JP3075045B2 - Temperature sensor and temperature measurement structure - Google Patents

Temperature sensor and temperature measurement structure

Info

Publication number
JP3075045B2
JP3075045B2 JP05269483A JP26948393A JP3075045B2 JP 3075045 B2 JP3075045 B2 JP 3075045B2 JP 05269483 A JP05269483 A JP 05269483A JP 26948393 A JP26948393 A JP 26948393A JP 3075045 B2 JP3075045 B2 JP 3075045B2
Authority
JP
Japan
Prior art keywords
receiving plate
heat receiving
holder
temperature measuring
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05269483A
Other languages
Japanese (ja)
Other versions
JPH07100895A (en
Inventor
潔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RKC INSTRUMENT Inc
Original Assignee
RKC INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RKC INSTRUMENT Inc filed Critical RKC INSTRUMENT Inc
Priority to JP05269483A priority Critical patent/JP3075045B2/en
Publication of JPH07100895A publication Critical patent/JPH07100895A/en
Application granted granted Critical
Publication of JP3075045B2 publication Critical patent/JP3075045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は温度センサーおよび温度
測定構造に係り、特に粘性流体や樹脂成形品の温度測定
に好適する温度センサーおよびこれを用いた温度測定構
造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor and a temperature measuring structure, and more particularly to a temperature sensor suitable for measuring the temperature of a viscous fluid or a resin molded product, and an improvement of the temperature measuring structure using the same.

【0002】[0002]

【従来の技術】従来、この種の温度センサーとしては、
熱膨張型、熱電対型、抵抗型、熱放射型等があるが、構
造が簡単で安価であるとの理由から熱電対型や抵抗型の
ものが多用されており、例えば熱電対型の構成は図2に
示すようになっている。この構成は、先端を塞いだステ
ンレス製の細い保護管1内に熱電対線3を挿通してその
先端部5を保護管1の先端内側に接続してなり、この保
護管1を金属製の成形金型7(一部のみ示す)に支持さ
せるとともにその先端を成形金型7のキャビティ9内に
突出させ、被測温体である溶融樹脂11からの熱を保護
管1を介して熱電対線3が受熱し、熱電対3に対する溶
融樹脂11からの負荷圧力や流体混入を保護管1で防ぎ
ながら温度検知する、いわゆるシース型のものである。
2. Description of the Related Art Conventionally, as a temperature sensor of this kind,
There are a thermal expansion type, a thermocouple type, a resistance type, a heat radiation type and the like, but a thermocouple type or a resistance type is frequently used because of its simple structure and low cost. Are as shown in FIG. In this configuration, a thermocouple wire 3 is inserted into a thin protective tube 1 made of stainless steel whose end is closed, and its distal end 5 is connected to the inside of the distal end of the protective tube 1. This protective tube 1 is made of metal. It is supported by a molding die 7 (only a part of which is shown), and its tip is made to protrude into the cavity 9 of the molding die 7, and heat from the molten resin 11, which is a temperature measuring object, is passed through the protective tube 1 through a thermocouple. The sheath 3 is of a so-called sheath type in which the wire 3 receives heat and detects the temperature while preventing the load pressure and the fluid from being applied to the thermocouple 3 from the molten resin 11 by the protective tube 1.

【0003】ところが、この構成では、熱伝導率の大き
い保護管1が成形金型7に支持されているから、保護管
1を介して成形金型7へリークする熱量が大きく、正確
に温度測定するためにはそのリーク熱量以上に保護管1
で受熱する必要があり、保護管1の外径を広げたり突出
長を長くして溶融樹脂11と保護管1の接触面積を広く
する必要がある。例えば、外径1mm程度の保護管1を
用いた場合、それを10mm以上も成形金型7から突出
させる必要がある。そのため、溶融樹脂11の樹脂圧に
よって保護管1が曲がり易くなるし、シート状の薄い成
形品を成形する成形金型7ではキャビティ9が偏平にな
って保護管1の先端が対面する成形金型7部分にぶつか
って使用できなくなるとか、樹脂成形品の固化後に保護
管1の跡が穴となって残り易い等の欠点があった。
However, in this configuration, since the protective tube 1 having a large thermal conductivity is supported by the molding die 7, the amount of heat leaking to the molding die 7 through the protective tube 1 is large, and the temperature can be accurately measured. In order to achieve this, the protection tube 1
Therefore, it is necessary to increase the outer diameter of the protective tube 1 or increase the protruding length to increase the contact area between the molten resin 11 and the protective tube 1. For example, when the protective tube 1 having an outer diameter of about 1 mm is used, it is necessary to protrude the protective tube 1 by more than 10 mm from the molding die 7. Therefore, the protective tube 1 is easily bent by the resin pressure of the molten resin 11, and the molding die 7 for molding a sheet-like thin molded product has a flat cavity 9 so that the tip of the protective tube 1 faces the molding die. There were drawbacks, such as being unable to be used due to collision with the seven portions, and the traces of the protective tube 1 becoming holes after the solidification of the resin molded product, and tending to remain.

【0004】このような欠点を解消するために、図3に
示すような温度センサーも提案されている。すなわち、
細い保護管13の先端開放部にステンレス製の受熱板1
5を冠着し、保護管13内に挿通した熱電対線17の先
端部19を受熱板15の裏面に接続し、受熱板15の外
表面を成形金型21(一部のみ示す)のキャビティ面2
3に揃えるにようにしてその保護管13を受熱板15ご
と成形金型21に固定し、そのキャビティ面23をフラ
ットにするとともに受熱面積を低下させないようにした
ものである。
[0004] In order to solve such a drawback, a temperature sensor as shown in FIG. 3 has also been proposed. That is,
Heat-receiving plate 1 made of stainless steel at the open end of thin protective tube 13
5, the distal end 19 of the thermocouple wire 17 inserted into the protective tube 13 is connected to the back surface of the heat receiving plate 15, and the outer surface of the heat receiving plate 15 is formed in a cavity of a molding die 21 (only a part is shown). Face 2
3, the protective tube 13 is fixed to the molding die 21 together with the heat receiving plate 15 so that the cavity surface 23 is flat and the heat receiving area is not reduced.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た図3の構成では、受熱板15の周囲が成形金型21に
接しているから、依然としてリーク熱量が大きいと言う
欠点が残り、特に熱容量が小さく温度変化が速い溶融樹
脂や油等の液体(図3では図示せず)の温度を正確に測
定することが困難であった。本発明は上述した欠点を解
決するためになされたもので、溶融樹脂等の被測温体に
対して平坦な接触面が得られ、リーク熱量を小さく抑え
ることが容易で測定精度を向上させた温度センサーおよ
び温度測定構造の提供を目的とする。
However, in the configuration of FIG. 3 described above, since the periphery of the heat receiving plate 15 is in contact with the molding die 21, the disadvantage that the amount of leaked heat is still large remains, and the heat capacity is particularly small. It has been difficult to accurately measure the temperature of a liquid (not shown in FIG. 3) such as a molten resin or oil that changes rapidly. The present invention has been made in order to solve the above-mentioned drawbacks, and a flat contact surface has been obtained with respect to a temperature measuring object such as a molten resin. It is intended to provide a temperature sensor and a temperature measurement structure.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るために本発明の温度センサーは、被測温体に接触する
金属製の受熱板と、この受熱板より小さい熱伝導率の無
機材料から貫通孔を有してなるホルダーであって、その
貫通孔を塞ぎその受熱板の周縁を囲むようにしてその被
測温体との接触面側でその受熱板を支持固定し、その接
触面を受熱板のそれに揃えたホルダーと、その貫通孔に
相当するその受熱板の裏面に接続されその貫通孔を介し
て導出した測温体とを具備している。
In order to solve the above-mentioned problems, a temperature sensor according to the present invention comprises a metal heat-receiving plate in contact with a temperature measuring object, and an inorganic material having a lower thermal conductivity than the heat-receiving plate. A holder having a through hole from which the heat receiving plate is supported and fixed on the contact surface side with the temperature measuring object so as to close the through hole and surround the periphery of the heat receiving plate, and receive the contact surface with heat. It has a holder aligned with that of the plate, and a temperature measuring element connected to the back surface of the heat receiving plate corresponding to the through hole and led out through the through hole.

【0007】また、本発明の温度測定構造は、被測温体
が接触する接触基体と、その被測温体に接触する金属製
受熱板と、この受熱板より小さい熱伝導率の無機材料か
ら貫通孔を有してなりその接触基体に支持されたホルダ
ーであって、その貫通孔を塞ぎその受熱板の周縁を囲む
ようにしてその被測温体との接触面側でその受熱板を支
持固定したホルダーと、その貫通孔に相当する受熱板の
裏面に接続されその貫通孔を介して導出された測温体と
を具備し、それら受熱板、ホルダーおよび接触基体の上
記被測温体との接触面を揃えて構成している。そして、
それら温度センサーおよび温度測定構造において、上記
受熱板はホルダーに耐熱性無機接着剤で固定したり、上
記受熱板およびホルダー間における被測温体に面する部
分を上記接着剤で埋めてそれら受熱板およびホルダー間
を平に形成すると良い。
Further, the temperature measuring structure of the present invention comprises a contact base to be contacted by a temperature measuring object, a metal heat receiving plate in contact with the temperature measuring object, and an inorganic material having a lower thermal conductivity than the heat receiving plate. A holder having a through hole and supported by the contact base, wherein the heat receiving plate is supported and fixed on the contact surface side with the temperature measuring object so as to close the through hole and surround the periphery of the heat receiving plate. A holder, and a temperature measuring element connected to the back surface of the heat receiving plate corresponding to the through hole and drawn out through the through hole, and the heat receiving plate, the holder and the contact base contact the temperature measuring object. The surface is aligned. And
In the temperature sensor and the temperature measurement structure, the heat receiving plate is fixed to the holder with a heat-resistant inorganic adhesive, or a portion of the heat receiving plate and the holder facing the body to be measured with the adhesive is filled with the heat receiving plate. It is preferable to form the gap between the holder and the holder flat.

【0008】[0008]

【作用】このような手段を備えた本発明に係る温度セン
サーでは、受熱板を支持固定するホルダーがその受熱板
の熱伝導率より小さい無機材料から形成され、受熱板の
周囲にその熱伝導率より小さいホルダーが位置している
から、その受熱板からホルダーを介してリークする熱量
が抑えられ、被測温体の温度変化が正確に測温体に伝わ
るし、被測温体との接触面が平になる。また、本発明に
係る温度測定構造では、その受熱板からホルダーを介し
て接触基体にリークする熱量が抑えられ、被測温体の温
度変化が正確に測温体へ伝わるし、それら受熱板、ホル
ダーおよび接触基体の上記被測温体との接触面が平にな
る。
In the temperature sensor according to the present invention provided with such means, the holder for supporting and fixing the heat receiving plate is formed of an inorganic material having a smaller thermal conductivity than that of the heat receiving plate. Since the smaller holder is located, the amount of heat leaking from the heat receiving plate through the holder is suppressed, the temperature change of the temperature measuring object is accurately transmitted to the temperature measuring body, and the contact surface with the temperature measuring object Becomes flat. Further, in the temperature measurement structure according to the present invention, the amount of heat leaking from the heat receiving plate to the contact base via the holder is suppressed, and the temperature change of the temperature measuring object is accurately transmitted to the temperature measuring body. The contact surfaces of the holder and the contact base with the temperature measuring object become flat.

【0009】そして、それら温度センサーおよび温度測
定構造において、上記受熱板を耐熱性無機接着剤でホル
ダーに固定する構成では、接着剤についても熱伝導率が
小さくなるとともに、十分な耐熱性や、セラミックスに
近い耐磨耗性および強度が得られる。さらに、上記被測
温体との接触面における受熱板およびホルダー間をその
接着剤で埋める構成では、作成上からそれら受熱板およ
びホルダー間に隙間が生じても被測温体との接触面が平
となる。
In the temperature sensor and the temperature measurement structure, in the configuration in which the heat receiving plate is fixed to the holder with a heat resistant inorganic adhesive, the heat conductivity of the adhesive is reduced, and the heat receiving plate has sufficient heat resistance and ceramics. Abrasion resistance and strength close to Further, in the configuration in which the space between the heat receiving plate and the holder at the contact surface with the temperature measuring object is filled with the adhesive, even if a gap is generated between the heat receiving plate and the holder from the point of creation, the contact surface with the temperature measuring object is not changed. Become flat.

【0010】[0010]

【実施例】以下本発明の実施例を図面を参照して説明す
る。第1図は本発明に係る温度センサーおよび温度測定
構造の一実施例を示す断面図であり、便宜上温度測定構
造を説明する過程で温度センサーを合わせて説明する。
第1図において、通常の成形金型等を形成するような金
属材料からなる可動側背板25には挿通孔27が形成さ
れており、貫通孔29を有する筒型のホルダー31がそ
の挿通孔27に貫通孔29を連通させた状態で可動側背
板25に重ねられている。ホルダー31は、基部外周に
形成したフランジ33を可動側背板25に当接させてお
り、可動側背板25とは反対側の先端面(図1中上側)
には貫通孔29を同心円状に囲む凹溝35が形成され、
可動側背板25とは反対側の先端面より若干内側に窪ん
だ凸部37が貫通孔29に臨むように形成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of a temperature sensor and a temperature measuring structure according to the present invention. For convenience, the temperature sensor will be described in the process of explaining the temperature measuring structure.
In FIG. 1, an insertion hole 27 is formed in a movable back plate 25 made of a metal material that forms a normal molding die or the like, and a cylindrical holder 31 having a through hole 29 is inserted into the insertion hole 27. 27 is overlapped on the movable side back plate 25 in a state where the through hole 29 communicates with 27. The holder 31 has a flange 33 formed on the outer periphery of the base in contact with the movable back plate 25, and a distal end surface opposite to the movable back plate 25 (upper side in FIG. 1).
Is formed with a concave groove 35 concentrically surrounding the through hole 29,
A convex portion 37 which is slightly inwardly recessed from the distal end surface opposite to the movable side back plate 25 is formed so as to face the through hole 29.

【0011】ホルダー31の貫通孔29は、可動側背板
25の挿通孔27と同じ内径で連通するとともに途中で
小径となって可動側背板25とは反対側の先端面まで延
びており、凹溝35には偏平な円形キャップ状の受熱板
39が遊びを持ってはめられ、受熱板39の少なくとも
裏面がホルダー31によって支持されている。この受熱
板39は、後述する溶融樹脂41の負荷圧力によって容
易に変形しないようになっており、その溶融樹脂41が
貫通孔29内へ混入するのを防いでいる。なお、受熱板
39の形状は円形キャップ状に限定されず、例えば単純
な平板等でもよい。受熱板39は、熱伝導率が良好で温
度変化を敏感に伝える硬い金属材料、例えば0.1mm
〜0.3mm程度の厚さで、ロックウェル硬さ(HR
C)60程度の硬さのステンレス板を屈曲成形加工して
形成されている。
The through hole 29 of the holder 31 communicates with the same inner diameter as the insertion hole 27 of the movable back plate 25, and has a small diameter in the middle and extends to the tip end surface opposite to the movable back plate 25. A flat circular cap-shaped heat receiving plate 39 is fitted in the concave groove 35 with play, and at least the back surface of the heat receiving plate 39 is supported by the holder 31. The heat receiving plate 39 is not easily deformed by the load pressure of the molten resin 41 described later, and prevents the molten resin 41 from being mixed into the through hole 29. The shape of the heat receiving plate 39 is not limited to the circular cap shape, and may be, for example, a simple flat plate. The heat receiving plate 39 is made of a hard metal material having good thermal conductivity and transmitting a temperature change sensitively, for example, 0.1 mm.
Rockwell hardness (HR)
C) It is formed by bending a stainless steel plate having a hardness of about 60.

【0012】また、受熱板39を支持する上述したホル
ダー31は、受熱板39の材料より熱伝導率が少なくと
も0.01(cal/cm・sec・℃)以下の加工容
易な材料、例えばマシーナブルセラミックス、ジルコニ
ア、ガラス又は水晶等の無機絶縁材料を成形加工して形
成されている。すなわち、受熱板39よりホルダー31
の熱伝導率が大幅に小さくなっている。受熱板39の側
壁43には、小孔45が周方向に間隔を置いて複数個貫
通形成されており、ホルダー31の凹溝35に満たされ
た耐熱性接着剤47によって受熱板39が貫通孔29を
塞ぐようにしてホルダー31に固着されるとともに、ホ
ルダー31の先端面および受熱板39の外表面が同一平
面上に位置している。
The holder 31 for supporting the heat receiving plate 39 is made of a material having a thermal conductivity of at least 0.01 (cal / cm · sec · ° C.) or less than the material of the heat receiving plate 39, such as a machineable material. It is formed by processing an inorganic insulating material such as ceramics, zirconia, glass or quartz. That is, the holder 31 is moved from the heat receiving plate 39.
Has a significantly lower thermal conductivity. A plurality of small holes 45 are formed in the side wall 43 of the heat receiving plate 39 at intervals in the circumferential direction, and the heat receiving plate 39 is formed by the heat resistant adhesive 47 filled in the concave groove 35 of the holder 31. 29 is fixed to the holder 31 so as to close it, and the front end surface of the holder 31 and the outer surface of the heat receiving plate 39 are located on the same plane.

【0013】接着剤47は、所定温度例えば150℃以
上でセラミック化する液体又は流体状の無機材料からな
る装着手段であり、受熱板39の側壁43に設けた小孔
45にも流れて受熱板39のホルダー31による支持固
定を確実にしている。さらに、接着剤47は、ホルダー
31の先端面側において、ホルダー31と受熱板39の
周囲間に充填されて隙間の発生をさせず、凹凸を形成し
ないように平にしている。可動側背板25の挿通孔27
およびホルダー31の貫通孔29には、その途中までス
テンレスからなる保護管49が挿入されている。この保
護管49には測温体としての熱電対線51が挿通されて
受熱板39の内面まで延び、熱電対線51の先端部が受
熱板39の裏面における貫通孔29に相当する領域で溶
接等によって接続されている。
The adhesive 47 is a mounting means made of a liquid or fluid inorganic material which is turned into a ceramic at a predetermined temperature of, for example, 150 ° C. or more. The adhesive 47 also flows through the small holes 45 provided on the side walls 43 of the heat receiving plate 39 to flow therethrough. The support and fixing by the holder 31 of 39 are ensured. Further, the adhesive 47 is filled between the periphery of the holder 31 and the heat receiving plate 39 on the distal end surface side of the holder 31 so as not to generate a gap and to be flat so as not to form irregularities. Insertion hole 27 of movable back plate 25
A protective tube 49 made of stainless steel is inserted halfway into the through hole 29 of the holder 31. A thermocouple wire 51 as a temperature measuring element is inserted into the protective tube 49 and extends to the inner surface of the heat receiving plate 39, and the distal end of the thermocouple wire 51 is welded in a region corresponding to the through hole 29 on the back surface of the heat receiving plate 39. And so on.

【0014】保護管49およびこれから延びる挿通孔2
7の小径部には、受熱板39の裏面まで絶縁材料例えば
酸化マグネシウムやアルミナの粉末が充填されている。
測温体としては、熱電対線51以外に微小抵抗体もしく
は薄膜状の抵抗体等を用いることが可能であり、受熱板
39の裏面に接続されたそれら微小抵抗体や薄膜状抵抗
体からのリード線を保護管49を介して外部へ導出し、
図示しない変換器や温度調節計等に接続することも可能
である。ホルダー31の周囲は、可動側背板25に重ね
るようにして可動側型板53がはめられている。この可
動側型板53は、従来公知の金型用金属材料、例えばS
45C鉄鋼等によって形成されており、図中上面は上述
したホルダー31の先端面および受熱板39の外表面と
ともに同一平面上に位置しており、更に同様な金属材料
等によって形成された固定側型板55が重ねられ、これ
ら可動側型板53および55によって樹脂成形用のキャ
ビティ57が形成されている。
Protective tube 49 and insertion hole 2 extending therefrom
The small-diameter portion 7 is filled with an insulating material such as magnesium oxide or alumina powder up to the back surface of the heat receiving plate 39.
As the temperature measuring element, a minute resistor or a thin film resistor other than the thermocouple wire 51 can be used, and the minute resistor or the thin film resistor connected to the back surface of the heat receiving plate 39 can be used. The lead wire is led out through the protection tube 49,
It is also possible to connect to a converter (not shown) or a temperature controller. A movable mold plate 53 is fitted around the holder 31 so as to overlap the movable back plate 25. The movable mold plate 53 is made of a conventionally known metal material for a mold, for example, S
The upper surface in the figure is located on the same plane as the above-mentioned tip surface of the holder 31 and the outer surface of the heat receiving plate 39, and a fixed side die made of a similar metal material or the like. The plates 55 are stacked, and the movable mold plates 53 and 55 form a cavity 57 for resin molding.

【0015】もっとも、可動側型板53および55とと
もにホルダー31の先端面および受熱板39の外表面も
キャビティ面59を形成している。なお、ホルダー31
は、実施例の可動側背板25による固定以外に、図示は
しないが通常のねじやコンプレッションフィッティング
と呼ばれる特殊ねじによって可動側背板25に固定され
るが、固定構造はこれ以外に種々の方法があることは言
うまでもない。このような構成の温度測定構造におい
て、キャビティ57内に溶融樹脂41を流し込めば、溶
融樹脂41がキャビティ57の形状に応じた外形に成形
されるし、溶融樹脂41の熱がこれに接触する受熱板3
9を介して熱電対線51に伝えられ、温度測定される。
However, the cavity surface 59 is formed on the distal end surface of the holder 31 and the outer surface of the heat receiving plate 39 together with the movable mold plates 53 and 55. The holder 31
Is fixed to the movable back plate 25 by ordinary screws (not shown) or special screws called compression fittings (not shown), in addition to the fixing by the movable back plate 25 of the embodiment. Needless to say, there is. In the temperature measurement structure having such a configuration, when the molten resin 41 is poured into the cavity 57, the molten resin 41 is formed into an outer shape according to the shape of the cavity 57, and the heat of the molten resin 41 comes into contact with the molten resin 41. Heat receiving plate 3
The temperature is transmitted to the thermocouple wire 51 via the line 9 and the temperature is measured.

【0016】このように本発明では、金属製の受熱板3
9をこれより熱伝導率の大幅に小さいホルダー31でそ
の周縁を囲むように支持固定してホルダー31の貫通孔
29をその受熱板39で塞ぎ、この受熱板39に接続し
た熱電対線51をホルダー31の貫通孔29を介して外
部へ導出するとともに、溶融樹脂41に対するそれら受
熱板39およびホルダー31の接触面を揃えて温度セン
サーを構成したから、熱伝導率の大きい受熱板39の周
囲がこれより熱伝導率の小さいホルダー31に囲まれる
ように支持され、受熱板39で受けた熱が周囲の部材に
リークするのを抑えることができるうえ、受熱領域も大
きく維持できる。そのため、溶融樹脂41の温度変化に
追従して熱が熱電対線51に速やかに伝導され、熱容量
が小さく温度変化が速い溶融樹脂41の温度測定が正確
になるし、溶融樹脂41との接触面が平であるから成形
品の外形形状を阻害することがないうえ、構造も簡単で
ある。
As described above, according to the present invention, the heat receiving plate 3 made of metal is used.
9 is supported and fixed by a holder 31 having a significantly lower thermal conductivity so as to surround the periphery thereof, the through hole 29 of the holder 31 is closed by the heat receiving plate 39, and a thermocouple wire 51 connected to the heat receiving plate 39 is connected. Since the temperature sensor is configured to be led out to the outside through the through hole 29 of the holder 31 and the contact surfaces of the heat receiving plate 39 and the holder 31 with the molten resin 41 are aligned, the periphery of the heat receiving plate 39 having a large thermal conductivity is reduced. Thus, the heat receiving plate 39 is supported so as to be surrounded by the holder 31 having a small thermal conductivity, so that the heat received by the heat receiving plate 39 can be prevented from leaking to surrounding members, and the heat receiving area can be largely maintained. Therefore, the heat is quickly conducted to the thermocouple wire 51 following the temperature change of the molten resin 41, and the temperature measurement of the molten resin 41 having a small heat capacity and a fast temperature change becomes accurate. The flat shape does not hinder the external shape of the molded product, and the structure is simple.

【0017】そして、ホルダー31を介してリークされ
る熱量を小さく抑える観点から、ホルダー31の熱伝導
率が受熱板39のそれよりも1/8、好ましくは約1/
10よりも小さくなる材料を選定すると良いであろう。
また、本発明では、上述した温度センサーを用い、受熱
板39およびホルダー31の溶融樹脂41との接触面に
対し、可動側型板53のキャビティ面59も揃えて温度
測定構造を構成したから、例えば可動側型板53におい
てキャビティ面59が平になり、成形品の外形形状品位
を高く維持した状態で正確な温度測定できる。さらに、
受熱板39を耐熱性接着剤47によってホルダー31に
固定したから、数百℃の高温測定も可能となるし、耐熱
性接着剤47によって受熱板39の周囲とホルダー31
間を埋めて溶融樹脂41に対して平なキャビティ面59
としたから、成形品の外形品位を一層向上させることが
できる。
From the viewpoint of minimizing the amount of heat leaked through the holder 31, the thermal conductivity of the holder 31 is one-eighth that of the heat receiving plate 39, preferably about 1 /
It would be better to select a material that is smaller than 10.
Further, in the present invention, the temperature measurement structure is configured by using the above-described temperature sensor and aligning the cavity surface 59 of the movable mold plate 53 with the contact surface between the heat receiving plate 39 and the molten resin 41 of the holder 31. For example, the cavity surface 59 of the movable mold plate 53 becomes flat, and accurate temperature measurement can be performed in a state where the outer shape and quality of the molded product are maintained high. further,
Since the heat receiving plate 39 is fixed to the holder 31 with the heat-resistant adhesive 47, it is possible to measure a high temperature of several hundred degrees Celsius.
Filling the gap and flattening the cavity surface 59 against the molten resin 41
Therefore, the external quality of the molded product can be further improved.

【0018】しかも、無機材料からなる接着剤47は、
接着性が高く、熱伝導率が低く、耐熱温度が1000℃
程度と高く、金属材料に近い熱膨張率を有するうえ、耐
磨耗性も良好であるから、成形品を取り出す際に樹脂等
の剥離力が接着剤47へ働いてもこれが剥がれ難いし、
リークする熱量を小さくすることが可能であるうえ、P
PS(ポリフェニレンサルファイド)のようなガラス入
り成形材料を含む溶融樹脂41を成形する場合に、溶融
樹脂41によって接着剤47が削られ難い。なお、接着
剤47は耐熱性が良好であれば良く、耐熱300℃ぐら
いのものであれば、耐熱性無機材料以外にエポキシ系接
着剤のような有機接着剤等の使用が実用上可能である。
そして、ホルダー31をマシーナブルセラミックスを用
いて形成すると、ホルダー31の外形形状、特に角部を
正確に成形できるから、例えばホルダー31と可動側型
板53との接触部に隙間等が生じ難くなり、成形品にバ
リがなくなる利点がある。
Moreover, the adhesive 47 made of an inorganic material is
High adhesion, low thermal conductivity, heat resistant temperature of 1000 ° C
It has a high degree of thermal expansion close to that of a metal material, and also has good abrasion resistance. Therefore, even when a peeling force of a resin or the like acts on the adhesive 47 when a molded product is taken out, it is difficult to be peeled off.
It is possible to reduce the amount of heat leaked,
When the molten resin 41 containing a glass-containing molding material such as PS (polyphenylene sulfide) is formed, the adhesive 47 is not easily removed by the molten resin 41. Note that the adhesive 47 only needs to have good heat resistance, and if it has a heat resistance of about 300 ° C., it is practically possible to use an organic adhesive such as an epoxy adhesive other than the heat-resistant inorganic material. .
When the holder 31 is formed using machineable ceramics, the outer shape of the holder 31, particularly the corners, can be accurately formed. Therefore, for example, a gap or the like is less likely to be formed at a contact portion between the holder 31 and the movable mold plate 53. There is an advantage that burrs are eliminated from the molded product.

【0019】上述した実施例では、本発明の温度センサ
ーを可動側型板53に組込んで温度測定構造を構成した
が、本発明ではこれに限定されない。図示はしないが、
例えば押出機におけるシリンダ部に本発明の温度センサ
ーを配置して温度測定構造を構成することも可能であ
る。要は、成形樹脂に接触する接触基体に温度センサー
のホルダーを固定させるとともに、受熱板と成形樹脂と
の接触面、受熱板を支持しこの周囲で成形樹脂と接触す
るホルダーの接触面、並びに接触基体における樹脂との
接触面を同一面上に位置させれば、本発明の目的達成が
可能である。さらに、本発明の実施に当っては、溶融樹
脂に限らず、種々の流体、更には固体等の被測温体の温
度測定にも応用可能である。さらにまた、上述した図1
の可動側型板53および固定側型板55は可動側および
固定側を入替えて実施可能である。
In the above-described embodiment, the temperature sensor of the present invention is incorporated in the movable mold plate 53 to form a temperature measuring structure. However, the present invention is not limited to this. Although not shown,
For example, it is possible to arrange the temperature sensor of the present invention in a cylinder part of an extruder to form a temperature measurement structure. The point is that the temperature sensor holder is fixed to the contact base that contacts the molding resin, the contact surface between the heat receiving plate and the molding resin, the contact surface of the holder that supports the heat receiving plate and contacts the molding resin around it, and the contact The object of the present invention can be achieved if the contact surface of the substrate with the resin is located on the same surface. Further, in the embodiment of the present invention, the present invention can be applied not only to the molten resin but also to the measurement of the temperature of a temperature measuring object such as various fluids and solids. Furthermore, FIG.
The movable mold plate 53 and the fixed mold plate 55 can be implemented by exchanging the movable side and the fixed side.

【0020】[0020]

【発明の効果】以上説明したように本発明の温度センサ
ーは、被測温体に接触する金属製の受熱板と、この受熱
板より小さい熱伝導率の無機材料から貫通孔を有してな
るホルダーとを有し、その受熱板における被測温体との
接触面に当該表面を合わせてその周縁を囲むとともにそ
の貫通孔を塞ぐように受熱板をそのホルダーで支持固定
し、その受熱板の裏面に接続した測温体をその貫通孔か
ら導出する構成としたから、受熱板からのリーク熱量が
少なくなって温度変化が測温体へ速やかに伝わり、被測
温体の温度変化に対して正確な温度測定が可能となる
し、被測温体の外形表面品位を維持することができるう
え、受熱面積も大きく維持できる。そのため、本発明
は、特に熱容量が小さく温度変化が速い被測温体(被測
定物)の温度測定に好適する。また、本発明では、上述
した温度センサーのホルダーを接触基体で支持固定する
とともに、それら受熱板、ホルダーおよび接触基体の被
測温体に対する接触面を同一面に揃えて温度測定構造を
構成したから、接触基体例えば成形金型において被測温
体の外形表面品位を維持した状態で正確な温度測定がで
きる。そして、それら温度センサーおよび温度測定構造
において、上記受熱板をホルダーに耐熱性無機接着剤で
固定する構成では、十分な耐熱性が得られ、セラミック
スに近い耐磨耗性および強度が得られる等の利点があ
る。さらに、上記被測温体との接触面におけるそれら受
熱板およびホルダー間をその接着剤で埋める構成では、
被測温体の外形表面品位を一層向上させることができ
る。
As described above, the temperature sensor of the present invention has a metal heat-receiving plate in contact with a temperature measuring object and a through-hole made of an inorganic material having a thermal conductivity smaller than that of the heat-receiving plate. Having a holder, and supporting and fixing the heat receiving plate with the holder so as to surround the peripheral edge of the heat receiving plate so as to cover the through-hole while contacting the surface with the contact surface of the heat receiving plate with the temperature measuring object. Because the temperature measuring element connected to the back side is configured to be led out from the through hole, the amount of heat leaked from the heat receiving plate decreases, and the temperature change is quickly transmitted to the temperature measuring element. Accurate temperature measurement is possible, the quality of the outer surface of the temperature measuring object can be maintained, and a large heat receiving area can be maintained. Therefore, the present invention is particularly suitable for temperature measurement of a temperature measuring object (measurement object) having a small heat capacity and a rapid temperature change. Further, in the present invention, the temperature measurement structure is configured by fixing and holding the holder of the above-mentioned temperature sensor with the contact base and aligning the contact surfaces of the heat receiving plate, the holder and the contact base with the temperature measuring object on the same plane. In addition, accurate temperature measurement can be performed while maintaining the external surface quality of the temperature measuring object in a contact substrate, for example, a molding die. In the temperature sensor and the temperature measurement structure, in the configuration in which the heat receiving plate is fixed to the holder with a heat-resistant inorganic adhesive, sufficient heat resistance is obtained, and abrasion resistance and strength close to ceramics are obtained. There are advantages. Further, in the configuration in which the space between the heat receiving plate and the holder on the contact surface with the temperature measuring object is filled with the adhesive,
The external surface quality of the temperature measuring object can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の温度センサーおよび温度測定構造の一
実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing one embodiment of a temperature sensor and a temperature measurement structure of the present invention.

【図2】従来の温度センサーを示す断面図である。FIG. 2 is a sectional view showing a conventional temperature sensor.

【図3】従来の温度センサーの別の構成を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing another configuration of a conventional temperature sensor.

【符号の説明】[Explanation of symbols]

1、13、49 保護管 3、17、51 熱電対線(測温体) 5、19 先端部 7、21 成形金型 9、57 キャビティ 11、41 溶融樹脂(被測温体) 15、39 受熱板 23、59 キャビティ面 25 可動側背板 27 挿通孔 29 貫通孔 31 ホルダー 33 フランジ 35 凹溝 37 凸部 43 側壁 45 小孔 47 接着剤 53 可動側型板(接触基体) 55 固定側型板(接触基体) 1, 13, 49 Protective tube 3, 17, 51 Thermocouple wire (temperature measuring element) 5, 19 Tip 7, 21 Mold 9, 57 Cavity 11, 41 Molten resin (temperature measuring object) 15, 39 Heat receiving Plates 23, 59 Cavity surface 25 Movable back plate 27 Insertion hole 29 Through hole 31 Holder 33 Flange 35 Recessed groove 37 Convex portion 43 Side wall 45 Small hole 47 Adhesive 53 Movable mold plate (contact base) 55 Fixed mold plate ( Contact substrate)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被測温体に接触する金属製受熱板と、 この受熱板より小さい熱伝導率の無機材料から貫通孔を
有して形成されたホルダーであって、前記貫通孔を塞ぎ
前記受熱板の周縁を囲むようにして前記被測温体との接
触面側で前記受熱板を支持固定し、当該接触面を前記受
熱板の接触面に揃えてなるホルダーと、 前記貫通孔に相当する前記受熱板の裏面に接続され前記
貫通孔を介して導出された測温体と、 を具備することを特徴とする温度センサー。
1. A holder having a metal heat receiving plate in contact with a temperature measuring object and having a through hole made of an inorganic material having a thermal conductivity smaller than that of the heat receiving plate. A holder configured to support and fix the heat receiving plate on the contact surface side with the temperature measuring object so as to surround the periphery of the heat receiving plate, and to align the contact surface with the contact surface of the heat receiving plate; A temperature sensor connected to the back surface of the heat receiving plate and led out through the through hole.
【請求項2】 前記受熱板は前記ホルダーに耐熱性無機
接着剤で固定された請求項1記載の温度センサー。
2. The temperature sensor according to claim 1, wherein the heat receiving plate is fixed to the holder with a heat-resistant inorganic adhesive.
【請求項3】 前記受熱板およびホルダー間における前
記被測温体に面する部分が前記接着剤で埋められて平に
形成されてなる請求項2記載の温度センサー。
3. The temperature sensor according to claim 2, wherein a portion facing the temperature measuring object between the heat receiving plate and the holder is buried with the adhesive to be formed flat.
【請求項4】 被測温体が接触する接触基体と、 前記被測温体に接触する金属製受熱板と、 この受熱板より小さい熱伝導率の無機材料から貫通孔を
有して形成され前記接触基体に支持されたホルダーであ
って、前記貫通孔を塞ぎ前記受熱板の周縁を囲むように
して前記被測温体との接触面側で前記受熱板を支持固定
したホルダーと、 前記貫通孔に相当する前記受熱板の裏面に接続され前記
貫通孔を介して導出された測温体と、 を具備してなる温度測定構造であり、 前記受熱板、ホルダーおよび接触基体の前記被測温体と
の接触面を揃えてなることを特徴とする温度測定構造。
4. A contact base with which a temperature measuring object contacts, a metal heat receiving plate contacting with the temperature measuring object, and a through hole formed of an inorganic material having a thermal conductivity smaller than that of the heat receiving plate. A holder supported by the contact base, the holder supporting and fixing the heat receiving plate on the contact surface side with the temperature measuring object so as to close the through hole and surround the periphery of the heat receiving plate; A temperature measuring element connected to the corresponding back surface of the heat receiving plate and led out through the through-hole, and a temperature measuring structure comprising: the heat receiving plate, a holder and a temperature measuring body of a contact base. A temperature measuring structure characterized by having contact surfaces of the same.
【請求項5】 前記受熱板は前記ホルダーに耐熱性無機
接着剤で固定されてなる請求項4記載の温度測定構造。
5. The temperature measuring structure according to claim 4, wherein the heat receiving plate is fixed to the holder with a heat-resistant inorganic adhesive.
【請求項6】 前記受熱板およびホルダー間における前
記被測温体に面する部分が前記接着剤で埋められて平に
形成されてなる請求項5記載の温度センサー。
6. The temperature sensor according to claim 5, wherein a portion facing the temperature measuring body between the heat receiving plate and the holder is buried with the adhesive to be formed flat.
JP05269483A 1993-10-04 1993-10-04 Temperature sensor and temperature measurement structure Expired - Fee Related JP3075045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05269483A JP3075045B2 (en) 1993-10-04 1993-10-04 Temperature sensor and temperature measurement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05269483A JP3075045B2 (en) 1993-10-04 1993-10-04 Temperature sensor and temperature measurement structure

Publications (2)

Publication Number Publication Date
JPH07100895A JPH07100895A (en) 1995-04-18
JP3075045B2 true JP3075045B2 (en) 2000-08-07

Family

ID=17473076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05269483A Expired - Fee Related JP3075045B2 (en) 1993-10-04 1993-10-04 Temperature sensor and temperature measurement structure

Country Status (1)

Country Link
JP (1) JP3075045B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201387B2 (en) * 2007-09-21 2013-06-05 Semitec株式会社 Temperature sensor
JP5402512B2 (en) * 2009-10-19 2014-01-29 新日鐵住金株式会社 Hot stamping mold
JP5503717B1 (en) * 2012-11-30 2014-05-28 双葉電子工業株式会社 Temperature detector, temperature sensor, and method of manufacturing temperature detector
JP2014142195A (en) * 2013-01-22 2014-08-07 Mitsubishi Cable Ind Ltd Temperature sensor
JP2014142188A (en) * 2013-01-22 2014-08-07 Mitsubishi Cable Ind Ltd Temperature sensor
CN104359583B (en) * 2014-08-21 2018-05-25 深圳市敏杰电子科技有限公司 Thermal radiation resistant NTC temperature sensors
CN106500861B (en) * 2016-10-28 2019-05-14 北京北方华创微电子装备有限公司 A kind of thermocouple fixing device for installing of Equipment for Heating Processing

Also Published As

Publication number Publication date
JPH07100895A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
JPH07307479A (en) Semiconductor chip and pressure sensor with its chip
CA2819757C (en) Protective tube inner part for a thermometer with a protective tube
JP6895289B2 (en) Pressure sensor
JPH09119880A (en) Pressure sensor
JP3075045B2 (en) Temperature sensor and temperature measurement structure
KR20020044152A (en) Capacitive pressure sensor
US11913840B2 (en) Measuring insert having a protective tube
WO2004104541A1 (en) Pressure sensor capsule
JPH0545886B2 (en)
US4238957A (en) Pyrometric sheath and process
US6450038B1 (en) High-precision pressure sensor
KR20030040387A (en) Improved capacitive based pressure sensor design
JP3077531B2 (en) Temperature sensor and temperature measurement structure
JP7309744B2 (en) Temperature probe with thermal insulation
JP2005055313A (en) Semiconductor pressure sensor apparatus
JP3077556B2 (en) Temperature sensor and temperature measurement structure
JP5373658B2 (en) Pressure sensor
JPH0854291A (en) Temperature measuring apparatus
JP2955930B1 (en) Wafer having temperature detecting element
JPH11351977A (en) Temperature and pressure composite sensor
JPH07159248A (en) Contact type temperature detector
CN220018741U (en) High-precision thermistor sensor
CN218240084U (en) Fluid detection sensor
JP2000031231A (en) Temperature measuring device of wafer or the like and manufacture thereof
US3892129A (en) Temperature sensing device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees