JP3070781B2 - Control method of composite layer thickness of composite member - Google Patents

Control method of composite layer thickness of composite member

Info

Publication number
JP3070781B2
JP3070781B2 JP3226441A JP22644191A JP3070781B2 JP 3070781 B2 JP3070781 B2 JP 3070781B2 JP 3226441 A JP3226441 A JP 3226441A JP 22644191 A JP22644191 A JP 22644191A JP 3070781 B2 JP3070781 B2 JP 3070781B2
Authority
JP
Japan
Prior art keywords
composite layer
composite
thickness
ceramic particles
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3226441A
Other languages
Japanese (ja)
Other versions
JPH0544054A (en
Inventor
哲 石塚
真二 山本
伸弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP3226441A priority Critical patent/JP3070781B2/en
Publication of JPH0544054A publication Critical patent/JPH0544054A/en
Application granted granted Critical
Publication of JP3070781B2 publication Critical patent/JP3070781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は金属又は樹脂材料をマト
リックスとして、セラミックス等の粒子を表面に複合化
してなる複合部材の複合化層厚の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the thickness of a composite layer of a composite member obtained by using a metal or resin material as a matrix and particles such as ceramics on the surface.

【0002】[0002]

【従来の技術】複合材料に関し、次のような従来技術が
知られている。たとえば、SiCやCなどの繊維やウィ
スカーでプリフォームを製作し、これを金型内にセット
したあと、Al合金などの溶湯を注いで、プリフォーム
に加圧含浸させることで複合材料(FRM)とする方法
である。
2. Description of the Related Art With respect to composite materials, the following prior arts are known. For example, a composite material (FRM) is manufactured by fabricating a preform with fibers or whiskers such as SiC or C, setting this in a mold, pouring a molten metal such as an Al alloy, and impregnating the preform with pressure. It is a method.

【0003】また、SiCやCなどの粒子を、完全溶
融、または部分溶融の溶湯に添加し、これに機械的攪拌
を与えて複合材料(MMC)とするコンポキャスト法が
ある。
Further, there is a compo-casting method in which particles such as SiC and C are added to a completely melted or partially melted molten metal and mechanically stirred to give a composite material (MMC).

【0004】さらにSiCやCなどの粒子とAl合金等
の粉末とを混合し、静水圧々縮や熱間押出し、または焼
結等によって複合材料を製造する方法(粉末冶金法)が
広くおこなわれている。
Further, a method (powder metallurgy) of mixing a particle such as SiC or C with a powder of an Al alloy or the like and manufacturing a composite material by isostatic pressing, hot extrusion, sintering, or the like is widely performed. ing.

【0005】また、SiCやCなどの粒子とAl合金等
の粉末を混合し、これに冷間や熱間で機械的攪拌を与え
て、合金粉末中にSiCやCなどの粒子を練込み、粒子
分散複合材料とする方法(メカニカルアロイング法)が
ある。
Further, particles such as SiC or C and powder such as Al alloy are mixed, and mechanical stirring is given to the mixture cold or hot to knead particles such as SiC or C into the alloy powder. There is a method of forming a particle-dispersed composite material (mechanical alloying method).

【0006】[0006]

【発明が解決しようとする課題】本発明では、金属又は
樹脂の材料又は部品の外表面に、セラミックス粒子を侵
入させてなる複合化層を設けた部材を対象とするもの
で、前記コンポキャスト法や、粉末冶金法及びメカニカ
ルアロイング法で製造する複合材料は従来から材料全体
に粒子等が均一に分散している状態の材料を対象として
おり、本発明が対象とする部分複合化した材料を製造し
た例はない。さらに粉末冶金法やメカニカルアロイング
法に用いる合金粉末は高価であり、完成品を得るまでの
工程が多くかかるとともに、製品形状が単純なものに限
られてしまうという問題点がある。
SUMMARY OF THE INVENTION The present invention is directed to a member provided with a composite layer formed by intruding ceramic particles on the outer surface of a metal or resin material or component. In addition, composite materials manufactured by powder metallurgy and mechanical alloying methods have conventionally been intended for materials in which particles and the like are uniformly dispersed throughout the material. There is no example manufactured. Further, the alloy powder used in the powder metallurgy method or the mechanical alloying method is expensive, and it takes many steps to obtain a finished product, and there is a problem that the product shape is limited to a simple one.

【0007】本発明は前記事情に鑑みてなされたもの
で、前記問題点を解消するとともに、複合化表層部を有
する複合部材の複合化層厚の制御型方法を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above problems and to provide a method for controlling the thickness of a composite layer of a composite member having a composite surface layer.

【0008】[0008]

【課題を解決するための手段】前記目的に添い、本発明
は加圧用の型または容器に、セラミックス粒子を収容
し、このセラミックス粒子内に被処理物を埋込み、外部
よりセラミックス粒子を介して被処理物に全方向から
圧して、被処理物の表面にセラミックス粒子との複合
化層を形成する場合において、形成されるその複合化層
の厚さを、前記加圧と加熱温度と加圧時間との組合せに
よって制御することにより、前記課題を解消した。
According to the above object, according to the present invention, ceramic particles are housed in a pressurizing mold or container, an object to be processed is embedded in the ceramic particles, and the ceramic particles are externally applied via the ceramic particles. When a pressure is applied to the workpiece from all directions to form a composite layer with ceramic particles on the entire surface of the workpiece, the thickness of the composite layer to be formed is determined by the pressure, the heating temperature, and the pressure. The above problem was solved by controlling the pressure in combination with the pressure time.

【0009】以下、本発明について、図面を参照しなが
ら詳細に説明する。本発明において対象とするセラミッ
クスとしては、たとえばSiC、Si3 4 、Si
2 、Al2 3 などのセラミックス粒子を用いる。こ
のセラミックス粒子径は、0.01〜100μmの範囲
のものを用い、形成される複合化層の強度上からは細か
い方が好ましく、また異種のセラミックス粒子を混合し
たものでもよい。
Hereinafter, the present invention will be described in detail with reference to the drawings. Examples of the ceramics targeted in the present invention include SiC, Si 3 N 4 , Si
Ceramic particles such as O 2 and Al 2 O 3 are used. The diameter of the ceramic particles is preferably in the range of 0.01 to 100 μm, and it is preferable that the diameter is small in view of the strength of the formed composite layer, or a mixture of different types of ceramic particles may be used.

【0010】マトリックスは金属又は樹脂材料を用い
る。なお金属としてはAl合金,Mg合金及び其他慣用
の金属や合金を、樹脂材料としては通常の部材に採用さ
れている一般の合成樹脂類を用いる。
The matrix uses a metal or resin material. As the metal, an Al alloy, a Mg alloy and other commonly used metals and alloys are used, and as the resin material, general synthetic resins used for ordinary members are used.

【0011】まず、図1に示すように0〜1200℃の
温度にした加圧型1内の下パンチ2上に、前記セラミッ
クス粒子3を所定量収容する。この場合、セラミックス
粒子3も、予め0〜1200℃の温度にしておく。これ
は後の工程において部品表面へのセラミックス粒子の侵
入を容易にするための処置である。
First, as shown in FIG. 1, a predetermined amount of the ceramic particles 3 are accommodated on a lower punch 2 in a pressing die 1 at a temperature of 0 to 1200 ° C. In this case, the ceramic particles 3 are also set to a temperature of 0 to 1200 ° C. in advance. This is a measure for facilitating the penetration of the ceramic particles into the component surface in a later step.

【0012】次に、加圧型1内のセラミックス粒子3内
に所定の温度にした金属又は樹脂部品4を埋込む。ま
た、セラミックス粒子3中に前記部品4を埋込んでおい
て、両者を同時に加熱する。
Next, a metal or resin part 4 at a predetermined temperature is embedded in the ceramic particles 3 in the pressing die 1. The component 4 is embedded in the ceramic particles 3 and both are heated simultaneously.

【0013】次に、部品4を埋込んだ加圧型1内のセラ
ミックス粒子3の上方から上パンチ5により、10〜1
0,000kgf/cm2 の圧力P1 を加え、部品4の
全表面にセラミックス粒子3を侵入させる。結果とし
て、部品表面に複合化層を有する部品が得られる。ま
た、加圧型内のセラミックス粒子3の量を加減すること
によって前記部品の複数処理が可能である。
Next, from above the ceramic particles 3 in the pressing mold 1 in which the component 4 is embedded, 10 to 1
A pressure P 1 of 000 kgf / cm 2 is applied to cause the ceramic particles 3 to penetrate the entire surface of the component 4. As a result, a component having a composite layer on the component surface is obtained. Further, by controlling the amount of the ceramic particles 3 in the pressing mold, it is possible to perform a plurality of processes on the component.

【0014】なお、前記処理は部品の酸化を防止するた
め、真空または不活性ガスの雰囲気でおこなってもよ
い。
The above treatment may be performed in a vacuum or an inert gas atmosphere in order to prevent oxidation of the parts.

【0015】次に、他の方法として、図2に示すよう
に、まず加圧を受ける加圧用外筒(以下、カプセルとす
る)7内にセラミックス粒子3を充填し、次いで、金属
又は樹脂などの部品4をその内に埋込む。カプセル7内
は、内部を減圧し、密封する。その後、このカプセルご
と所定の温度(1200℃以下)として10〜10,0
00kgf/cm2 の静水圧(たとえばCIPやHI
P)P2 をカプセル7の外側から与えて部品表面にセラ
ミックス粒子を押し込み、複合化層を形成する。このよ
うにして前記方法と同様な複合化層がえられる。
Next, as another method, as shown in FIG. 2, first, ceramic particles 3 are filled in a pressurizing outer cylinder (hereinafter, referred to as a capsule) 7 which receives pressurization, and then a metal or resin or the like is filled. Part 4 is embedded therein. The inside of the capsule 7 is depressurized and sealed. Thereafter, the temperature of each capsule is set to a predetermined temperature (1200 ° C. or lower) and 10 to 10,000.
Hydrostatic pressure of 00 kgf / cm 2 (for example, CIP or HI
Push the ceramic particles to the component surface P) P 2 is given from the outside of the capsule 7, to form a composite layer. Thus, a composite layer similar to the above-described method is obtained.

【0016】以上の方法で製造した複合材料の表面層は
図3及び図4に示すように、最表層にセラミックス粒子
などの複合化材料が侵入して高密度に複合化した部分が
形成されている。この層厚さtは、加圧力Pや加圧時の
温度Thや加圧の時間Tを変化させたり、それぞれの変
化したデーターを組合わせることで増減させることがで
きる。即ち、一定の加圧力Tとして、加圧時の温度Th
を高くすることによって層厚さtは厚く、また温度を低
くすることによって薄くすることができる。同様に温度
Thを一定とし加圧力Tを増減することによって層厚さ
tを厚く、または薄くすることができる。
As shown in FIGS. 3 and 4, the surface layer of the composite material manufactured by the above-described method has a high-density composite portion formed by penetration of a composite material such as ceramic particles into the outermost layer. I have. The layer thickness t can be increased or decreased by changing the pressure P, the temperature Th during pressurization, or the time T during pressurization, or by combining the changed data. That is, as the constant pressing force T, the temperature Th at the time of pressurization Th
The layer thickness t can be increased by increasing the temperature, and can be decreased by decreasing the temperature. Similarly, the layer thickness t can be increased or decreased by keeping the temperature Th constant and increasing or decreasing the pressing force T.

【0017】[0017]

【実施例】【Example】

1)300℃に予熱した加圧型内に、550℃に加熱し
た平均粒子径1μmのSiC粒子を入れ、その中に55
0℃に予熱しておいたJIS ADC12 Al合金製
部品を埋設し、上パンチにより1000kgf/cm2
の静水圧P1 を5分間加えた。これによって図3に示す
ように表面に層厚さがおよそ1000μmの複合化層を
有する複合化部品が製造できた。図においてaは複合化
層、bは母材のAl合金である。
1) SiC particles having an average particle diameter of 1 μm heated to 550 ° C. are placed in a pressure mold preheated to 300 ° C., and 55
A part made of JIS ADC12 Al alloy, which has been preheated to 0 ° C., is embedded and 1000 kgf / cm 2 by the upper punch.
It was added hydrostatic pressure P 1 5 min. As a result, a composite component having a composite layer having a layer thickness of about 1000 μm on the surface as shown in FIG. 3 could be manufactured. In the figure, a is a composite layer, and b is an Al alloy as a base material.

【0018】2)次に、同じSiC粒子を450℃に加
熱し、前記と全く同じ条件で処理したところ、図4に示
すように表面に層厚さがおよそ10μmの複合化層を有
する複合化部品が製造できた。図においてaは複合化
層、bは母材のAl合金である。
2) Next, when the same SiC particles were heated to 450 ° C. and treated under exactly the same conditions as above, a composite having a composite layer having a layer thickness of about 10 μm on the surface as shown in FIG. Parts could be manufactured. In the figure, a is a composite layer, and b is an Al alloy as a base material.

【0019】以上の実施例からJIS ADC12 A
l合金については、加熱温度を450℃から550℃に
変化するだけで複合化層の厚さが100倍に変化するこ
とが確認できた。よって、本発明の方法によって部材表
面にセラミックス粒子との複合化層を形成する場合にお
いて、圧力一定とした場合、加熱温度を調節することに
よって、その複合化層の厚さを制御することができる。
また、同様に温度一定とした場合、加圧力を調節するこ
とによって、その複合化層の厚さを制御することができ
る。
According to the above embodiment, JIS ADC12A
Regarding the 1 alloy, it was confirmed that the thickness of the composite layer changed 100 times only by changing the heating temperature from 450 ° C. to 550 ° C. Therefore, when forming a composite layer with ceramic particles on the member surface by the method of the present invention, when the pressure is constant, the thickness of the composite layer can be controlled by adjusting the heating temperature. .
Similarly, when the temperature is kept constant, the thickness of the composite layer can be controlled by adjusting the pressing force.

【0020】よって予め、複合化層を設ける使用材料に
ついて、試験片を調製し、特定圧力における温度変化に
応じ、複合化層の厚さの変化を求めたグラフを、また特
定温度における圧力変化に応じて複合化層の厚さの変化
を求めたグラフを作成しておくことによって、実際の生
産現場において所望の厚さの複合化層が容易に得られ
る。以上は処理時間を一定とした場合であるが、処理時
間についても同じように変えて処理することによって同
様な結果がえられる。以上のように、加圧力、加熱温
度、処理時間の各々を適宜勘案して複合化層厚との関係
を求めておくことによって、特定の部材について複合化
層を表面に形成する場合に、仕様に応じた厚さの複合化
層が容易に形成できる。
Accordingly, a test piece was prepared for the material to be provided with the composite layer in advance, and a graph showing the change in the thickness of the composite layer according to the temperature change at a specific pressure was obtained. A composite layer having a desired thickness can be easily obtained in an actual production site by preparing a graph in which the change in the thickness of the composite layer is obtained in advance. The above is the case where the processing time is fixed, but similar results can be obtained by changing the processing time in the same manner. As described above, by appropriately considering each of the pressing force, the heating temperature, and the processing time to determine the relationship with the composite layer thickness, when forming the composite layer on the surface of a specific member, the specification A composite layer having a thickness corresponding to the thickness can be easily formed.

【0021】[0021]

【発明の効果】本発明の方法によれば、被処理物の表面
にセラミックス粒子との複合化層を形成する場合に、被
処理物の材質に応じて、要求される厚さの複合化層が容
易にえられる。
According to the method of the present invention, when forming a composite layer with ceramic particles on the surface of an object to be processed, the composite layer having a required thickness according to the material of the object to be processed. Is easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る方法の実施要領の説明図である。FIG. 1 is an explanatory view of a method of implementing a method according to the present invention.

【図2】本発明に係る方法の他の実施要領の説明図であ
る。
FIG. 2 is an explanatory diagram of another embodiment of the method according to the present invention.

【図3】図1に係る方法で製造した部材の複合化層付近
の断面部分を拡大した金属組織を示す図である。
FIG. 3 is a diagram showing a metal structure in which a cross section near a composite layer of a member manufactured by the method according to FIG. 1 is enlarged.

【図4】図3に対し、条件を変えて製造した部材の複合
化層付近の断面部分を拡大した金属組織を示す図であ
る。
FIG. 4 is a diagram showing a metal structure in which a cross section near a composite layer of a member manufactured under different conditions is enlarged from FIG. 3;

【符号の説明】[Explanation of symbols]

1 加圧型 2 下パンチ 3 セラミックス粒子 4 部品 5 上パンチ 7 カプセル DESCRIPTION OF SYMBOLS 1 Pressing type 2 Lower punch 3 Ceramic particle 4 Component 5 Upper punch 7 Capsule

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−272770(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 24/08 ────────────────────────────────────────────────── (5) References JP-A-1-272770 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 24/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加圧用の型または容器に、セラミックス
粒子を収容し、このセラミックス粒子内に被処理物を埋
込み、外部よりセラミックス粒子を介して被処理物に全
方向から加圧して、被処理物の表面にセラミックス粒
子との複合化層を形成する場合において、形成されるそ
の複合化層の厚さを、前記加圧と加熱温度と加圧時間と
の組合せによって制御することを特徴とする複合部材の
複合化層厚の制御方法。
1. A ceramic mold is accommodated in a pressurizing mold or a container, and an object to be processed is embedded in the ceramic particles.
When pressure is applied from the direction to form a composite layer with ceramic particles on the entire surface of the object to be treated, the thickness of the composite layer to be formed is determined by applying the pressure, the heating temperature, and the pressurization time. A method for controlling a composite layer thickness of a composite member, wherein the control is performed by a combination.
【請求項2】 前記複合化層の厚さに対応する前記加圧
力と前記加熱温度と前記加圧時間との組合せを、処理さ
れる各母材毎に予め求めておき、それによって被処理物
に要求される厚さの複合化層を形成することを特徴とす
る請求項1に記載の複合化層厚の制御方法。
2. A combination of the pressing force, the heating temperature, and the pressing time corresponding to the thickness of the composite layer is determined in advance for each base material to be processed, and thereby the object to be processed is determined. 2. The method for controlling the thickness of a composite layer according to claim 1, wherein a composite layer having a thickness required in step (a) is formed.
JP3226441A 1991-08-12 1991-08-12 Control method of composite layer thickness of composite member Expired - Lifetime JP3070781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3226441A JP3070781B2 (en) 1991-08-12 1991-08-12 Control method of composite layer thickness of composite member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3226441A JP3070781B2 (en) 1991-08-12 1991-08-12 Control method of composite layer thickness of composite member

Publications (2)

Publication Number Publication Date
JPH0544054A JPH0544054A (en) 1993-02-23
JP3070781B2 true JP3070781B2 (en) 2000-07-31

Family

ID=16845158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226441A Expired - Lifetime JP3070781B2 (en) 1991-08-12 1991-08-12 Control method of composite layer thickness of composite member

Country Status (1)

Country Link
JP (1) JP3070781B2 (en)

Also Published As

Publication number Publication date
JPH0544054A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
US4915605A (en) Method of consolidation of powder aluminum and aluminum alloys
US5453242A (en) Process for producing sintered-iron molded parts with pore-free zones
JPS63195203A (en) Composite metal article and its production
JP2849710B2 (en) Powder forming method of titanium alloy
JP3070781B2 (en) Control method of composite layer thickness of composite member
US7288133B1 (en) Three-phase nanocomposite
JP4290850B2 (en) Press forming method of disk-shaped parts made of aluminum matrix composite
JP3097190B2 (en) Manufacturing method of composite member
JP3102582B2 (en) Manufacturing method of composite member
JP3173665B2 (en) Composite member and method of manufacturing the same
US20070090154A1 (en) Method of forming a product of metal-based composite material
JPH0533015A (en) Composite member and production thereof
JPH0533014A (en) Production of composite member
JPH05117872A (en) Production of composite member
JP3010714B2 (en) Method for producing particle-dispersed composite material
JP3120522B2 (en) Manufacturing method of composite member
JPS63247321A (en) Formation of ti-al intermetallic compound member
JPH06212398A (en) Composite material and its production
JPH05117007A (en) Composite member and its production
JPH05214556A (en) Manufacture of composite member
JP2936695B2 (en) Aluminum alloy powder forging method
JPH05117871A (en) Composite member and its production
JPS61159540A (en) Manufacture of fiber reinforced metallic material
JPH0639523A (en) Production of high-strength corrosion resistance and wear resistant member
JPH073362A (en) Production of composite material