方法であって、前記鋼材へ電流が供給されていない状態で照合電極を基準に鋼材の自然電位を測定する自然電位測定工程と、鋼材の単位表面積あたりの電流密度に対する鋼材のインスタントオフ電位を照合電極を基準に測定するインスタントオフ電位測定工程と、前記自然電位と前記インスタントオフ電位との差である分極量として鋼材の電気防食に必要な必要分極量が得られるときの前記電流密度に、前記鋼材の表面積とコンクリート構造物の陽極材が設置される陽極設置領域の面積に対する鋼材の表面積の割合を乗ずることで鋼材の電気防食に必要な必要電流を算出する構造物必要電流算出工程と、前記必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量を算出する電池容量算出工程と、前記必要分極量が得られるときのインスタントオフ電位を必要電圧として該必要電圧及び前記電池容量に基づいて防食用電池を選択する電池選択工程とを備えることを特徴とする。   The method for selecting an anticorrosion battery according to the present invention is an anticorrosion battery used as a power source when an electric current is supplied from an anode material installed in a concrete structure to the steel material in the concrete structure to perform the anticorrosion of the steel material. A method for selecting an anticorrosion battery for selecting a battery, wherein a natural potential measuring step of measuring a natural potential of a steel material with reference to a reference electrode in a state where no current is supplied to the steel material, and a unit surface area of the steel material An instant-off potential measurement step for measuring an instant-off potential of a steel material with respect to a current density with reference to a reference electrode, and a necessary polarization amount necessary for the electrical protection of the steel material as a polarization amount which is a difference between the natural potential and the instant-off potential. The current density when obtained is divided by the surface area of the steel material relative to the surface area of the steel material and the area of the anode installation area where the anode material of the concrete structure is installed. The structure required current calculation step for calculating the necessary current necessary for the electrical protection of the steel material by multiplying by, the time required to continue the electrical protection to the current consumption as the current consumption per unit time and the effective value of the battery A battery capacity calculating step for calculating the battery capacity by multiplying the above and a battery selection for selecting an anticorrosion battery based on the required voltage and the battery capacity with the instant-off potential when the required polarization amount is obtained as a required voltage And a process.

斯かる構成によれば、鋼材必要電流算出工程や構造物必要電流算出工程によって必要電流の目安値を把握することができ、必要電圧算出工程やインスタントオフ電位から必要電圧の目安値を把握することができるため、これらの目安値に基づいて、実際の通電試験を行うことで、実際の必要電圧及び必要電流を効率的に測定することができる。また、電池選択工程によって必要分極量を得るために必要な防食用電池の構成の目安を把握することができるため、上述の実際の必要電流及び必要電圧に加えて防食用電池の構成の目安に基づいて実際に必要な防食用電池の構成を効率的に選択することができる。   According to such a configuration, it is possible to grasp the standard value of the necessary current by the steel material necessary current calculation process and the structure necessary current calculation process, and to grasp the standard value of the necessary voltage from the necessary voltage calculation process and the instant-off potential. Therefore, the actual required voltage and the required current can be efficiently measured by performing an actual energization test based on these reference values. In addition, since it is possible to grasp the standard configuration of the anticorrosion battery necessary for obtaining the required polarization amount by the battery selection process, in addition to the above-described actual necessary current and necessary voltage, the standard configuration of the anticorrosion battery can be used. Based on this, the configuration of the actually required anticorrosion battery can be efficiently selected.

以上のように、本発明によれば、コンクリート構造物の電気防食を行う際の外部電源として電池を用いる場合に、電池の構成を効率的に選択することができる。   As described above, according to the present invention, when a battery is used as an external power source when performing anticorrosion of a concrete structure, the configuration of the battery can be efficiently selected.

第二実施形態における電流密度とインスタントオフ電位の関係を示したグラフ。The graph which showed the relationship between the current density in 2nd embodiment, and an instant-off electric potential. 第二実施形態における電流密度と分極量の関係を示したグラフ。The graph which showed the relationship between the current density in 2nd embodiment, and the amount of polarization. 第二実施形態における電圧と分極量の関係を示したグラフ。The graph which showed the relationship between the voltage and polarization amount in 2nd embodiment.

<第1実施形態>
以下、本発明の第一実施形態について説明する。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described.

本実施形態に係る防食用の電池の選択方法は、コンクリート構造物中に埋設された鋼材(鉄筋等)に対して陽極材から電流を供給して電気防食を行うに際し、電流を供給する手段として電池を用いる場合に使用されるものである。また、本実施形態に係る防食用の電池の選択方法は、構造物状態確認工程と、電流密度算出工程と、鋼材必要電流算出工程と、必要電圧算出工程と、電池容量算出工程と、電池選択工程とから構成される。更に、通電試験工程と、真電池容量算出工程と、電池選択工程とを備える。   The method for selecting a battery for corrosion protection according to the present embodiment is a means for supplying current when supplying current from an anode material to a steel material (rebar, etc.) embedded in a concrete structure to perform corrosion protection. It is used when using a battery. Further, the method for selecting a battery for corrosion protection according to the present embodiment includes a structure state confirmation step, a current density calculation step, a steel material necessary current calculation step, a necessary voltage calculation step, a battery capacity calculation step, and a battery selection. Process. Furthermore, an energization test process, a true battery capacity calculation process, and a battery selection process are provided.

<構造物状態確認工程>
鋼材の腐食状態の異なるコンクリート構造物(以下、目安構造物とも記す)に対して、目視による外観調査や自然電位の測定を行うことで、目安構造物の状態(鋼材の腐食状態)を確認する。具体的には、目視による外観調査としては、例えば、浮き・剥落・豆板等の欠陥、ひび割れ(形状、幅、長さ)、錆汁(位置、大きさ)、露出した金属(位置、大きさ)、鋼材の腐食状況等を確認することで行われる。自然電位の測定は、鋼材へ電流が供給されていない状態の鋼材電位を照合電極を基準に測定することで行われる。
<Structural state confirmation process>
Confirm the condition of the reference structure (corrosion state of the steel) by conducting a visual appearance survey and measuring the natural potential of concrete structures with different corrosion conditions of the steel (hereinafter also referred to as reference structures). . Specifically, visual inspection includes, for example, defects such as floating / peeling / beans, cracks (shape, width, length), rust (position, size), exposed metal (position, size) ), It is done by checking the corrosion status of steel materials. The measurement of the natural potential is performed by measuring the steel material potential in a state where no current is supplied to the steel material with reference to the reference electrode.

照合電極は、鋼材の電位を測定する際の基準となるものである。具体的には、照合電極と鋼材との間の電位差が鋼材の電位として測定される。照合電極としては、一般的に用いられるものを使用することができ、例えば飽和銀塩化銀照合電極、銅硫酸銅照合電極、鉛照合電極、または二酸化マンガン照合電極等を用いることができる。   The reference electrode serves as a reference when measuring the potential of the steel material. Specifically, the potential difference between the reference electrode and the steel material is measured as the potential of the steel material. As the reference electrode, a commonly used one can be used. For example, a saturated silver-silver chloride reference electrode, a copper copper sulfate reference electrode, a lead reference electrode, or a manganese dioxide reference electrode can be used.

そして、目視による外観調査や自然電位の測定の結果に基づいて、目安構造物の状態のランク分けを行う。例えば、目安構造物が新規に形成されたものである場合には「新設期」、外観上の変化が見られず、鋼材の自然電位が−0.2V(vs CSE)よりも貴な値を示す場合には「潜伏期」、外観上の変化が見られず、鋼材の自然電位が−0.35<E≦−0.2(vs CSE)の範囲にある場合には「進展期」としてランク分けを行う。なお、「新設期」「潜伏期」「進展期」に加え、外観上の腐食ひび割れが多数発生し且つ錆汁が見られ且つ部分的な剥離や剥落が見られると共に、鉄筋の自然電位が−0.35 V(vs CSE)よりも卑な値を示す場合には「加速期」、外観上の腐食ひび割れが多数発生し且つ錆汁が見られ且つ部分的な剥離や剥落が見られ且つ変形や比較的大きい撓みが見られると共に、鉄筋の自然電位が−0.35 V(vs CSE)よりも卑な値を示す場合には「劣化期」としてランク分けを行うこともできる。なお、CSEは、飽和硫酸銅電極基準を意味する。   Then, based on the result of visual inspection and the measurement of the natural potential, the state of the reference structure is ranked. For example, when the reference structure is newly formed, the “new construction period”, no change in appearance is observed, and the natural potential of the steel material is a value more precious than −0.2 V (vs CSE). In the case of showing, “latent period”, no change in appearance is observed, and when the natural potential of the steel is in the range of −0.35 <E ≦ −0.2 (vs CSE), it is ranked as “progression period” Divide. In addition to the “new construction period”, “latent period”, and “progression period”, many corrosion cracks on the appearance occurred, rust juice was seen, partial peeling and peeling were observed, and the natural potential of the rebar was −0 .35 V (vs CSE) when the value is lower than "acceleration period" When a relatively large deflection is observed and the natural potential of the reinforcing bar shows a lower value than −0.35 V (vs CSE), ranking can be performed as “deterioration period”. CSE means a saturated copper sulfate electrode standard.

なお、上記のランク分けは、鋼材の状態に基づいて行うこともできる。例えば、鋼材の表面に黒皮又は錆(全体的に薄い緻密な錆)が認められ、コンクリート表面に錆が付着していない場合には「潜伏期」、鋼材の表面に部分的に浮き錆があるが、比較的小面積の斑点状である場合には「進展期」、鋼材に断面欠損が認められないが、鉄筋の全周又は全長に渡って浮き錆が生じている場合には「加速期」、鋼材に断面欠損が生じている場合には「劣化期」としてランク分けを行うこともできる。   In addition, said rank classification can also be performed based on the state of steel materials. For example, black skin or rust (thin thin rust as a whole) is observed on the surface of the steel material, and when there is no rust adhering to the concrete surface, “latent period”, there is a partly floating rust on the surface of the steel material However, if it is a spot with a relatively small area, it is `` progression period '', and there is no cross-sectional defect in the steel material, but if there is floating rust around the entire circumference or the entire length of the reinforcing bar, the `` acceleration period '' "If the steel material has a cross-sectional defect, it can be ranked as a" deterioration period ".

そして、各ランクの目安構造物における鋼材の分極抵抗及び鋼材のバイアス電位を求める。具体的には、各ランクの目安構造物に対して電気防食を行った際に所定の分極量(効率的な防食が可能な分極量)を得ることができる電流密度(鋼材表面積あたりの電流密度)が所定値以下である範囲(以下、モデル1の範囲とも記す)と所定値を超える範囲(以下、モデル2とも記す)とに分け、それぞれの範囲(以下、有効電流密度範囲とも記す)において分極抵抗及びバイアス電位を求める。分極抵抗およびバイアス電位を求める方法としては、直流電流を用いた直線分極抵抗法を用いることができる。   Then, the polarization resistance of the steel material and the bias potential of the steel material in the reference structure of each rank are obtained. Specifically, the current density (current density per surface area of the steel material) that can obtain a predetermined amount of polarization (amount of polarization that enables efficient corrosion protection) when the anticorrosion is performed on the reference structure of each rank. ) Is below a predetermined value (hereinafter also referred to as model 1 range) and exceeds a predetermined value (hereinafter also referred to as model 2), and in each range (hereinafter also referred to as effective current density range). Obtain polarization resistance and bias potential. As a method for obtaining the polarization resistance and the bias potential, a linear polarization resistance method using a direct current can be used.

ここで、分極量とは、鋼材に電流を供給した際の鋼材電位の変化量を意味する。具体的には、分極量とは、鋼材へ電流が供給されていない状態(電流供給前、または、供給電流を遮断して鋼材の電位が安定した後)の鋼材電位(以下、鋼材の自然電位とも記す)から電位がどれだけ卑側へ変化したかの変化量である。鋼材の分極量が所定の範囲(具体的には、50〜250mV、好ましくは100mV程度)となることで、鋼材に生じる腐食電流を効果的に消失させることができる。   Here, the amount of polarization means the amount of change in the steel material potential when a current is supplied to the steel material. Specifically, the polarization amount is the steel material potential (hereinafter referred to as the natural potential of the steel material) in a state where no current is supplied to the steel material (before current supply or after the supply current is cut off and the steel material potential is stabilized). This is the amount of change in how much the electric potential has changed to the lower side. When the polarization amount of the steel material is within a predetermined range (specifically, 50 to 250 mV, preferably about 100 mV), the corrosion current generated in the steel material can be effectively eliminated.

<電流密度算出工程>
電気防食の対象となるコンクリート構造物において必要な必要分極量(具体的には、効率的な防食が可能な分極量)V1を任意に設定し、電気防食の対象となるコンクリート構造物に相当する上記のランクの目安構造物における鋼材の分極抵抗Rと、該目安構造物における鋼材のバイアス電位V2と、上記の必要分極量V1とから下記(1)式を用いて鋼材の単位表面積あたりの電流密度(以下、目安電流密度とも記す)Xを算出する。

X=(V1−V2)÷R・・・(1)
<Current density calculation process>
A necessary polarization amount (specifically, a polarization amount capable of efficient corrosion prevention) V1 that is necessary for a concrete structure that is subject to cathodic protection is arbitrarily set, and corresponds to a concrete structure that is subject to cathodic protection. The current per unit surface area of the steel material using the following equation (1) from the polarization resistance R of the steel material in the reference structure of the rank, the bias potential V2 of the steel material in the reference structure, and the required polarization amount V1. A density X (hereinafter also referred to as a reference current density) X is calculated.

X = (V1-V2) / R (1)

具体的には、目安構造物のモデル1の範囲における鋼材の分極抵抗Rと鋼材のバイアス電位V2と必要分極量V1とから上記(1)式を用いて目安電流密度Xを算出する。そして、該目安電流密度Xが目安構造物のモデル1の範囲内であれば、該目安電流密度Xを採用する。又は、目安電流密度Xが目安構造物のモデル1の範囲外であれば、目安構造物のモデル2の範囲における鋼材の分極抵抗Rと鋼材のバイアス電位V2と必要分極量V1とから上記(1)式を用いて目安電流密度Xを算出し、該目安電流密度Xを採用する。   Specifically, the reference current density X is calculated from the polarization resistance R of the steel material in the range of the model 1 of the reference structure, the bias potential V2 of the steel material, and the necessary polarization amount V1, using the above equation (1). If the reference current density X is within the range of the model 1 of the reference structure, the reference current density X is adopted. Alternatively, if the reference current density X is outside the range of the model 1 of the reference structure, the above (1) is obtained from the polarization resistance R of the steel material, the bias potential V2 of the steel material, and the required polarization amount V1 in the range of the model 2 of the reference structure. ) To calculate the reference current density X, and adopt the reference current density X.

<鋼材必要電流算出工程>
電流密度算出工程で算出された目安電流密度に目安構造物における鋼材の表面積(電気防食の対象となる領域における鋼材表面積)を乗ずることで鋼材の電気防食に必要な必要電流(以下、目安必要電流とも記す)を算出する。
<Steel material required current calculation process>
Multiplying the standard current density calculated in the current density calculation process by the surface area of the steel material in the standard structure (the surface area of the steel material in the area subject to cathodic protection), the necessary current required for the anticorrosion of the steel material (hereinafter, the standard necessary current) Also calculated).

<必要電圧算出工程>
前記目安必要電流に目安構造物における電気抵抗を乗ずることで鋼材の電気防食に必要な必要電圧(以下、目安必要電圧とも記す)を算出する。目安構造物の電気抵抗としては、例えば、目安構造物が桟橋である場合は10Ω、目安構造物が橋梁である場合は30Ωが挙げられる。
<Required voltage calculation process>
A necessary voltage (hereinafter also referred to as a reference required voltage) necessary for the electric protection of the steel material is calculated by multiplying the reference required current by the electric resistance of the reference structure. Examples of the electrical resistance of the reference structure include 10Ω when the reference structure is a pier, and 30Ω when the reference structure is a bridge.

<電池容量算出工程>
前記目安必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量(以下、目安電池容量とも記す)を算出する。
<Battery capacity calculation process>
A battery capacity (hereinafter also referred to as a reference battery capacity) is calculated by multiplying the consumption current per unit time by the time required to continue the anticorrosion and the effective value of the battery, with the reference required current as the consumption current per unit time.

<電池選択工程>
前記目安必要電圧及び目安電池容量に基づいて防食用の電池を選択する。具体的には、既存の電池を直列及び/又は並列に連結することで、目安必要電圧及び目安電池容量が得られるように複数の電池を選択する。
<Battery selection process>
A battery for anticorrosion is selected based on the reference required voltage and the reference battery capacity. Specifically, by connecting existing batteries in series and / or in parallel, a plurality of batteries are selected so as to obtain a required reference voltage and a reference battery capacity.

<通電試験工程>
電気防食の対象となるコンクリート構造物に対して陽極材を取り付け、前記目安必要電流及び目安必要電圧に基づいて通電試験を行うことで、鋼材の分極量が効果的に防食を行うことができる必要分極量となる際の必要電圧(以下、真必要電圧とも記す)と必要電流(以下、真必要電流とも記す)を求める。具体的には、目安必要電流及び目安必要電圧の近傍の電流及び電圧で通電試験を行って分極量を求める作業を繰り返すことで真必要電流及び真必要電圧を求める。
<Energization test process>
Attaching an anode material to a concrete structure that is subject to cathodic protection, and conducting an energization test based on the standard required current and standard required voltage, the amount of polarization of the steel material must be able to effectively prevent corrosion. A required voltage (hereinafter also referred to as a true required voltage) and a required current (hereinafter also referred to as a true required current) for obtaining a polarization amount are obtained. Specifically, the true necessary current and the true necessary voltage are obtained by repeating the operation of conducting an energization test with a current and voltage in the vicinity of the standard required current and the standard required voltage to obtain the polarization amount.

<真電池容量算出工程>
前記真必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量(以下、真電池容量とも記す)を算出する。
<True battery capacity calculation process>
The battery capacity (hereinafter also referred to as true battery capacity) is calculated by multiplying the current consumption by the effective value of the battery by multiplying the current consumption by the time required to continue the anticorrosion, using the true required current as the current consumption per unit time.

<電池選択工程>
前記真必要電圧及び真電池容量に基づいて防食用の電池を選択する。具体的には、既存の電池を直列及び/又は並列に連結することで、真必要電圧及び真電池容量が得られるように複数の電池を選択する。
<Battery selection process>
The anticorrosion battery is selected based on the true required voltage and the true battery capacity. Specifically, a plurality of batteries are selected so that a true required voltage and a true battery capacity can be obtained by connecting existing batteries in series and / or in parallel.

以下、実施例および比較例を用いて本実施形態を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present embodiment will be described more specifically using examples and comparative examples, but the present invention is not limited to the following examples.

1.構造物状態確認工程
鋼材の腐食状態の異なるコンクリート構造物に対して、自然電位の測定を行い、コンクリート構造物の状態をランク分けした。また、各ランクのコンクリート構造物における鋼材の分極抵抗、鋼材のバイアス電位、及び、鋼材の平衡電位を有効電流密度範囲毎に求めた。コンクリート構造物のランク、自然電位、鋼材の分極抵抗、鋼材のバイアス電位、及び、鋼材の平衡電位は、下記表1に示す。なお、自然電位、平衡電位、及び、バイアス電位は、照合電極(飽和硫酸銅電極)を基準に測定されたものである。
なお、有効電流密度範囲は、直流電流を用いた直線分極抵抗法で得られた分極曲線を用いて定めた。具体的には、分極曲線を二直線近似することで二つの分極直線を算出する。その際、定量的に曲線を直線近似するために、各直線における相関係数Rの二乗値の和が最大となるように近似直線を決定する。その二直線近似が交わる電流密度を有効範囲の閾値として決定する。そして、得られた閾値以下の電流密度をモデル1の有効電流密度範囲とし、得られた閾値を超える電流密度をモデル2の有効電流密度範囲とした。
1. Structure state confirmation process The self-potential was measured for concrete structures with different corrosion states of steel, and the concrete structures were ranked. Moreover, the polarization resistance of the steel material, the bias potential of the steel material, and the equilibrium potential of the steel material in each rank of the concrete structure were determined for each effective current density range. The rank, the natural potential, the polarization resistance of the steel material, the bias potential of the steel material, and the equilibrium potential of the steel material are shown in Table 1 below. Note that the natural potential, the equilibrium potential, and the bias potential are measured with reference to the reference electrode (saturated copper sulfate electrode).
The effective current density range was determined using a polarization curve obtained by a linear polarization resistance method using a direct current. Specifically, two polarization lines are calculated by approximating the polarization curve to two lines. At that time, in order to approximate the curve linearly quantitatively, the approximate straight line is determined so that the sum of the square values of the correlation coefficient R in each straight line is maximized. The current density at which the two-line approximation intersects is determined as the effective range threshold. Then, the current density below the obtained threshold was set as the effective current density range of model 1, and the current density exceeding the obtained threshold was set as the effective current density range of model 2.

Figure 0006600487
Figure 0006600487

2.電流密度算出工程
目安構造物を潜伏期の橋梁とし、モデル1における必要分極量V1を100mVとしたときの目安電流密度Xを上記(1)式を用いて算出すると、0.60mA/m2であった。
2. Current density calculation process When the reference structure is a latent bridge and the required polarization amount V1 in model 1 is 100 mV, the reference current density X is calculated using the above equation (1) to be 0.60 mA / m 2. It was.

3.鋼材必要電流算出工程
電流密度算出工程で算出された目安電流密度(0.60mA/m2)に目安構造物における鋼材の表面積250m2を乗ずることで目安必要電流を算出すると、150mAであった。
3. After calculating the measure required current by multiplying the surface area 250 meters 2 of the steel in the steel required current calculation step the current density calculating step guide current density calculated by (0.60mA / m 2) in a guide structure, was 150 mA.

4.必要電圧算出工程
目安必要電流(150mA)に目安構造物である橋梁の電気抵抗(30Ω)を乗ずることで目安必要電圧を算出すると、4.5Vであった。
4). Required voltage calculation process The required voltage was calculated by multiplying the required current (150 mA) by the electrical resistance (30Ω) of the bridge, which is the target structure, and found 4.5V.

5.電池容量算出工程
目安必要電流(150mA)を単位時間あたりの消費電流(0.15Ah)として該消費電流に電気防食を継続する時間(7日間、即ち168時間)と電池の実効値(80%)とを乗ずることで目安電池容量を算出すると、31.5Ahであった。
5. Battery capacity calculation process Estimated current consumption per unit time (150 mA) as current consumption per unit time (0.15 Ah) and continuous current protection (7 days, ie 168 hours) and effective battery value (80%) When the estimated battery capacity was calculated by multiplying by 31.5 Ah.

6.電池選択工程
目安必要電圧(4.5V)及び目安電池容量(31.5Ah)に基づいて防食用の電池を選択する。具体的には、電圧2Vで且つ電流25Ahの電池を3つ直列接続したセットを2つ並列接続することで、目安必要電圧及び目安電池容量を満たすことができる。
6). Battery selection process A battery for anticorrosion is selected based on the standard required voltage (4.5 V) and the standard battery capacity (31.5 Ah). Specifically, the reference required voltage and the reference battery capacity can be satisfied by connecting two sets in which three batteries having a voltage of 2 V and a current of 25 Ah are connected in series.

7.通電試験工程
電気防食の対象となるコンクリート構造物に対して陽極材を取り付け、前記目安必要電流(150mA)及び目安必要電圧(4.5V)に基づいて通電試験を行うことで、真必要電圧及び真必要電流を求めると、真必要電圧が3Vであり、真必要電流が120mAであった。
7). Energization test process An anode material is attached to a concrete structure subject to cathodic protection, and an energization test is performed based on the above-mentioned required standard current (150 mA) and standard required voltage (4.5 V). When the true required current was determined, the true required voltage was 3 V and the true required current was 120 mA.

8.真電池容量算出工程
前記真必要電流(120mA)を単位時間あたりの消費電流(0.12Ah)として該消費電流に電気防食を継続する時間(7日間、即ち168時間)と電池の実効値(80%)とを乗ずることで真電池容量を算出すると、25.2Ahであった。
8). True battery capacity calculation step When the true required current (120 mA) is the current consumption per unit time (0.12 Ah), the current consumption time (7 days, that is, 168 hours) and the effective value (80 %), The true battery capacity was calculated to be 25.2 Ah.

9.電池選択工程
前記真必要電圧(3V)及び真電池容量(25.2Ah)に基づいて防食用の電池を選択する。具体的には、電圧2Vで且つ電流12Ahの電池を2つ直列接続したセットを3つ並列接続することで、真必要電圧及び真電池容量が得られた。
9. Battery Selection Step A corrosion protection battery is selected based on the true required voltage (3 V) and the true battery capacity (25.2 Ah). Specifically, the true required voltage and the true battery capacity were obtained by connecting three sets of two batteries having a voltage of 2 V and a current of 12 Ah connected in series.

<第二実施形態>
以下、本発明の第二実施形態について、図1,2を参照しつつ説明する。
<Second embodiment>
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.

本実施形態に係る防食用の電池の選択方法は、第一実施形態と同様に、コンクリート構造物中に埋設された鋼材に対して陽極材から電流を供給して電気防食を行うに際し、電流を供給する手段として電池を用いる場合に使用されるものである。具体的には、電気防食の対象となるコンクリート構造物に対して分極試験を行い、その結果に基づいて防食用の電池の選択を行う方法である。また、本実施形態に係る防食用の電池の選択方法は、自然電位測定工程と、インスタントオフ電位測定工程と、構造物必要電流算出工程と、電池容量算出工程と、電池選択工程とから構成される。更に、通電試験工程と、真電池容量算出工程と、電池選択工程とを備える。   The method for selecting a battery for corrosion protection according to the present embodiment is similar to the first embodiment in that when the current is supplied from the anode material to the steel material embedded in the concrete structure to perform the anticorrosion, the current is supplied. It is used when a battery is used as the supplying means. Specifically, it is a method in which a polarization test is performed on a concrete structure that is an object of cathodic protection, and a battery for corrosion protection is selected based on the result. Further, the method for selecting a battery for corrosion protection according to the present embodiment includes a natural potential measurement step, an instant-off potential measurement step, a structure required current calculation step, a battery capacity calculation step, and a battery selection step. The Furthermore, an energization test process, a true battery capacity calculation process, and a battery selection process are provided.

<自然電位測定工程>
電気防食の対象となるコンクリート構造物(以下、対象構造物とも記す)に対して、鋼材へ電流が供給されていない状態で照合電極を基準に鋼材の自然電位を測定する。
<Self potential measurement process>
A natural potential of a steel material is measured with respect to a concrete structure (hereinafter, also referred to as a target structure) that is subject to cathodic protection, with reference to the reference electrode in a state where no current is supplied to the steel material.

<インスタントオフ電位測定工程>
鋼材へ電流を供給し、対象構造物おける陽極材が設置される領域(以下、陽極材設置領域とも記す)における電流密度(陽極材設置領域の単位面積あたりの電流密度)に対する鋼材のインスタントオフ電位を照合電極を基準に測定する。インスタントオフ電位は、電流を供給して鋼材の電位を安定させた後、電流を遮断した直後に照合電極を基準に鋼材の電位を測定すること求めることができる。インスタントオフ電位の測定は、複数の電流密度において行われる。なお、該電流密度に対するインスタントオフ電位の測定は、土木学会「電気化学的防食工法設計施工指針(案)」の「4.10 初期通電調整」に記載の方法で行うことができる。
<Instant-off potential measurement process>
The steel material instant-off potential with respect to the current density (current density per unit area of the anode material installation area) in the area where the anode material is installed in the target structure (hereinafter also referred to as the anode material installation area). Measured with reference electrode as reference. The instant-off potential can be obtained by measuring the potential of the steel material with reference to the reference electrode immediately after the current is interrupted after supplying the current to stabilize the potential of the steel material. Instant-off potential measurements are made at multiple current densities. The instant-off potential with respect to the current density can be measured by the method described in “4.10 Initial energization adjustment” of the “Design Guide for Electrochemical Corrosion Protection Design (Draft)” of the Japan Society of Civil Engineers.

そして、各電流密度に対するインスタントオフ電位の値をグラフにプロットすることで、図1に示すような電流密度に対するインスタントオフ電位のグラフを作成する。又は、測定された各インスタントオフ電位と自然電位との差から分極量を算出し、図2に示すような分極量に対する電流密度のグラフ、及び、分極量に対するインスタントオフ電位(電圧)のグラフを作成する。   Then, a graph of the instant-off potential with respect to the current density as shown in FIG. 1 is created by plotting the value of the instant-off potential with respect to each current density on the graph. Alternatively, the amount of polarization is calculated from the difference between each measured instant-off potential and the natural potential, and a graph of current density against the amount of polarization and a graph of instant-off potential (voltage) against the amount of polarization as shown in FIG. create.

<構造物必要電流算出工程>
前記自然電位と前記インスタントオフ電位との差である分極量として鋼材の電気防食に必要な必要分極量(100mV程度)が得られるときの前記電流密度に、対象構造物の陽極設置領域の面積を乗ずることで鋼材の電気防食に必要な必要電流(以下、目安必要電流とも記す)を算出する。具体的には、図1に示すグラフにおける電流密度が0mA/m2であるときのインスタントオフ電位が前記自然電位に相当するものであるため、斯かるインスタントオフ電位と任意のインスタントオフ電位との差が分極量となる。そして、斯かる分極量が必要分極量となる位置の電流密度を読み取り、該電流密度に対象構造物の陽極設置領域の面積を乗ずることで目安必要電流を算出する。又は、図2に示すグラフにおける必要分極量となる位置の電流密度を読み取り、該電流密度に対象構造物の陽極設置領域の面積を乗ずることで目安必要電流を算出する。
<Structure required current calculation process>
The area of the anode installation region of the target structure is set to the current density when the necessary polarization amount (about 100 mV) necessary for the electrical protection of the steel material is obtained as the polarization amount which is the difference between the natural potential and the instant-off potential. Multiplying to calculate the required current (hereinafter also referred to as a guideline required current) necessary for the steel's anticorrosion. Specifically, since the instant-off potential when the current density in the graph shown in FIG. 1 is 0 mA / m 2 corresponds to the natural potential, the instant-off potential and any instant-off potential are The difference is the amount of polarization. Then, the required current is calculated by reading the current density at the position where the polarization amount becomes the required polarization amount and multiplying the current density by the area of the anode installation region of the target structure. Alternatively, the required current is calculated by reading the current density at the position corresponding to the required polarization amount in the graph shown in FIG. 2 and multiplying the current density by the area of the anode installation region of the target structure.

<電池容量算出工程>
前記目安必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量(以下、目安電池容量とも記す)を算出する。
<Battery capacity calculation process>
A battery capacity (hereinafter also referred to as a reference battery capacity) is calculated by multiplying the consumption current per unit time by the time required to continue the anticorrosion and the effective value of the battery, with the reference required current as the consumption current per unit time.

<電池選択工程>
前記必要分極量が得られるときのインスタントオフ電位を目安必要電圧とする。具体的には、図1,2のグラフにおける必要分極量の位置のインスタントオフ電位を目安必要電圧とする。そして、該目安必要電圧及び前記目安電池容量に基づいて防食用電池を選択する。具体的には、既存の電池を直列及び/又は並列に連結することで、目安必要電圧及び目安電池容量が得られるように複数の電池を選択する。
<Battery selection process>
The instant-off potential when the necessary polarization amount is obtained is set as a required voltage. Specifically, the instant-off potential at the position of the required polarization amount in the graphs of FIGS. Then, the anticorrosion battery is selected based on the reference required voltage and the reference battery capacity. Specifically, by connecting existing batteries in series and / or in parallel, a plurality of batteries are selected so as to obtain a required reference voltage and a reference battery capacity.

<通電試験工程>
電気防食の対象となるコンクリート構造物に対して陽極材を取り付け、前記目安必要電流及び目安必要電圧に基づいて通電試験を行うことで、鋼材の分極量が効果的に防食を行うことができる必要分極量となる際の必要電圧(以下、真必要電圧とも記す)と必要電流(以下、真必要電流とも記す)を求める。具体的には、目安必要電流及び目安必要電圧の近傍の電流及び電圧で通電試験を行って分極量を求める作業を繰り返すことで真必要電流及び真必要電圧を求める。
<Energization test process>
Attaching an anode material to a concrete structure that is subject to cathodic protection, and conducting an energization test based on the standard required current and standard required voltage, the amount of polarization of the steel material must be able to effectively prevent corrosion. A required voltage (hereinafter also referred to as a true required voltage) and a required current (hereinafter also referred to as a true required current) for obtaining a polarization amount are obtained. Specifically, the true necessary current and the true necessary voltage are obtained by repeating the operation of conducting an energization test with a current and voltage in the vicinity of the standard required current and the standard required voltage to obtain the polarization amount.

<真電池容量算出工程>
前記真必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量(以下、真電池容量とも記す)を算出する。
<True battery capacity calculation process>
The battery capacity (hereinafter also referred to as true battery capacity) is calculated by multiplying the current consumption by the effective value of the battery by multiplying the current consumption by the time required to continue the anticorrosion, using the true required current as the current consumption per unit time.

<電池選択工程>
前記真必要電圧及び真電池容量に基づいて防食用の電池を選択する。具体的には、既存の電池を直列及び/又は並列に連結することで、真必要電圧及び真電池容量が得られるように複数の電池を選択する。
<Battery selection process>
The anticorrosion battery is selected based on the true required voltage and the true battery capacity. Specifically, a plurality of batteries are selected so that a true required voltage and a true battery capacity can be obtained by connecting existing batteries in series and / or in parallel.

以下、実施例および比較例を用いて本実施形態を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present embodiment will be described more specifically using examples and comparative examples, but the present invention is not limited to the following examples.

1.分極試験
対象構造物を潜伏期の橋梁とし、該対象構造物に対して自然電位測定工程及びインスタントオフ電位測定工程を行うことで、図2,3に示すグラフを作成した。
1. Polarization test Using the target structure as a latent bridge, the natural potential measurement step and the instant-off potential measurement step were performed on the target structure, thereby creating the graphs shown in FIGS.

2.構造物必要電流算出工程
図2に示すグラフにおける必要分極量(100mV)となる位置の電流密度(陽極材設置領域の単位面積あたりの電流密度)を読み取り、該電流密度(8.0mA/m2)に対象構造物の陽極設置領域の面積(150m2)を乗ずることで目安必要電流を算出すると、1200mAであった。また、図3に示すグラフにおける必要分極量(100V)となる位置の電圧(インスタントオフ電位)を読み取り、該電圧(1.9V)を目安必要電圧とした。
2. Structure required current calculation step The current density (current density per unit area of the anode material installation area) at the position where the required polarization amount (100 mV) in the graph shown in FIG. 2 is read, and the current density (8.0 mA / m 2). ) Multiplied by the area (150 m 2 ) of the anode installation region of the target structure, the required current was calculated to be 1200 mA. Further, a voltage (instant-off potential) at a position where the required polarization amount (100 V) in the graph shown in FIG. 3 is read, and the voltage (1.9 V) was used as a reference required voltage.

3.電池容量算出工程
目安必要電流(1200mA)を単位時間あたりの消費電流(1.2Ah)として該消費電流に電気防食を継続する時間(7日間、即ち168時間)と電池の実効値(80%)とを乗ずることで目安電池容量を算出すると、201.6Ahであった。
3. Battery capacity calculation process Estimated required current (1200mA) consumption current per unit time (1.2Ah) Time to continue the anti-corrosion to the consumption current (7 days, ie 168 hours) and battery effective value (80%) When the estimated battery capacity was calculated by multiplying by, it was 201.6 Ah.

4.電池選択工程
目安必要電圧(1.9V)及び目安電池容量(201.6Ah)に基づいて防食用の電池を選択する。具体的には、電圧2Vで且つ電流25Ahの電池を9つ並列接続することで、目安必要電圧及び目安電池容量が得られた。
4). Battery selection process A battery for corrosion protection is selected based on the standard required voltage (1.9 V) and the standard battery capacity (201.6 Ah). Specifically, the standard required voltage and the standard battery capacity were obtained by connecting nine batteries having a voltage of 2 V and a current of 25 Ah in parallel.

5.通電試験工程
前記目安必要電流(1200mA)及び目安必要電圧(1.9V)に基づいて、電気防食の対象となるコンクリート構造物に対して通電試験を行うことで、真必要電圧及び真必要電流を求めると、真必要電圧が1.8Vであり、真必要電流が1000mAであった。
5. Energization test process Based on the above standard required current (1200 mA) and standard required voltage (1.9 V), the actual required voltage and the actual required current are obtained by conducting an energization test on the concrete structure that is subject to cathodic protection. As a result, the true required voltage was 1.8 V, and the true required current was 1000 mA.

6.真電池容量算出工程
前記真必要電流(1000mA)を単位時間あたりの消費電流(1.0Ah)として該消費電流に電気防食を継続する時間(7日間、即ち168時間)と電池の実効値(80%)とを乗ずることで真電池容量を算出すると、210Ahであった。
6). True battery capacity calculation step When the true required current (1000 mA) is the current consumption per unit time (1.0 Ah), the current consumption time (7 days, ie 168 hours) and the effective value (80 %) To calculate the true battery capacity was 210 Ah.

7.電池選択工程
前記真必要電圧(1.8V)及び真電池容量(210Ah)に基づいて防食用の電池を選択する。具体的には、電圧2Vで且つ電流25Ahの電池を9つ並列接続することで、真必要電圧及び真電池容量が得られた。
7). Battery selection step A corrosion protection battery is selected based on the true required voltage (1.8 V) and the true battery capacity (210 Ah). Specifically, the true required voltage and the true battery capacity were obtained by connecting nine batteries with a voltage of 2 V and a current of 25 Ah in parallel.

以上のように、本発明に係る防食用電池の選択方法は、コンクリート構造物の電気防食を行う際の外部電源として電池を用いる場合に、電池の構成を効率的に選択することができる。   As described above, the method for selecting an anticorrosion battery according to the present invention can efficiently select the configuration of the battery when the battery is used as an external power source when performing the anticorrosion of a concrete structure.

即ち、鋼材必要電流算出工程や構造物必要電流算出工程によって必要電流の目安値を把握することができ、必要電圧算出工程やインスタントオフ電位から必要電圧の目安値を把握することができるため、これらの目安値に基づいて、実際の通電試験を行うことで、実際の必要電圧及び必要電流を効率的に測定することができる。また、電池選択工程によって必要分極量を得るために必要な防食用電池の構成の目安を把握することができるため、上述の実際の必要電流及び必要電圧に加えて防食用電池の構成の目安に基づいて実際に必要な防食用電池の構成を効率的に選択することができる。   In other words, it is possible to grasp the standard value of the necessary current through the steel material necessary current calculation process and the structure necessary current calculation process, and it is possible to grasp the standard value of the necessary voltage from the necessary voltage calculation process and the instant-off potential. The actual required voltage and current can be efficiently measured by conducting an actual energization test based on the standard value. In addition, since it is possible to grasp the standard configuration of the anticorrosion battery necessary for obtaining the required polarization amount by the battery selection process, in addition to the above-described actual necessary current and necessary voltage, the standard configuration of the anticorrosion battery can be used. Based on this, the configuration of the actually required anticorrosion battery can be efficiently selected.

なお、本発明に係る防食用の電池の選択方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。また、上記した複数の実施形態の構成や方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る構成や方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。   In addition, the method for selecting the anticorrosion battery according to the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention. Further, the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (even if the configurations and methods according to one embodiment are applied to the configurations and methods according to other embodiments). Of course, it is of course possible to arbitrarily select configurations, methods, and the like according to various modifications described below and employ them in the configurations, methods, and the like according to the above-described embodiments.

例えば、上記第一実施形態では、鋼材表面積あたりの目安電流密度を算出しているが、これに限定されるものではなく、斯かる目安電流密度をコンクリート構造物の陽極設置領域の面積に対する鋼材の表面積の割合(鋼材表面積比)で除することで、陽極設置領域の単位面積あたりの電流密度を算出してもよい。   For example, in the first embodiment, the standard current density per surface area of the steel material is calculated. However, the present invention is not limited to this, and the standard current density of the steel material relative to the area of the anode installation region of the concrete structure is calculated. The current density per unit area of the anode installation region may be calculated by dividing by the surface area ratio (steel material surface area ratio).

また、上記第二実施形態では、土木学会「電気化学的防食工法設計施工指針(案)」の「4.10 初期通電調整」に記載の方法で分極試験を行っているが、これに限定されるものではなく、例えば、特開2013−181778号に記載の方法で分極試験を行ってもよい。斯かる場合には、分極量に対する電流密度(鋼材表面積あたりの電流密度)のグラフを得ることができる。このため、必要分極量の位置における電流密度を目安電流密度(鋼材表面積あたりの電流密度)とすることができる。又は、斯かる目安電流密度(鋼材表面積あたりの電流密度)に(鋼材表面積比)を乗じてコンクリート構造物の陽極設置領域の単位面積あたりの電流密度を目安電流密度として算出してもよい。   Further, in the second embodiment, the polarization test is performed by the method described in “4.10 Initial energization adjustment” of “Design and Construction Guidelines for Electrochemical Corrosion Protection Method (Draft)” by the Japan Society of Civil Engineers. For example, the polarization test may be performed by the method described in JP2013-181778A. In such a case, it is possible to obtain a graph of current density (current density per steel material surface area) against polarization amount. For this reason, the current density at the position of the required polarization amount can be set as a standard current density (current density per surface area of the steel material). Alternatively, the current density per unit area of the anode installation region of the concrete structure may be calculated as the standard current density by multiplying the standard current density (current density per steel material surface area) by (steel material surface area ratio).

また、上記実施形態では、目安必要電圧及び真必要電圧をそのまま用いているが、これに限定されるものではなく、各必要電圧を整数値(偶数値)となるように切り上げた数値を各必要電圧(補正後の各必要電圧とも記す)としてもよい。また、補正後の各必要電圧に対する補正前の各必要電圧の割合を目安電池容量及び真電池容量に乗じて各電池容量を補正してもよい。   In the above embodiment, the reference required voltage and the true required voltage are used as they are. However, the present invention is not limited to this, and each required voltage is rounded up to an integer value (even value). It may be a voltage (also referred to as each necessary voltage after correction). Alternatively, each battery capacity may be corrected by multiplying the estimated battery capacity and true battery capacity by the ratio of each required voltage before correction to each corrected voltage.

Claims (3)

コンクリート構造物中の鋼材に対してコンクリート構造物に設置された陽極材から電流を供給して鋼材の電気防食を行う際に電源として用いられる電池の選択を行う防食用電池の選択方法であって、
鋼材の電気防食に必要な必要分極量V1と、鋼材の分極抵抗Rと、鋼材のバイアス電位V2とから下記(1)式を用いて鋼材の単位表面積あたりの電流密度Xを算出する電流密度算出工程と、該電流密度に鋼材の表面積を乗ずることで鋼材の電気防食に必要な必要電流を算出する鋼材必要電流算出工程と、該必要電流にコンクリート構造物の電気抵抗を乗ずることで鋼材の電気防食に必要な必要電圧を算出する必要電圧算出工程と、前記必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量を算出する電池容量算出工程と、前記必要電圧及び前記電池容量に基づいて防食用電池を選択する電池選択工程とを備えることを特徴とする防食用電池の選択方法。

X=(V1−V2)÷R・・・(1)
A method for selecting an anticorrosion battery for selecting a battery to be used as a power source when an electric current is supplied from an anode material installed in a concrete structure to a steel material in a concrete structure to perform an anticorrosion of the steel material. ,
Current density calculation for calculating the current density X per unit surface area of the steel material using the following formula (1) from the necessary polarization amount V1 necessary for the electric protection of the steel material, the polarization resistance R of the steel material, and the bias potential V2 of the steel material A step of calculating the necessary current necessary for the electric protection of the steel by multiplying the current density by the surface area of the steel, and the electric current of the steel by multiplying the necessary current by the electric resistance of the concrete structure. Battery capacity is calculated by calculating the required voltage required for anticorrosion, and by multiplying the current consumption by the time required to continue the anticorrosion and the effective value of the battery, with the required current per unit time. A method for selecting an anticorrosion battery, comprising: a battery capacity calculation step for performing an operation, and a battery selection step for selecting an anticorrosion battery based on the required voltage and the battery capacity.

X = (V1-V2) / R (1)
コンクリート構造物中の鋼材に対してコンクリート構造物に設置された陽極材から電流を供給して鋼材の電気防食を行う際に電源として用いられる防食用電池の選択を行う防食用電池の選択方法であって、
前記鋼材へ電流が供給されていない状態で照合電極を基準に鋼材の自然電位を測定する自然電位測定工程と、コンクリート構造物の陽極材が設置される陽極設置領域における電流密度に対する鋼材のインスタントオフ電位を照合電極を基準に測定するインスタントオフ電位測定工程と、前記自然電位と前記インスタントオフ電位との差である分極量として鋼材の電気防食に必要な必要分極量が得られるときの前記電流密度に前記陽極設置領域の面積とを乗ずることで鋼材の電気防食に必要な必要電流を算出する構造物必要電流算出工程と、前記必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量を算出する電池容量算出工程と、前記必要分極量が得られるときのインスタントオフ電位を必要電圧として該必要電圧及び前記電池容量に基づいて防食用電池を選択する電池選択工程とを備えることを特徴とする防食用電池の選択方法。
A method for selecting an anti-corrosion battery that selects an anti-corrosion battery to be used as a power source when an electric current is supplied to the steel material in a concrete structure from an anode material installed in the concrete structure to perform the anti-corrosion of the steel material. There,
A natural potential measuring process for measuring the natural potential of the steel material with reference to the reference electrode in a state where no current is supplied to the steel material, and an instant off of the steel material against the current density in the anode installation region where the anode material of the concrete structure is installed The current density when an electric potential is measured with reference electrode as a reference and the necessary polarization amount necessary for the electric protection of the steel material is obtained as the polarization amount which is a difference between the natural potential and the instant off potential. By multiplying the area of the anode installation area by the required current for the structure to calculate the necessary current necessary for the electrical protection of the steel material, and the current consumption as a current consumption per unit time. A battery capacity calculation step of calculating the battery capacity by multiplying the continuous time and the effective value of the battery; and an instance when the required polarization amount is obtained. Selection method for anticorrosion battery characterized by comprising a Ntoofu potential as required voltage and battery selection step of selecting a sacrificial battery based on the required voltage and the battery capacity.
コンクリート構造物中の鋼材に対してコンクリート構造物に設置された陽極材から電流を供給して鋼材の電気防食を行う際に電源として用いられる防食用電池の選択を行う防食用電池の選択方法であって、
前記鋼材へ電流が供給されていない状態で照合電極を基準に鋼材の自然電位を測定する自然電位測定工程と、鋼材の単位表面積あたりの電流密度に対する鋼材のインスタントオフ電位を照合電極を基準に測定するインスタントオフ電位測定工程と、前記自然電位と前記インスタントオフ電位との差である分極量として鋼材の電気防食に必要な必要分極量が得られるときの前記電流密度に、前記鋼材の表面積とコンクリート構造物の陽極材が設置される陽極設置領域の面積に対する鋼材の表面積の割合を乗ずることで鋼材の電気防食に必要な必要電流を算出する構造物必要電流算出工程と、前記必要電流を単位時間あたりの消費電流として該消費電流に電気防食を継続する時間と電池の実効値とを乗ずることで電池容量を算出する電池容量算出工程と、前記必要分極量が得られるときのインスタントオフ電位を必要電圧として該必要電圧及び前記電池容量に基づいて防食用電池を選択する電池選択工程とを備えることを特徴とする防食用電池の選択方法。
A method for selecting an anti-corrosion battery that selects an anti-corrosion battery to be used as a power source when an electric current is supplied to the steel material in a concrete structure from an anode material installed in the concrete structure to perform the anti-corrosion of the steel material. There,
A self-potential measurement process that measures the natural potential of the steel material with reference to the reference electrode when no current is supplied to the steel material, and an instant-off potential of the steel material relative to the current density per unit surface area of the steel material is measured with reference to the reference electrode And measuring the current density when the necessary polarization amount necessary for the anticorrosion of the steel material is obtained as the polarization amount which is the difference between the natural potential and the instant-off potential, the surface area of the steel material and the concrete Structure required current calculation step for calculating the required current required for the electric protection of the steel by multiplying the ratio of the surface area of the steel to the area of the anode installation area where the anode material of the structure is installed, and the required current per unit time Battery capacity calculation that calculates the battery capacity by multiplying the current consumption by the effective time of the battery and the current consumption time as the current consumption per unit And a battery selection step of selecting an anti-corrosion battery based on the required voltage and the battery capacity using the instant-off potential when the required polarization amount is obtained as a required voltage. Selection method.
JP2015106566A 2015-05-26 2015-05-26 How to select anti-corrosion batteries Active JP6600487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015106566A JP6600487B2 (en) 2015-05-26 2015-05-26 How to select anti-corrosion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015106566A JP6600487B2 (en) 2015-05-26 2015-05-26 How to select anti-corrosion batteries

Publications (2)

Publication Number Publication Date
JP2016216806A JP2016216806A (en) 2016-12-22
JP6600487B2 true JP6600487B2 (en) 2019-10-30

Family

ID=57580058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015106566A Active JP6600487B2 (en) 2015-05-26 2015-05-26 How to select anti-corrosion batteries

Country Status (1)

Country Link
JP (1) JP6600487B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609887A (en) * 1983-06-30 1985-01-18 Tokyo Gas Co Ltd Electrolytic protection method of underground buried material
JPH0615792B2 (en) * 1992-01-31 1994-03-02 欣一 内田 Corrosion protection method for reinforcing bars in reinforced concrete structures and method for detecting corrosion state of reinforcing bars
JPH0790643A (en) * 1993-09-14 1995-04-04 Shiyotsukubeton Japan:Kk Reinforced concrete body with electrolytic protection electrode
US6346188B1 (en) * 2000-03-24 2002-02-12 Enser Corporation Battery-powered cathodic protection system
JP2002030472A (en) * 2000-07-17 2002-01-31 Susumu Yamaguchi Power source device for electric protection of small size water feed pipe
JP6141654B2 (en) * 2013-02-26 2017-06-07 藤森工業株式会社 Anticorrosion structure and anticorrosion method

Also Published As

Publication number Publication date
JP2016216806A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6770046B2 (en) Cathode anticorrosion monitoring probe
JP2007271501A (en) Method of evaluating corrosion protection for coating
US20150198518A1 (en) Cathodic protection reference cell article and method
JP6623329B2 (en) Corrosion sensor
JP6600487B2 (en) How to select anti-corrosion batteries
JP6026055B2 (en) Method for measuring corrosion rate of metal bodies
US20120189425A1 (en) System and method for reducing corrosion in a compressor
US20170328828A1 (en) Electric anticorrosive potential measurement electrode unit
JP2008297600A (en) Electrolytic protection method
JP6532084B2 (en) Soil ventilation evaluation method and soil ventilation measurement apparatus
JP4747084B2 (en) Cathodic protection management method and cathode protection management system
JP4522289B2 (en) Corrosion estimation method
JP5718850B2 (en) Cathodic protection system and cathodic protection method for metal structures
Tan et al. Cathodic protection affected by anodic transients: Critical duration and amplitude
JP2020046440A (en) Soil corrosiveness evaluation device
JP2017179467A (en) Electrical protection structure for reinforced concrete structure and method for measuring effect of the same
JP7261387B2 (en) Coating material for anode material, concrete structure, and cathodic protection method
Wantuch et al. Numerical analysis on cathodic protection of underground structures
JP5424132B2 (en) Electrical protection method
JP3076186B2 (en) Method for measuring surface area of galvanic anode
JP2012158796A (en) Method and device for estimating size of buried electrode for corrosion proof of piping
JP5385319B2 (en) Corrosion location identification method and system
JP2019066300A (en) Method for detecting effects of electrolytic protection
Snow et al. Corrosion Control of Paralleling Bar—Wrapped Concrete Cylinder Pipelines Utilizing an Existing Cathodic Protection System “Two for the Price of One”
JP2006029065A (en) Oceanic steel structure

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R150 Certificate of patent or registration of utility model

Ref document number: 6600487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250