JP3073537B2 - Control method of metal thin film formation condition - Google Patents

Control method of metal thin film formation condition

Info

Publication number
JP3073537B2
JP3073537B2 JP03022253A JP2225391A JP3073537B2 JP 3073537 B2 JP3073537 B2 JP 3073537B2 JP 03022253 A JP03022253 A JP 03022253A JP 2225391 A JP2225391 A JP 2225391A JP 3073537 B2 JP3073537 B2 JP 3073537B2
Authority
JP
Japan
Prior art keywords
thin film
temperature
substrate
stress
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03022253A
Other languages
Japanese (ja)
Other versions
JPH04214865A (en
Inventor
正泰 安部
康一 間瀬
敏彦 桂
正治 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03022253A priority Critical patent/JP3073537B2/en
Publication of JPH04214865A publication Critical patent/JPH04214865A/en
Application granted granted Critical
Publication of JP3073537B2 publication Critical patent/JP3073537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属薄膜の形成に関し、
特に所定の膜質を得る為に必要な薄膜の形成条件の制御
方法に関する。
FIELD OF THE INVENTION The present invention relates to the formation of thin metal films.
In particular, the present invention relates to a method for controlling conditions for forming a thin film necessary for obtaining a predetermined film quality.

【0002】[0002]

【従来の技術】金属薄膜の形成方法としては、従来から
スパッタリング、加熱蒸着、イオンプレイティング及び
メッキ等の手段が知られている。いずれの方法において
も良好な膜質を得るのには、形成過程で取込まれる不純
物量を減らすことが重要である。上記不純物量を減らし
て高純度金属薄膜を得る為の方法として従来から採用さ
れている代表的なものは次の2つである。第1は薄膜の
原料純度を向上させる方法である。量産技術上原料の純
度管理は比較的簡単であり、一般に行われている。
2. Description of the Related Art As a method for forming a metal thin film, means such as sputtering, heat evaporation, ion plating, and plating are conventionally known. In any method, in order to obtain good film quality, it is important to reduce the amount of impurities taken in during the formation process. The following two typical methods have been employed as methods for obtaining a high-purity metal thin film by reducing the amount of impurities. The first is a method for improving the raw material purity of the thin film. Purity control of raw materials is relatively easy in mass production technology and is generally performed.

【0003】第2は反応室あるいは形成室内の雰囲気を
一定の水準に維持して汚染を減らすように制御し、薄膜
形成過程で不純物が取込まれないようにする方法であ
る。膜成形過程における不純物の混入をインプロセスで
測定するのは測定感度上困難であり、特に量産プロセス
では、不向きな場合が多い。反応室あるいは形成室内の
雰囲気の制御には、室内の残留不純物成分の分析が利用
されている。また、薄膜の硬度、粒径、比抵抗等、完成
後の薄膜の特性値から薄膜に取込まれた不純物の濃度を
推定し、この情報を形成過程にフィードバックして室内
雰囲気を制御する方法も採用されている。
A second method is to control the atmosphere in the reaction chamber or the formation chamber at a constant level so as to reduce contamination and to prevent impurities from being taken in during the process of forming a thin film. It is difficult to measure the contamination of impurities during the film forming process in-process in terms of measurement sensitivity, and in many cases, it is often unsuitable especially in a mass production process. For controlling the atmosphere in the reaction chamber or the formation chamber, analysis of residual impurity components in the chamber is used. Another method is to estimate the concentration of impurities taken into the thin film from the characteristic values of the completed thin film, such as hardness, particle diameter, and specific resistance of the thin film, and feed this information back to the formation process to control the indoor atmosphere. Has been adopted.

【0004】例えばAl薄膜をスパッタリング法で形成
する場合、スパッタ室内の残留ガスが膜質を左右する。
この残留ガスの測定には、質量分析計が使用されるもの
の、スパッタリング工程に使われるAr ガス中に数10
ppm オーダで混入される不純物H2 O、N2 、O2 そし
てCO等の不純物を継続して測定するのは量産工程では
事実上不可能である。
For example, when an Al thin film is formed by a sputtering method, the residual gas in the sputtering chamber affects the film quality.
Although a mass spectrometer is used to measure the residual gas, several tens of tens of masses are contained in Ar gas used in the sputtering process.
It is practically impossible in a mass production process to continuously measure impurities such as impurities H 2 O, N 2 , O 2, and CO mixed in the order of ppm.

【0005】このような理由から、形成後の膜の物性を
測定し、この測定値から形成条件が正常であったかどう
かを判定する方法が採用されている。量産工程では、こ
の正否の情報を素早く形成工程にフィードバックする必
要がある。薄膜形成条件の正否は、薄膜のヌープ硬度H
K または比抵抗ρから経験的に判定を行っている。
For this reason, a method has been adopted in which the physical properties of a film after formation are measured and it is determined from the measured values whether or not the formation conditions are normal. In the mass production process, it is necessary to quickly feed back the information on the correctness to the formation process. The success or failure of the thin film formation conditions depends on the Knoop hardness H of the thin film.
Judgment is made empirically from K or the specific resistance ρ.

【0006】[0006]

【発明が解決しようとする課題】しかし、上述の硬度、
粒径、比抵抗等の物性値は、例えば薄膜の微小な構造す
なわち粒界析出する不純物量等に対して鈍感であり、形
成条件を制御する為の正確な指標になり得ない。
However, the above hardness,
Physical properties such as particle diameter and specific resistance are insensitive to, for example, the minute structure of the thin film, that is, the amount of impurities precipitated at the grain boundary, and cannot be an accurate index for controlling the formation conditions.

【0007】本発明は、上述の問題点に鑑みてなされた
ものであり、従来技術とは異なる金属薄膜の物性を指標
とし、微少な不純物の取込み或いは成膜時基板温度の誤
差等を確実にモニター可能とする。
The present invention has been made in view of the above-mentioned problems, and uses the physical properties of a metal thin film different from those of the prior art as an index to reliably take in minute impurities or accurately detect errors in the substrate temperature during film formation. Monitorable.

【0008】[0008]

【課題を解決するための手段】本発明方法は、基板上に
形成される金属薄膜の形成条件を制御方法する方法であ
って、形成後の金属薄膜の温度−内部応力の特性を測定
する工程と、この特性から得られる情報に基づき上記薄
膜の形成工程における上記形成条件を調整する工程と、
を具備し、上記情報が上記温度−内部応力の特性におけ
る昇温時の薄膜構成原子のマイグレイション開始温度で
ある
According to the present invention, there is provided a method for controlling the conditions for forming a metal thin film formed on a substrate, comprising the steps of measuring the temperature-internal stress characteristics of the formed metal thin film. And adjusting the formation conditions in the thin film formation step based on information obtained from the characteristics;
And the information is based on the temperature-internal stress characteristics.
At the starting temperature of migration of the constituent atoms of the thin film when the temperature rises
There is .

【0009】望ましい態様において上記形成条件は例
えば、上記薄膜を形成する際の雰囲気中の不純物量或い
は上記基板の温度である。本発明は特にSiのような半
導体基板上に導電層であるAl薄膜を形成する工程にお
ける条件の制御に好適である。
In a preferred embodiment, the formation condition is, for example, the amount of impurities in the atmosphere when forming the thin film or the temperature of the substrate. The present invention is particularly suitable for controlling conditions in a process of forming an Al thin film as a conductive layer on a semiconductor substrate such as Si.

【0010】[0010]

【作用】本発明にあっては、成膜時の取込み不純物量或
いは基板温度等、形成条件が異なる複数の金属薄膜にお
いて温度−内部応力の関係を測定し、これらのデータを
蓄積する。これらのデータに基づき、実際に製品として
形成される金属薄膜について、薄膜形成後、その温度−
内部応力の特性曲線を求め、特に、薄膜を構成する原子
のマイグレイション開始温度から、膜中に含まれる不純
物濃度、或いは成膜時基板温度等を推定する。昇温及び
降温により描かれる温度−内部応力線図(ループ)は、
不純物濃度が相違する場合と、成膜時基板温度が相違す
る場合とで特徴が異なってくる為、互いに識別すること
ができる。得られた情報は薄膜の形成工程にフィードバ
ックされ、薄膜形成条件が制御される。即ち、例えば不
純物濃度が規格値より多い時にはこれを低下させる為に
雰囲気中の不純物量を減少させ、基板温度が所定値から
外れている場合はこれを所定値に近付けるように補正す
る。
According to the present invention, the relationship between temperature and internal stress is measured for a plurality of metal thin films having different formation conditions such as the amount of impurities taken in during film formation or the substrate temperature, and these data are accumulated. Based on these data, the temperature of the metal thin film actually formed as a product
The characteristic curve of the internal stress is obtained, and in particular, the concentration of impurities contained in the film, the substrate temperature at the time of film formation, and the like are estimated from the migration start temperature of the atoms constituting the thin film. The temperature-internal stress diagram (loop) drawn by heating and cooling is
Since the characteristics are different between the case where the impurity concentration is different and the case where the substrate temperature during film formation is different, they can be distinguished from each other. The obtained information is fed back to the thin film forming process to control the thin film forming conditions. That is, for example, when the impurity concentration is higher than the standard value, the amount of impurities in the atmosphere is reduced to reduce the impurity concentration, and when the substrate temperature is out of the predetermined value, the correction is made so as to approach the predetermined value.

【0011】本発明が適用できる金属としては、Al、
Al合金(Al−Si、Al−Si−Cu等)、W、M
o、Ti、Ta、Zr等の高融点金属、更に高融点金属
の珪化物が考えられる。Si基板上の高融点金属薄膜に
は、基板と熱膨張率の差から、室温下では通常高ストレ
スが加わるが、800℃程度のアニール処理により応力
が緩和される。従って、この時の薄膜の反り量から内部
応力を測定の上、不純物濃度或いは成膜時基板温度等を
推定することにより、上述のように薄膜の形成条件を制
御可能である。
The metals to which the present invention can be applied include Al,
Al alloy (Al-Si, Al-Si-Cu, etc.), W, M
High melting point metals such as o, Ti, Ta, and Zr, and silicides of high melting point metals are conceivable. Due to the difference in the coefficient of thermal expansion from the substrate, a high stress is usually applied to the refractory metal thin film on the Si substrate at room temperature, but the stress is relaxed by annealing at about 800 ° C. Therefore, by measuring the internal stress from the amount of warpage of the thin film at this time and estimating the impurity concentration or the substrate temperature at the time of film formation, the conditions for forming the thin film can be controlled as described above.

【0012】[0012]

【実施例】以下では、シリコン半導体基板に形成した配
線用Al薄膜を例にとって説明する。 [例1]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of an Al thin film for wiring formed on a silicon semiconductor substrate will be described. [Example 1]

【0013】先ず、配向が(111)のシリコン半導体
基板表面に、100nmの酸化珪素例えば二酸化珪素膜
を形成した。この酸化珪素膜は、SiとAlとの反応を
抑制する為に設置する。また同膜はシリコン半導体基板
の表裏に対称的に形成して力学的に釣合った状態とす
る。次に、上記酸化珪素膜上に、通常使われる厚さ1.0
μmのAl(1wt%Si含有)薄膜を基板温度150
℃においてスパッタリング法で形成した。薄膜形成の
際、スパッタリング装置に質量分析計を取付け、不純物
の混入量(濃度)を測定した。これは不純物濃度と温度
−内部応力特性との相関を求める為である。
First, a silicon oxide film, for example, a silicon dioxide film having a thickness of 100 nm was formed on the surface of a silicon semiconductor substrate having a (111) orientation. This silicon oxide film is provided to suppress the reaction between Si and Al. The film is formed symmetrically on the front and back surfaces of the silicon semiconductor substrate so as to be in a mechanically balanced state. Next, on the silicon oxide film, a generally used thickness of 1.0
μm Al (containing 1 wt% Si) thin film at a substrate temperature of 150
It formed by the sputtering method at ° C. At the time of thin film formation, a mass spectrometer was attached to the sputtering apparatus, and the amount (concentration) of impurities mixed was measured. This is for obtaining the correlation between the impurity concentration and the temperature-internal stress characteristic.

【0014】上述の手順に従い異なる不純物濃度のAl
薄膜を有する2つの試料A、Bを形成した。試料Aの薄
膜は、スパッタリング工程における総混入不純物量(H
2 O、N2 、O2 、CO)が30ppm 以下であり、試料
Bの薄膜は、総混入不純物量が約450ppm である。
According to the above-described procedure, Al having different impurity concentrations
Two samples A and B having a thin film were formed. The thin film of sample A has a total impurity content (H
2 O, N 2 , O 2 , CO) is 30 ppm or less, and the thin film of Sample B has a total amount of mixed impurities of about 450 ppm.

【0015】試料A、B形成後、各資料を室温から45
0℃まで変化させ、各温度での薄膜或いは試料の反り量
から薄膜の内部応力を求めた。図1に試料A、Bにおけ
る薄膜の温度−応力特性を示す。図中線Aは試料A、線
Bは試料Bについて示す。
After the formation of samples A and B, each sample was taken from room temperature to 45
The temperature was changed to 0 ° C., and the internal stress of the thin film was determined from the amount of warpage of the thin film or the sample at each temperature. FIG. 1 shows the temperature-stress characteristics of the thin films in Samples A and B. In the figure, line A indicates sample A, and line B indicates sample B.

【0016】Al薄膜はSi基板に比べて熱膨張係数が
大きい為、薄膜形成時の温度より低い室温では基板によ
り引張り応力を受けた状態となっている。しかし、この
引張り応力は、昇温に伴い、最初AlとSiとの熱膨張
率の差に依存する係数に従ってマイナス方向に向かって
概ね直線的に緩和される。そして、同引張り応力は、一
旦はマイナス(即ち圧縮応力)となり、続いて、ある温
度、例えばTA 若しくはTB (図1)、において開始さ
れる薄膜中のAl原子のマイグレイションの影響を受け
る。この為、上記応力の変化率は急激に変化し該応力は
0に近付く。
Since the Al thin film has a larger coefficient of thermal expansion than the Si substrate, the substrate is subjected to a tensile stress at room temperature lower than the temperature at the time of forming the thin film. However, as the temperature rises, the tensile stress is first relaxed substantially linearly in the negative direction according to a coefficient depending on the difference between the thermal expansion coefficients of Al and Si. The tensile stress is once negative (ie, compressive stress) and is subsequently affected by the migration of Al atoms in the thin film initiated at a certain temperature, for example, T A or T B (FIG. 1). . Therefore, the rate of change of the stress changes rapidly, and the stress approaches zero.

【0017】また450℃からの降温時には、上記引張
り応力は、最初AlとSiとの熱膨張率の差に依存する
係数に従ってプラス方向に向かって概ね直線的に増加す
る。そしてある程度上記引張り応力が高くなった温度、
例えばTA ´若しくはTB ´(図1)においてAl原子
のマイグレイションが生じ、応力の変化率が幾分変化す
る。
When the temperature is lowered from 450 ° C., the tensile stress initially increases substantially linearly in the plus direction according to a coefficient depending on the difference in the coefficient of thermal expansion between Al and Si. And the temperature at which the tensile stress has increased to some extent,
For example, migration of Al atoms occurs at T A ′ or T B ′ (FIG. 1), and the rate of change in stress changes somewhat.

【0018】昇温時において、試料AではTA =240
℃からAl原子のマイグレイションが開始されるのに対
し、試料BではTB =310℃から開始される。不純物
濃度が高い試料のBの方がより高い温度からマイグレイ
ションが始まるのは、粒界等に析出した不純物がAl原
子のマイグレイションの障害となっていることを示して
いる。試料Bではより高温の領域で急激な応力緩和が見
られる。他方降温時において、試料BではAl原子のマ
イグレイションが生じる前に温度が十分降下してしまう
為、応力の変化率が余り変らないこととなる。
At the time of temperature rise, T A = 240 for sample A
While the migration of Al atoms starts at a temperature of ° C., the temperature of sample B starts at T B = 310 ° C. The fact that the migration of B of the sample having a higher impurity concentration starts at a higher temperature indicates that impurities precipitated at the grain boundaries and the like are obstacles to the migration of Al atoms. In sample B, rapid stress relaxation is observed in a higher temperature region. On the other hand, when the temperature is lowered, the temperature of the sample B drops sufficiently before the migration of the Al atoms occurs, so that the rate of change of the stress does not change much.

【0019】上記試料A、Bについてヌープ硬度の測定
を行ったところ、この程度の不純物濃度差では、バラツ
キの範囲内と判定され有為差が認められなかった。これ
に対して、温度−内部応力特性おいては、例えば図1中
のマイグレイション開始温度TA 、TB に示されるよう
に、試料AとBとの間に明らかな差が現れた。
When the Knoop hardness was measured for the samples A and B, it was determined that the difference in impurity concentration was within this range, and no significant difference was recognized. In contrast, temperature - can keep internal stress characteristics, for example, as shown in a migration start temperature T A, T B in FIG. 1, clear difference between the samples A and B appeared.

【0020】図2は、断線ストレスマイグレイション
(Stress Migration)試験における上記原子マイグレイ
ション開始温度とMTTF(Mean Time To Fail 以後MT
TFと略記する)値との関係を示す。
FIG. 2 shows the above-mentioned atomic migration start temperature and MTTF (Mean Time To Fail, hereinafter MTTF) in a disconnection stress migration (Stress Migration) test.
(Abbreviated as TF).

【0021】断線ストレスマイグレイション試験とは、
クネクネと長い配線層を形成した半導体素子(例えばS
i基板上にAl薄膜が形成された上記試料A、B)を樹
脂層等からなる外囲器に封止後、約140℃に維持・放
置して配線層にストレスを強制的に加え、断線に至るま
での時間を測定する強制試験である。上記温度維持によ
り、配線層の粒界に不純物が自己拡散してノッチが形成
され、しかも、応力緩和の方向に進んで最後に配線層が
破断する。
What is the disconnection stress migration test?
A semiconductor element (for example, S
After sealing the samples A and B) having the Al thin film formed on the i-substrate in an envelope made of a resin layer or the like, maintaining and leaving the temperature at about 140 ° C. to forcibly apply a stress to the wiring layer to disconnect the wire. This is a compulsory test that measures the time to reach. By maintaining the temperature, impurities are self-diffused at the grain boundaries of the wiring layer to form notches, and further, the wiring layer is broken in the direction of stress relaxation.

【0022】MTTFとは、素子が故障を起こす平均的
な時間を指し、その良否の判定は経験側によるところが
多い。本発明においては、MTTF値が2000時間以
上のものを良とした。
The MTTF refers to an average time during which an element fails, and the quality of the element is often determined by an experienced person. In the present invention, those having an MTTF value of 2000 hours or more were regarded as good.

【0023】上記試料A、B及び他の試料について、放
置温度125℃で断線ストレスマイグレイション試験を
行った。この試験において、TA =240℃の試料Aは
MTTF値が2000時間以上の結果が得られたが、T
B=310℃の試料BはMTTF値が450時間と極端
に悪かった。図2図示の如く、2000時間以上の寿命
を補償するのにマイグレイション開始温度が270℃以
下であれば良いことがわかった。尚、昇温時のマイグレ
イション開始温度に代え、降温時の変極点温度TA ´、
B ´も不純物濃度の指標とすることができる。 [例2]
The samples A and B and the other samples were subjected to a disconnection stress migration test at a standing temperature of 125 ° C. In this test, Sample A at T A = 240 ° C. had an MTTF value of 2000 hours or more.
Sample B at B = 310 ° C. had an extremely poor MTTF value of 450 hours. As shown in FIG. 2, it was found that the migration start temperature should be 270 ° C. or less to compensate for the life of 2000 hours or more. In addition, instead of the migration start temperature at the time of temperature rise, the inflection point temperature T A ′ at the time of temperature fall,
T B 'can also be used as an index of the impurity concentration. [Example 2]

【0024】基板の温度条件を除いて例1の試料Aと同
一の条件(不純物濃度を含む)及び手順で、更に2つの
試料C、Dを形成した。薄膜形成時の基板の温度条件
は、試料Aが150℃、試料Cが300℃、試料Dが2
5℃である。
Except for the temperature condition of the substrate, two more samples C and D were formed under the same conditions (including the impurity concentration) and procedure as the sample A of Example 1. The temperature conditions of the substrate when forming the thin film were as follows: 150 ° C. for sample A, 300 ° C. for sample C, and 2 ° C. for sample D.
5 ° C.

【0025】上記試料形成後、これら試料を室温から4
50℃まで変化させ、各温度での薄膜或いは試料の反り
量から薄膜の内部応力を求めた。図3に試料A、C、D
における薄膜の温度−応力特性を示す。図中線Aは試料
A、線Cは試料C、線Dは試料Dについて示す。
After the formation of the above samples, these samples were moved from room temperature to 4
The temperature was changed to 50 ° C., and the internal stress of the thin film was determined from the amount of warpage of the thin film or the sample at each temperature. FIG. 3 shows samples A, C and D
3 shows the temperature-stress characteristics of the thin film at the time of Example 1. In the figure, line A indicates sample A, line C indicates sample C, and line D indicates sample D.

【0026】薄膜形成時の基板の加熱温度により、形成
されるAl薄膜の結晶粒径が異なってくる。同粒径は、
試料Aでは2μm、試料Cでは3〜5μm、試料Dでは
0.3〜0.5 μmとなる。またAl薄膜はSi基板に比べ
て熱膨張係数が大きい為、成膜時の基板の温度が低いほ
ど、室温における薄膜の初期引張り応力は小さくなる。
これらの要因から、薄膜の温度−応力特性は、成膜時基
板温度に依存して大きく異なる。
The crystal grain size of the formed Al thin film varies depending on the heating temperature of the substrate when the thin film is formed. The particle size is
2 μm for sample A, 3 to 5 μm for sample C, and 3 μm for sample D
0.3 to 0.5 μm. Further, since the Al thin film has a larger thermal expansion coefficient than the Si substrate, the lower the temperature of the substrate at the time of film formation, the smaller the initial tensile stress of the thin film at room temperature.
Due to these factors, the temperature-stress characteristics of the thin film greatly differ depending on the substrate temperature at the time of film formation.

【0027】上記相違は、図3図示の如く、昇温時にお
けるマイグレイション開始温度TA、TC 、TD におい
て明白となる。但し、試料A、C、Dの不純物濃度は低
い為、一旦450℃まで昇温されてアニールされると、
薄膜の各結晶粒径が概ね同じとなり、この為、降温時の
特性曲線は概ね同じ形状となる。従って、成膜時基板温
度が相違する場合の薄膜の温度−内部応力線図(ルー
プ)は、不純物濃度が相違する場合のそれとは特徴が異
なり、不純物濃度が相違する場合と区別することができ
る。
The above differences become apparent in the migration start temperatures T A , T C , and T D when the temperature is raised, as shown in FIG. However, since the sample A, C, and D have low impurity concentrations, once the temperature is increased to 450 ° C. and annealed,
The crystal grain diameters of the thin film are substantially the same, so that the characteristic curve at the time of temperature decrease has substantially the same shape. Therefore, the temperature-internal stress diagram (loop) of the thin film when the substrate temperature during film formation is different has a different characteristic from that when the impurity concentration is different, and can be distinguished from the case where the impurity concentration is different. .

【0028】[0028]

【発明の効果】本発明によれば、薄膜の温度−内部応力
の特性の測定から、微少な不純物の取込み或いは成膜時
基板温度の誤差等を確実にモニター可能となる。一つの
試料における薄膜の温度−内部応力の特性の測定は十数
分で済み、これから得られる情報を薄膜形成工程にフィ
ードバックすることにより、所定の形成条件を確実に制
御できる。
According to the present invention, the measurement of the temperature-internal stress characteristics of the thin film makes it possible to reliably monitor the introduction of minute impurities or the error in the substrate temperature during film formation. The measurement of the temperature-internal stress characteristics of the thin film in one sample can be performed in more than ten minutes. By feeding back information obtained from the measurement to the thin film forming process, predetermined forming conditions can be reliably controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】不純物濃度の異なる薄膜における温度と内部応
力との関係を示すグラフであり、横軸は温度、縦軸は応
力を示す。
FIG. 1 is a graph showing the relationship between temperature and internal stress in thin films having different impurity concentrations, where the horizontal axis indicates temperature and the vertical axis indicates stress.

【図2】断線ストレスマイグレイション試験における原
子マイグレイション開始温度とMTTF値との関係を示
すグラフであり、横軸は原子マイグレイション開始温
度、縦軸にMTTF値を示す。
FIG. 2 is a graph showing a relationship between an atomic migration start temperature and an MTTF value in a disconnection stress migration test, in which the horizontal axis shows the atomic migration start temperature and the vertical axis shows the MTTF value.

【図3】成膜時基板温度の異なる薄膜における温度と内
部応力との関係を示すグラフであり、横軸は温度、縦軸
は応力を示す。
FIG. 3 is a graph showing the relationship between temperature and internal stress in thin films having different substrate temperatures during film formation, wherein the horizontal axis indicates temperature and the vertical axis indicates stress.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青山 正治 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝多摩川工場内 (56)参考文献 特開 平1−316451(JP,A) 特開 昭63−105966(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 C23C 16/00 - 16/56 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Aoyama 1 Kosaka Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Prefecture Inside the Toshiba Tamagawa Plant (56) References JP-A-1-316451 (JP, A) JP-A-1-316451 63-105966 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14/00-14/58 C23C 16/00-16/56

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に形成される金属薄膜の形成条件
を制御する方法であって、 形成後の金属薄膜の温度−内部応力の特性を測定する工
程と、この特性から得られる情報に基づき上記薄膜の形
成工程における上記形成条件を調整する工程と、を具備
し、上記情報が上記温度−内部応力の特性における昇温
時の薄膜構成原子のマイグレイション開始温度である
法。
1. A method for controlling conditions for forming a metal thin film formed on a substrate, comprising: a step of measuring a temperature-internal stress characteristic of the formed metal thin film; and a method based on information obtained from the characteristic. Adjusting the formation conditions in the thin film formation step.
And the above information is the temperature rise in the temperature-internal stress characteristic.
Method that is the migration start temperature of the constituent atoms of the thin film at the time .
【請求項2】 上記形成条件が上記薄膜を形成する際の
雰囲気中の不純物量である請求項1記載の方法。
2. The method according to claim 1, wherein the forming conditions are different from those in forming the thin film.
The method according to claim 1, wherein the amount is an amount of impurities in the atmosphere .
【請求項3】 上記形成条件が薄膜を形成する際の上記
基板の温度である請求項1記載の方法。
3. The method according to claim 1, wherein the forming conditions are the same as those described above when forming a thin film.
The method of claim 1, wherein the temperature is the temperature of the substrate .
JP03022253A 1990-02-15 1991-02-15 Control method of metal thin film formation condition Expired - Fee Related JP3073537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03022253A JP3073537B2 (en) 1990-02-15 1991-02-15 Control method of metal thin film formation condition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-34704 1990-02-15
JP3470490 1990-02-15
JP03022253A JP3073537B2 (en) 1990-02-15 1991-02-15 Control method of metal thin film formation condition

Publications (2)

Publication Number Publication Date
JPH04214865A JPH04214865A (en) 1992-08-05
JP3073537B2 true JP3073537B2 (en) 2000-08-07

Family

ID=26359427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03022253A Expired - Fee Related JP3073537B2 (en) 1990-02-15 1991-02-15 Control method of metal thin film formation condition

Country Status (1)

Country Link
JP (1) JP3073537B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283961B2 (en) * 2008-04-24 2013-09-04 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH04214865A (en) 1992-08-05

Similar Documents

Publication Publication Date Title
EP1732114B1 (en) Method for producing silicon wafer for IGBT
JP4653681B2 (en) Silicon wafer and method of heat treating silicon wafer
Einziger et al. Niobium self-diffusion
Volkert et al. Deformation mechanisms of Al films on oxidized Si wafers
JP3713332B2 (en) Single crystal copper target and manufacturing method thereof
KR100578161B1 (en) A recording medium having a method for measuring the behavior of oxygen precipitates in a silicon single crystal, a process determination method for manufacturing a silicon single crystal wafer, and a program for measuring the behavior of oxygen precipitates in a silicon single crystal
JPS5830279B2 (en) Method for determining oxygen content concentration in silicon rods
WO2005071144A1 (en) Method for predicting precipitation behavior of oxygen in silicon single crystal, method for determining production parameter of silicon single crystal, and storage medium storing program for predicting precipitation behavior of oxygen in silicon single crystal
US5505157A (en) Low hydrogen-content silicon crystal with few micro-defects caused from annealing, and its manufacturing methods
Loopstra et al. Model for stress and volume changes of a thin film on a substrate upon annealing: Application to amorphous Mo/Si multilayers
JP3073537B2 (en) Control method of metal thin film formation condition
US5175115A (en) Method of controlling metal thin film formation conditions
JP6908554B2 (en) Strain resistance film and strain sensor, and their manufacturing method
Anderson et al. Annealing behavior of electroplated permalloy thin films
JP5471874B2 (en) Thermal shock resistance evaluation apparatus and thermal shock resistance evaluation method
Brady et al. Thermal oxidation and resistivity of tantalum nitride films
Toomey et al. Stress effects in thermal cycling of copper (magnesium) thin films
TWI649433B (en) Alloyed silver wire
Popov et al. Mössbauer emission spectroscopy of grain boundaries in poly-and nanocrystalline niobium
JP3107638B2 (en) Measuring method of metal thin film quality
TWI257680B (en) Method for monitoring particles on wafer surface and in process
JP2903520B2 (en) Evaluation method of silicon single crystal
KR102486945B1 (en) Manufacturing method of high-purity silver sputtering target and silver sputtering target manufactured thereby
US6197601B1 (en) Method of correcting temperature of semiconductor substrate
WO2018117717A1 (en) Method for predicting deposition speed of sputtering target, sputtering target having deposition speed controlled thereby and method for manufacturing same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees