JPS61159540A - Manufacture of fiber reinforced metallic material - Google Patents

Manufacture of fiber reinforced metallic material

Info

Publication number
JPS61159540A
JPS61159540A JP60685A JP60685A JPS61159540A JP S61159540 A JPS61159540 A JP S61159540A JP 60685 A JP60685 A JP 60685A JP 60685 A JP60685 A JP 60685A JP S61159540 A JPS61159540 A JP S61159540A
Authority
JP
Japan
Prior art keywords
metal
fibers
powder
pressure
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60685A
Other languages
Japanese (ja)
Inventor
Kazuo Kurahashi
和夫 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP60685A priority Critical patent/JPS61159540A/en
Publication of JPS61159540A publication Critical patent/JPS61159540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture the titled material in which metal is distributed perfectly and uniformly between short fibers, by powder compacting a mixture of metal powder and reinforcing fibers, putting it in vessel closedly, and press forming it by hot hydrostatic pressure. CONSTITUTION:Metal powder (Al, Cu, etc.) having about 0.0001-0.01mm particle diameter, and short fibers, whiskers (SiC fiber, etc.) having about 0.0001-0.2mm length are mixed so that short fibers are regulated to about 5-50% vol. ratio. The mixture is pressed to compacted body by press and said body is put closedly in a prescribed vessel. The vessel is set in hot hydrostatic press, and pressing force of about 1.0-1.5 times as much as deformation resistance value, is applied thereto at temp. lower than m.p. of metal by about 50 deg.C. Next, temp. is rised higher slightly than m.p. of metal, and pressure of about 80-150MPa is applied. By this way, the titled material superior in mechanical characteristic and workability, etc. is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、繊維強化金属材(FRM)の製法に関し、
金属粉末と補強用短繊維との混合物を圧粉成形し、これ
を容器内に密閉して熱間静水圧成形を行うことにより、
金属と繊維との結合が良好で、加工性、機械的強度等の
優れた繊維強化金属材を得ることができるよう圧したも
のである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for manufacturing fiber reinforced metal materials (FRM),
By compacting a mixture of metal powder and reinforcing short fibers, sealing this in a container and performing hot isostatic pressing,
It is pressed so that a fiber-reinforced metal material with good bonding between metal and fibers and excellent workability, mechanical strength, etc. can be obtained.

〔従来技術とその問題点〕[Prior art and its problems]

従来の繊維強化金属材(以下、FRMと略称する。)の
製法として、まず補強用繊維を溶融金属中に投入、分散
し、冷却して作る方法がある。しかし、この方法は、繊
維と金属との比重の差、溶融金員の粘度が高いなどの理
由によシ、amの分散が均一とならず、得られるFRM
の機械的特性に大きなバラツキが生ずるなどの欠点があ
った。
As a conventional manufacturing method for fiber reinforced metal materials (hereinafter abbreviated as FRM), there is a method in which reinforcing fibers are first introduced into molten metal, dispersed, and cooled. However, due to reasons such as the difference in specific gravity between the fiber and metal and the high viscosity of the molten metal, the dispersion of am is not uniform, and the resulting FRM
There were drawbacks such as large variations in mechanical properties.

また、連続繊維を金属体を巻き付け、この周囲に溶融金
属を流し込み、半溶融状態にて加圧する方法がある。し
かし、この方法は連続繊維のみにしか使用できず、製品
形状が限られる欠点があった。
Another method is to wrap continuous fibers around a metal body, pour molten metal around the metal body, and apply pressure in a semi-molten state. However, this method can only be used for continuous fibers and has the disadvantage that the product shape is limited.

また、金属ドラムに繊維を整列して巻き付け、プラズマ
浴射によシ溶融金属を吹き付けて、母材を作成し、この
母材を重ね合せて加圧する方法がある。しかし、この方
法も金属か完全に繊維の間に浸透せず、また厚物を作る
には多階Vc重ねなければならず、製品形状に限定があ
る。さらに、補強用繊維によシ成型体をつ<シ、溶融金
属を流し込む方法があるが、この方法も金属が完全に繊
維間に浸透してゆかない問題があシ、高温の溶湯な用い
れは浸透性は向上するものの繊維との反応の恐れが生じ
る。
Alternatively, there is a method in which fibers are aligned and wound around a metal drum, molten metal is sprayed by plasma spraying to create a base material, and the base materials are stacked and pressurized. However, this method also does not allow the metal to completely penetrate between the fibers, and in order to make thick products, multi-level Vc must be stacked, which limits the shape of the product. Furthermore, there is a method of pouring molten metal into the reinforcing fibers by attaching the molded body to the reinforcing fibers, but this method also has the problem that the metal does not completely penetrate between the fibers, and it cannot be used with high-temperature molten metal. Although permeability is improved, there is a risk of reaction with fibers.

このように、従来のFRMの製法にあっては、種々の問
題があり、良好な%性を有するFRMを得ることは困難
であった。
As described above, the conventional FRM manufacturing method has various problems, and it has been difficult to obtain an FRM with good percent properties.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明I/cあっては、金属粉末と補強用繊
維との混合物を圧粉成形1−1ついで、熱間静水圧成形
を行うことKより、上記問題点を解決し、優れた特性の
FRMを製造できるようにした。
Therefore, in this invention I/c, the above problems are solved by performing hot isostatic pressing after compaction 1-1 of the mixture of metal powder and reinforcing fiber, and excellent properties are obtained. FRM can now be manufactured.

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明では、補強用繊維として長さθ000/〜02
間の短繊維やホイスカーが用いられる。繊維の種類とし
ては、特に限定されることなく、ホウ累繊維、SiC被
情ホウ素繊維(3o1−aic)、SiC繊維、炭素繊
維、アルミナ繊維、ベリリウム繊維、タングステン繊維
、At208ホイスカー、SiCホイスカーなどがマト
リックスとなる金属との相溶性、反応性などを適宜考慮
の上選ばれる。
In this invention, the reinforcing fiber has a length θ000/~02
Short fibers or whiskers are used in between. The types of fibers are not particularly limited, and include boron fibers, SiC-loved boron fibers (3o1-aic), SiC fibers, carbon fibers, alumina fibers, beryllium fibers, tungsten fibers, At208 whiskers, SiC whiskers, etc. It is selected after taking into consideration the compatibility with the matrix metal, reactivity, etc.

また、金属粉末としては、粒径θ000/〜aO/mの
ものが用いられ、その種類はやはり限定されないが、特
に好ましいものとしては、A/、。
Further, the metal powder used has a particle size of θ000/~aO/m, and although the type is not limited, particularly preferred is A/.

Cu、’l’iおよびこれらの合金がある。These include Cu, 'l'i and their alloys.

そして、これらの短繊維と金属粉末とは混合されたうえ
、圧粉成形され成形体とされる。短繊維と金属粉末との
混合割合は、容積比で短繊維がs〜!rOqbとされる
。短繊維が!f−未満では補強効果が得られず、!ro
mを越えると短繊維が過剰となって均一分散が不可能と
なシ、不都合である。
Then, these short fibers and metal powder are mixed and compacted to form a compact. The mixing ratio of short fibers and metal powder is s ~ for short fibers in terms of volume ratio! rOqb. Short fibers! If it is less than f-, no reinforcing effect can be obtained. ro
If it exceeds m, the short fibers become excessive and uniform dispersion becomes impossible, which is disadvantageous.

これらの混合手段としては、ボールミルやタンブラ−な
どが用いられ、有機溶剤などの分散媒を併用することも
混合効率を高めるうえで好ましい。
A ball mill, a tumbler, or the like is used as a mixing means for these, and it is also preferable to use a dispersion medium such as an organic solvent in order to increase the mixing efficiency.

得られた混合物は、ついで圧粉成形する。圧粉成形には
通常の粉末成形プレス機が用いられ、数〜数十トンの加
圧力で加圧して成形体とする。成形体の形状は以後の工
程との関係で通常円柱体とされることが多い。
The resulting mixture is then compacted. A normal powder press machine is used for powder compaction, and the compact is pressed with a pressure of several to several tens of tons. The shape of the molded body is usually cylindrical in relation to subsequent steps.

ついで、この圧粉成形体を容器内に密閉する。Then, this compacted powder body is sealed in a container.

この容器は、可撓性を有し、次工程の熱間静水圧成形の
際に容易忙変形して内部忙収容された圧粉成形体に加圧
力が加わシ、かつ上記粉末金属の融点以上の温度で溶融
しない程度の耐熱性するものが用いられ、粉末金属KA
t’PCuを用いる場合には軟鋼が用いられる。また、
この容器内圧は、圧粉成形体のみならず、圧粉成形体と
金属材料、例えば金属パイプ内に円柱状の圧粉成形体を
入れ、これを円筒状の容器に収容することもでき、FR
Mと金蝿との複合材料を製造することもできる。
This container has flexibility and is easily deformed during the next step of hot isostatic pressing, applying pressure to the compacted compact housed inside, and exceeding the melting point of the powder metal. Powder metal KA is used.
When using t'PCu, mild steel is used. Also,
This container internal pressure can be determined not only by the compacted compact but also by the compacted compact and a metal material, for example, a cylindrical compacted compact placed in a metal pipe and housed in a cylindrical container.
It is also possible to produce a composite material of M and golden fly.

この容器を次に熱間静水圧プレス機にセントし、熱間静
水圧成形を行う。加圧加熱条件は温度を上げてゆくとと
もに加圧力を上げてゆ<7.まず、温度を金属の融点に
まで上げてゆく。この昇温に伴って加圧力を上げ【ゆく
。この時の加圧力は比較的低圧とされ、圧粉成形体の温
度上昇による体積膨張が生じない程度の加圧力とされ、
金属の融点よシ3θ℃低い温度での変形抵抗値の70〜
13倍、好ましくは77〜13倍の加圧力とされる。
This container is then placed in a hot isostatic press to perform hot isostatic pressing. The pressure and heating conditions are as follows: As the temperature is raised, the pressure is also increased.<7. First, the temperature is raised to the melting point of the metal. As the temperature rises, the pressurizing force increases. The pressing force at this time is relatively low, and is set to an extent that does not cause volumetric expansion due to temperature rise of the compacted compact.
The deformation resistance value at a temperature 3θ℃ lower than the melting point of the metal is 70~
The pressing force is 13 times, preferably 77 to 13 times.

この加圧力が10倍未満では圧力不足で密度の向上度合
が不足し、また15倍を越えると過剰となって成形体が
つぶれる恐れが生じる。この1段目の低圧の加圧によっ
て、成形体の形くずれが防止される。
If the pressing force is less than 10 times, the degree of density improvement will be insufficient due to insufficient pressure, and if it exceeds 15 times, it will be excessive and there is a risk that the molded product will collapse. This first-stage low-pressure application prevents the molded article from deforming.

次に温度が融点に達し、粉末金属が溶融すると、コ段目
の高圧の加圧忙移る。この時の温度は融点もしくはこれ
をわずかに越える程度で十分である。
Next, when the temperature reaches the melting point and the powdered metal melts, high pressure is applied to the second stage. It is sufficient that the temperature at this time be at or slightly above the melting point.

また、加圧力はgO〜/jOMPa程度とされる。Further, the pressing force is approximately gO~/jOMPa.

tOMPa未満では溶融金属の短繊維への浸透が不足し
、また/、tOMPaを越えてもこれ以上浸透効果が増
大せず、不経済でもある。このコ段目の加圧の時間は、
成形体の大きさ、短繊維と金属との組合わせなどKよっ
て異るが、通常コ分〜3時間程度とされる。この一段目
の加圧によって溶融金属が短繊維中によく浸透し、両者
の物理的もしくは化学的結合が促がされる。
If it is less than tOMPa, the penetration of the molten metal into the short fibers will be insufficient, and/or if it exceeds tOMPa, the penetration effect will not increase any further, which is uneconomical. The time for pressurizing this fourth step is
Although it varies depending on the size of the molded body, the combination of short fibers and metal, etc., it is usually about 1 minute to 3 hours. This first stage of pressure allows the molten metal to penetrate well into the short fibers, promoting physical or chemical bonding between the two.

ついで、容器を冷却するとともに加圧力を低下してゆき
、熱間静水圧成形を終了する。つぎに、容器を開封して
成形体(FRM)を取シ出す。この成形体は必要に応じ
て、圧延加工、鍛造加工、押出加工、引抜加工などのa
S加工や切切削加工が施されて、所望の形状のFRMと
される。
Then, the container is cooled and the pressing force is lowered to complete the hot isostatic pressing. Next, the container is opened and the molded article (FRM) is taken out. This molded body can be processed by rolling, forging, extrusion, drawing, etc. as necessary.
The FRM is subjected to S processing and cutting to obtain a desired shape of the FRM.

〔作用〕[Effect]

このようなFRMの製法によれは、寸法の近似した金精
粉末と短繊維とを混合しているので、両者の混合、分散
が均一に行われる。また、圧粉成形体を容器内に封入し
て熱間静水圧成形を行つ【いるので、加圧媒体の圧粉成
形体への侵入が防止されるとともに密封下での加熱加圧
となるので、材料の酸化による劣化がない。さらに、熱
間静水圧成形を2段にわたって行っているので、短繊維
中に金属がゆっくりとかつ完全に浸透してゆき、両者の
結合が向上し、しかも微細な9間、9隙がつぶされ@度
が向上し、機械的特性の高いFRMとなる。また、金属
の融点をわずかに越える程度の温度で加圧処理している
ので、金属と繊細との反応を抑えること本できる。また
、短繊維を利用しているので得られたFRMの2次加工
が容易となり、複雑な形状の加工ができる。さらに、こ
の方法によれは、補強用繊維の含有割合の高い高強度F
RMも裏道できる。
In this method of manufacturing FRM, fine metal powder and short fibers having similar dimensions are mixed, so that the mixing and dispersion of both can be uniformly performed. In addition, since the powder compact is sealed in a container and hot isostatic pressing is performed, the pressurizing medium is prevented from entering the powder compact, and heating and pressing can be carried out under sealed conditions. Therefore, there is no deterioration due to oxidation of the material. Furthermore, since hot isostatic pressing is carried out in two stages, the metal slowly and completely penetrates into the short fibers, improving the bond between the two, and also eliminating the minute gaps. The strength is improved, resulting in an FRM with high mechanical properties. Additionally, since the process is carried out under pressure at a temperature slightly above the melting point of the metal, it is possible to suppress the reaction between the metal and the delicate material. Furthermore, since short fibers are used, secondary processing of the obtained FRM is facilitated, and complex shapes can be processed. Furthermore, this method also eliminates warpage due to high strength F with a high content of reinforcing fibers.
RM can also take a back route.

〔実施例1〕 SiCウィスカー(平均径0.gμm1長さ110μm
>go容量部と純At粉末(粒径200メツシユバス、
アトマイズ粉)20容量部とを混ぜ、V型ミキサーでア
セトンとともに、Ii’時間攪拌する。
[Example 1] SiC whiskers (average diameter 0.gμm 1 length 110μm
> Go volume part and pure At powder (particle size 200 mesh bath,
atomized powder) and stirred with acetone in a V-type mixer for Ii' hours.

ついで、恒温槽で≠O′CVcて加熱し、アセトンを完
全に除去する。ついで、この混合物を粉末成型プレス機
にて圧粉成形し、直径!rpm、厚さ30冒の円盤状の
成形体とする。この円盤状の成形体を7θ枚重ねて、内
径5/w1外径7 !r m1ll、長さ300mの純
A/、パイプの内に入れ、さらKこれを内径g0鵡、肉
厚ユ5晴、長さ330鰭の軟鋼製パイプ(容器)VC収
容し、上面および底面を同材質の軟鋼の板で蓋をし、電
子ビーム溶接を行い、密封した。
Then, the mixture is heated in a constant temperature bath to ≠O'CVc to completely remove acetone. Next, this mixture is compacted using a powder press machine, and the diameter! rpm, and a disc-shaped molded body with a thickness of 30 mm. By stacking 7θ sheets of this disc-shaped molded body, the inner diameter is 5/w1 and the outer diameter is 7! r m1ll, 300m long pure A/, put it in a pipe, and then put it in a soft steel pipe (container) VC with inner diameter g0, wall thickness 5mm, length 330mm, and the top and bottom The lid was covered with a mild steel plate made of the same material and sealed by electron beam welding.

ついで、この容器を熱間静水圧プレス機にセット口、熱
間静水圧成形した。条件は第1図に示す。
Next, this container was set in a hot isostatic press machine and hot isostatically formed. The conditions are shown in FIG.

この条件は、温度が69O℃に昇温するまでは圧力を徐
々に筒<シて!0MPa程度とし、温度がA90’GK
なって、十分溶融したのち、圧力な100MphVC急
加圧するものである。
Under these conditions, the pressure is gradually reduced until the temperature rises to 690°C. The temperature should be about 0MPa and the temperature should be A90'GK.
After sufficiently melting, a pressure of 100 MphVC is applied.

熱間静水圧成形終了後、容器から成形体を取シ出し、こ
れをttso℃に加熱し、熱間押出で直径20mの線材
とし、さらに伸線加工、焼鈍を行って直径2111II
の線材とした。
After hot isostatic pressing, the molded body is taken out from the container, heated to ttso℃, hot extruded into a wire rod with a diameter of 20 m, and further wire drawn and annealed to a wire rod with a diameter of 2111 II.
It was made into a wire rod.

この細材の機械的特性を検討した。結果を第1表に示す
The mechanical properties of this thin material were investigated. The results are shown in Table 1.

〔実施例2〕 金属粉末として純銅粉(粒径l!rθメツシュバス、ア
トマイズ粉)を用い、実施例1と同様の操作によシ径2
11II+の線材を作成した。熱間静水圧成形の条件は
、第2図に示す通〕であ!D、FRMの熱間押出条件は
g20℃である。同様にこの機材九つい【もその機械的
特性を測定し結果を第1表に示した。
[Example 2] Using pure copper powder (particle size l!rθ mesh bath, atomized powder) as the metal powder, a copper powder with a diameter of 2
11II+ wire rod was created. The conditions for hot isostatic pressing are as shown in Figure 2! D. Hot extrusion conditions for FRM are g20°C. Similarly, the mechanical properties of this equipment were measured and the results are shown in Table 1.

〔実施例3〕 金属粉末として、Ti粉末を用い、実施例1と同様の操
作を行い径2酬の線材を得た。熱間静水圧成形条件は第
3図に示す通〕であn、FRMの熱間押出条件はg50
℃とした。線材の機械的特性を第1表に示す。
[Example 3] Using Ti powder as the metal powder, the same operation as in Example 1 was performed to obtain a wire rod with two diameters. The hot isostatic pressing conditions are as shown in Figure 3], and the hot extrusion conditions for FRM are g50.
℃. Table 1 shows the mechanical properties of the wire.

〔比較例1〕 実施例1と同一のSiCウィスカーのみを径SO咽、厚
さ30mの形状にプレスした加圧力3トン)。
[Comparative Example 1] Only the same SiC whiskers as in Example 1 were pressed into a shape with a SO diameter and a thickness of 30 m using a pressing force of 3 tons).

この成形体を径100m5深さ720mの有底円筒状金
属製鋳型に置き、鋳型全体を2!;O′CVC加熱した
うえ、ざ30℃の純At溶湯な金型内に鋳込む。溶湯が
溶融中にポンチで加圧し、溶湯の浸透を促進する。凝固
後、円柱状のFRMの外周を旋削し、径gOm、長さ1
00w5llC仕上げる。ついで、これを内径gOwm
、外径gS叫、長さ/10論の軟鋼パイプ中に入れ、両
端を同−材質にて溶接密封し、これを弘SO℃に加熱し
て径20w5VC熱間押出し、さら忙伸線加工、焼鈍に
よシ径2IImの線材とする。この線材の機械的特性を
第1表忙併せて示す。
This molded body was placed in a bottomed cylindrical metal mold with a diameter of 100 m and a depth of 720 m, and the entire mold was placed in a cylindrical metal mold with a diameter of 100 m and a depth of 720 m. After heating with O'CVC, it is cast into a pure At molten metal mold at 30°C. Pressurize the molten metal with a punch while it is melting to promote penetration of the molten metal. After solidification, the outer periphery of the cylindrical FRM is turned to have a diameter of gOm and a length of 1
00w5llC Finish. Next, this is the inner diameter gOwm
, placed in a mild steel pipe with an outer diameter of gS and a length of 100 mm, welded and sealed both ends with the same material, heated to SO ℃, hot extruded with a diameter of 20w5VC, and processed into a wire drawing process. The wire rod is annealed and has a diameter of 2 IIm. The mechanical properties of this wire are also shown in Table 1.

〔比較例2〕 比較例1において、温度/lOθ℃のCu溶湯を用いた
以外は同様圧して径コ■の線材を得た。
[Comparative Example 2] A wire rod of diameter C was obtained by pressing in the same manner as in Comparative Example 1, except that a Cu molten metal having a temperature of /lOθ°C was used.

このものの機械的特性を第1表に併せて示す。The mechanical properties of this product are also shown in Table 1.

〔比較例3〕 実施例3において、熱間静水圧成形の条件を第q図忙示
すよう罠実施し、同様VC211I+の線材な得 4゜
た。このものの機械的特性を第1表に併せて示す。
[Comparative Example 3] In Example 3, hot isostatic pressing was carried out under the same conditions as shown in Figure q, and the same VC211I+ wire rod was obtained. The mechanical properties of this product are also shown in Table 1.

第2表 第1表から明らかなように、この発明によって得られる
FRMは機械的特性が従来法のものに比べて大きく向上
していることがわかシ、繊維の補強効果が十分生される
ことが認められる。
As is clear from Table 2 and Table 1, the mechanical properties of the FRM obtained by this invention are greatly improved compared to those of the conventional method, and the reinforcing effect of the fibers is sufficiently produced. is recognized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように1この発明のFRMの農法によれば
、短繊維間に完全かつ均一に金属が分布し、かつ組繊内
部に空隙、ボイド等がなく、シかも繊維と金属との不賛
な反応も生じず、機械的特性、加工性等の優秀なFRM
が得られる。
As explained above, 1. According to the FRM farming method of the present invention, the metal is completely and uniformly distributed among the short fibers, and there are no voids or voids inside the assembled fibers, and there is no possibility that the fibers and the metal may be mixed together. FRM with excellent mechanical properties, workability, etc. without any reaction.
is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれもこの発明の実施例および比較例における
熱間静水圧成形の際の成形条件を示すグラフである。 第1図 □時間 第3図 第4図 ■、 事件の表示 昭和60年特許願第606号 2、 発明の名称 繊維強化金属材の製法 3、補正をする者
The drawings are graphs showing molding conditions during hot isostatic pressing in Examples and Comparative Examples of the present invention. Figure 1 □ Time Figure 3 Figure 4 ■ Indication of the case Patent Application No. 606 of 1985 2 Title of the invention Process for manufacturing fiber reinforced metal material 3 Person making the amendment

Claims (3)

【特許請求の範囲】[Claims] (1) 金属粉末と補強用繊維との混合物を圧粉成形し
たのち、この圧粉成形体を容器内に密閉し、ついで熱間
静水圧で加圧成形する繊維強化金属材の製法。
(1) A method for manufacturing a fiber-reinforced metal material in which a mixture of metal powder and reinforcing fibers is compacted, the compacted product is sealed in a container, and then pressure-molded using hot isostatic pressure.
(2) 上記熱間静水圧成形を2段加圧で行う特許請求
の範囲第1項記載の繊維強化金属材の製法。
(2) The method for producing a fiber-reinforced metal material according to claim 1, in which the hot isostatic pressing is performed in two stages.
(3) 上記2段加圧において、第1段加圧は上記粉末
金属の融点未満の温度で低圧で行い、第2段加圧は上記
融点以上の温度で第1段の圧力よりも高圧で行う 特許請求の範囲第2項記載の繊維強化金属材の製法。
(3) In the above two-stage pressurization, the first stage pressurization is performed at a temperature lower than the melting point of the powder metal and at a low pressure, and the second stage pressurization is performed at a temperature higher than the above melting point and a higher pressure than the first stage pressure. A method for producing a fiber-reinforced metal material according to claim 2.
JP60685A 1985-01-07 1985-01-07 Manufacture of fiber reinforced metallic material Pending JPS61159540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60685A JPS61159540A (en) 1985-01-07 1985-01-07 Manufacture of fiber reinforced metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60685A JPS61159540A (en) 1985-01-07 1985-01-07 Manufacture of fiber reinforced metallic material

Publications (1)

Publication Number Publication Date
JPS61159540A true JPS61159540A (en) 1986-07-19

Family

ID=11478392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60685A Pending JPS61159540A (en) 1985-01-07 1985-01-07 Manufacture of fiber reinforced metallic material

Country Status (1)

Country Link
JP (1) JPS61159540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171379A (en) * 2003-10-24 2005-06-30 Rolls Royce Plc Method of manufacturing fiber reinforced metal matrix composite article
JP2008507624A (en) * 2004-07-22 2008-03-13 エフエムダブリュー コンポジットシステムズ,インコーポレイテッド Method for producing titanium alloy wire with enhanced properties
CN104099539A (en) * 2014-06-18 2014-10-15 华南理工大学 Manufacturing method of macrofiber porous metal material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171379A (en) * 2003-10-24 2005-06-30 Rolls Royce Plc Method of manufacturing fiber reinforced metal matrix composite article
JP2008507624A (en) * 2004-07-22 2008-03-13 エフエムダブリュー コンポジットシステムズ,インコーポレイテッド Method for producing titanium alloy wire with enhanced properties
KR101184464B1 (en) 2004-07-22 2012-09-21 에프엠더블유 컴포지트 시스템즈, 아이엔씨. Method for manufacturing titanium alloy wire with enhanced properties
CN104099539A (en) * 2014-06-18 2014-10-15 华南理工大学 Manufacturing method of macrofiber porous metal material

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US4915605A (en) Method of consolidation of powder aluminum and aluminum alloys
US4623388A (en) Process for producing composite material
US5306463A (en) Process for producing structural member of amorphous alloy
US4699849A (en) Metal matrix composites and method of manufacture
US4797155A (en) Method for making metal matrix composites
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4921664A (en) Method for producing a heat-resistant aluminum-alloy workpiece having high transverse ductility which is manufactured from a compact produced by powder metallurgy
US4562951A (en) Method of making metallic glass-metal matrix composites
US5030277A (en) Method and titanium aluminide matrix composite
US5384087A (en) Aluminum-silicon carbide composite and process for making the same
US4143208A (en) Method of producing tubes or the like and capsule for carrying out the method as well as blanks and tubes according to the method
JPS61159540A (en) Manufacture of fiber reinforced metallic material
JPH093503A (en) Method for reactive sintering of intermetallic material molding
US5445790A (en) Process for densifying powder metallurgical product
CN113652569B (en) Preparation method of gradient-enhanced titanium-based composite material
JP2002020828A (en) Aluminum alloy material, its production method and basket and cask using the same
US5564620A (en) Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions
JPS63247321A (en) Formation of ti-al intermetallic compound member
JPS6360265A (en) Production of aluminum alloy member
JP3102582B2 (en) Manufacturing method of composite member
JP2525606B2 (en) Method for producing aromatic polyamide resin composite material
JP2936695B2 (en) Aluminum alloy powder forging method
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JPH028301A (en) Manufacture of metal material by powder canning process