JP3070693B2 - Manufacturing method of core made of low melting point alloy - Google Patents

Manufacturing method of core made of low melting point alloy

Info

Publication number
JP3070693B2
JP3070693B2 JP10748091A JP10748091A JP3070693B2 JP 3070693 B2 JP3070693 B2 JP 3070693B2 JP 10748091 A JP10748091 A JP 10748091A JP 10748091 A JP10748091 A JP 10748091A JP 3070693 B2 JP3070693 B2 JP 3070693B2
Authority
JP
Japan
Prior art keywords
core
melting point
mold
sand mold
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10748091A
Other languages
Japanese (ja)
Other versions
JPH04336211A (en
Inventor
貴志 船津
富士雄 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Calsonic Kansei Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP10748091A priority Critical patent/JP3070693B2/en
Publication of JPH04336211A publication Critical patent/JPH04336211A/en
Application granted granted Critical
Publication of JP3070693B2 publication Critical patent/JP3070693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低融点合金製中子の製
造方法に係り、詳しくは、例えば、自動車用エンジンに
送り込むための空気を流す吸気管を合成樹脂によって成
形するのに使用される低融点合金製中子の製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a core made of a low melting point alloy, and more particularly to, for example, molding an intake pipe through which air for feeding into an automobile engine is formed with synthetic resin. And a method for producing a core made of a low melting point alloy.

【0002】[0002]

【従来の技術】自動車用エンジンに送り込むための空気
は、エアクリーナから取り入れられ、ダクト並びに吸気
管を通過し、この吸気管の下流側端部に設けられた燃料
噴射装置或いはキャブレータにより送り込まれるガソリ
ンと混合されてから、インテークマニホールドを通過し
て、自動車用エンジンのシリンダ内に送り込まれる。
2. Description of the Related Art Air to be supplied to an automobile engine is taken from an air cleaner, passes through a duct and an intake pipe, and is supplied with gasoline supplied by a fuel injection device or a carburetor provided at a downstream end of the intake pipe. After being mixed, it passes through an intake manifold and is fed into a cylinder of an automobile engine.

【0003】上記吸気管は、従来はアルミニュウム合金
のダイキャスト成形により造られていたが、近年自動車
の軽量化を図るため、例えば、特開昭58−82059
号公報に開示される如く、合成樹脂の射出成形により造
ることが提案されている。一方、吸気管は中空で、而も
外面形状並びに内面形状が三次元方向に屈曲しているた
め、通常使用されている如き単純な割型を有する射出成
形装置により造ることができない。このため、三次元方
向に屈曲した形状を有する吸気管を合成樹脂の射出成形
により造る場合、次のようにして行っている。
Conventionally, the intake pipe has been made by die-casting of an aluminum alloy. However, in order to reduce the weight of automobiles in recent years, for example, Japanese Patent Application Laid-Open No. 58-82059.
As disclosed in Japanese Unexamined Patent Publication, the production by injection molding of a synthetic resin has been proposed. On the other hand, since the intake pipe is hollow and the outer surface shape and the inner surface shape are bent in a three-dimensional direction, it cannot be manufactured by an injection molding apparatus having a simple split mold as generally used. Therefore, when an intake pipe having a shape bent in a three-dimensional direction is manufactured by injection molding of a synthetic resin, it is performed as follows.

【0004】先ず、射出成形に先立ち、BiとSnとの
合金或いはBiとSnとPbとの合金の如き低融点合金
(例えば、融点が130℃〜150℃)により造られた
中空の中子を用意する。この中子の外面形状は、造るべ
き合成樹脂製吸気管の内面形状と一致させる。この中子
の製造方法としては、例えば、図8及び図9に示すもの
がある。
First, prior to injection molding, a hollow core made of a low melting point alloy (for example, having a melting point of 130 ° C. to 150 ° C.) such as an alloy of Bi and Sn or an alloy of Bi, Sn and Pb is used. prepare. The outer surface shape of the core matches the inner surface shape of the synthetic resin intake pipe to be manufactured. As a method of manufacturing the core, for example, there is a method shown in FIGS.

【0005】先ず、三次元方向に屈曲する中子用砂型1
と、2つの外型用砂型3,5を常法に従って造る。次
に、2つの外型用砂型3,5内に、三次元形状の中子用
砂型1を配した後、中子用砂型1の両端部を固定する。
そして、2つの外型用砂型3,5の壁面4,6と三次元
形状の中子用砂型1の壁面2との間の隙間(キャビテ
ィ)7内に、溶解した低融点合金を注入し、三次元形状
の中子用砂型1の壁面2周囲に低融点合金層8を形成す
る。
First, a sand mold 1 for a core bent in a three-dimensional direction.
And two sand molds 3 and 5 for the outer mold are made in accordance with a conventional method. Next, after the three-dimensional core sand mold 1 is placed in the two outer mold sand molds 3 and 5, both ends of the core sand mold 1 are fixed.
Then, the melted low melting point alloy is injected into a gap (cavity) 7 between the wall surfaces 4, 6 of the two outer mold sand molds 3, 5 and the wall surface 2 of the three-dimensional core sand mold 1, A low melting point alloy layer 8 is formed around the wall 2 of the three-dimensional core sand mold 1.

【0006】その後、砂型1,3,5を壊して、中空の
中子を取り出す。次に、斯して成形された中空の中子
を、造るべき吸気管の外面形状と一致する内面形状を有
する成形型内に配した状態で、この成形型内に、上記低
融点合金よりも高い融点を持つ合成樹脂,例えば、ガラ
ス繊維を含んだナイロン66(例えば、融点が240℃
以上)を注入し、成形型の内面と中子の外面との間の隙
間(キャビティ)内で固化させる。キャビティ内に注入
される溶融合成樹脂の温度は、中子を構成する低融点合
金の融点よりも高いが、熱容量が大きく、而も熱伝達性
の良い中子に接触することで、直ちに温度が低下するた
め、溶融合成樹脂の注入に伴なって中子の一部が溶融す
ることは無い。
Thereafter, the sand molds 1, 3, and 5 are broken, and the hollow core is taken out. Next, in a state where the hollow core thus formed is disposed in a mold having an inner surface shape that matches the outer surface shape of the intake pipe to be formed, the inside of this mold is lower than the low melting point alloy. Synthetic resin having a high melting point, for example, nylon 66 containing glass fiber (for example, having a melting point of 240 ° C.)
Above) and solidified in the gap (cavity) between the inner surface of the mold and the outer surface of the core. Although the temperature of the molten synthetic resin injected into the cavity is higher than the melting point of the low melting point alloy constituting the core, the temperature is immediately increased by contacting the core with a large heat capacity and good heat transfer. Since the core is lowered, a part of the core does not melt with the injection of the molten synthetic resin.

【0007】そして、成形型内の合成樹脂が固化した
後、成形型を開いて吸気管を取り出すが、この吸気管は
三次元方向に屈曲しているため、中子はこの吸気管に内
蔵されたままの状態となる。そこで、この中子を取り出
すため、成形型から取り出した合成樹脂と中子とを、低
融点合金の融点よりも高く、合成樹脂の融点よりも低い
温度T(例えば、150℃<T<240℃)に加温し
て、低融点合金製の中子を溶融させ、合成樹脂製の吸気
管を内側から除去する。
After the synthetic resin in the mold has solidified, the mold is opened and the intake pipe is taken out. Since the intake pipe is bent in a three-dimensional direction, the core is built in the intake pipe. It is in the state of being left. Therefore, in order to take out the core, the synthetic resin and the core taken out of the molding die are subjected to a temperature T higher than the melting point of the low melting point alloy and lower than the melting point of the synthetic resin (for example, 150 ° C <T <240 ° C). ) To melt the core made of a low melting point alloy and remove the synthetic resin intake pipe from the inside.

【0008】この結果、外面形状が成形型の内面形状と
一致し、内面形状が中子の外面形状と一致する合成樹脂
製吸気管が得られる。
As a result, an intake pipe made of synthetic resin whose outer surface shape matches the inner surface shape of the mold and whose inner surface shape matches the outer surface shape of the core is obtained.

【0009】[0009]

【発明が解決しようとする課題】処が、上述の従来法に
於ける中子を形成する低融点合金は、例えば、Bi57
−Sn43(比重:8.56)等の如く、中子用砂型1の比
重よりも比重が大きいため、図9に示す如き形状の中子
を形成することができない。即ち、その製造工程に於
て、次の如き問題があった。
However, the low melting point alloy forming the core in the above-mentioned conventional method is, for example, Bi57.
Since the specific gravity is larger than the specific gravity of the core sand mold 1 such as -Sn43 (specific gravity: 8.56), the core shown in FIG. 9 cannot be formed. That is, there were the following problems in the manufacturing process.

【0010】即ち、図10に示す如く、溶融した低融点
合金を隙間(キャビティ)7内に鋳込む時に、低融点合
金の比重が中子用砂型1の比重よりも大きいため、矢印
で示すように三次元形状の中子用砂型1の下方側に流れ
込み、この中子用砂型1を矢印で示すように浮き上がら
せる。その結果、成形された低融点合金層8は、その上
方が薄く、下方が厚いという偏肉形状となる。
That is, as shown in FIG. 10, when the molten low melting point alloy is cast into the gap (cavity) 7, the specific gravity of the low melting point alloy is larger than the specific gravity of the core sand mold 1, and therefore, as shown by arrows. Flows into the lower side of the three-dimensional core sand mold 1 and the core sand mold 1 is lifted up as shown by the arrow. As a result, the formed low melting point alloy layer 8 has an uneven thickness shape in which the upper part is thin and the lower part is thick.

【0011】このように、偏肉した中子を用いて吸気管
を成形すると、その中子に倣った製品となる。そのた
め、耐圧性,耐熱性に乏しいものとなり、好ましくな
い。又、偏肉の大きなものは、商品として使用できず、
歩留りが悪く、生産性に欠けるという問題があった。本
発明は斯かる従来の問題点を解決するために為されたも
ので、その目的は、低融点合金層の偏肉を防止すること
ができる低融点合金製中子の製造方法を提供することに
ある。
As described above, when the intake pipe is formed using the uneven core, the product follows the core. For this reason, pressure resistance and heat resistance are poor, which is not preferable. In addition, large uneven thickness can not be used as a product,
There was a problem that the yield was poor and the productivity was lacking. The present invention has been made to solve such a conventional problem, and an object thereof is to provide a method of manufacturing a low-melting-point alloy core that can prevent uneven thickness of a low-melting-point alloy layer. It is in.

【0012】[0012]

【課題を解決するための手段】本発明に係る低融点合金
製中子の製造方法は、複数の外型用砂型内に、三次元形
状の中子用砂型を配すると共に、上部側の外型用砂型の
壁面と三次元形状の中子用砂型の壁面の上部側とを低融
点合金より融点の高い金属材料で構成された独立した
隔調整具を介して固定した後、複数の外型用砂型の壁面
と三次元形状の中子用砂型の周囲との間の隙間内に、溶
解した低融点合金を注入し、三次元形状の中子用砂型の
壁面周囲に肉厚の均一な低融点合金層を、この中に前記
間隔調整具を埋設した状態で形成するものである。
A method of manufacturing a core made of a low melting point alloy according to the present invention comprises disposing a three-dimensionally shaped core sand mold in a plurality of outer mold sand molds, and simultaneously forming a three-dimensional core sand mold. Low melting between the wall of the mold sand mold and the upper side of the three-dimensional core sand mold wall
After fixing via an independent spacing adjuster made of a metal material having a melting point higher than that of the point alloy , a plurality of outer mold sand mold walls and the periphery of the three-dimensional core sand mold are fixed. into the gap between, injecting a low melting point alloy dissolved, uniformly low melting point alloy layer of thickness in the walls around the core sand-type three-dimensional shape, the inside this
It is formed in a state in which the spacing adjuster is embedded .

【0013】[0013]

【作用】本発明に於ては、先ず、下型と成る外型用砂型
上に、三次元形状の中子用砂型を配し、次に、上型と成
る外型用砂型の壁面と三次元形状の中子用砂型の上部と
低融点合金より融点の高い金属材料で構成された独立
した間隔調整具を介して固定し、次いで、各外型用砂型
の壁面と三次元形状の中子用砂型の壁面との間の隙間
(キャビティ)内に、溶解した低融点合金を注入し、隙
間(キャビティ)内に鋳込まれた溶融低融点合金によっ
て三次元形状の中子用砂型を上方へ浮き上がらせようと
力を間隔調整具で阻止し、三次元形状の中子用砂型を隙
間(キャビティ)内の所定位置に保持し、三次元形状の
中子用砂型の壁面周囲に肉厚の均一な低融点合金層を
この中に前記間隔調整具を埋設した状態で形成する。
In the present invention, first, a three-dimensional core sand mold is placed on the outer mold sand mold serving as the lower mold. The upper part of the original core sand mold is made of a metal material with a higher melting point than the low melting point alloy.
The melted low melting point alloy was injected into the gap (cavity) between the outer mold sand mold wall surface and the three-dimensional core sand mold wall surface, and then fixed. The gap is adjusted by the gap adjuster to prevent the three-dimensional core sand mold from rising upward with the molten low melting point alloy cast into the gap (cavity). (Cavity), and a low-melting alloy layer with a uniform thickness around the wall of the three-dimensional core sand mold .
The space adjuster is formed in this state in a buried state .

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1乃至図5は低融点合金製中子の製造方法の一
例を吸気管に適用した場合について示すものである。先
ず、三次元方向に屈曲する中子用砂型20と、2つの外
型用砂型30,32を常法に従って造る。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show a case where an example of a method of manufacturing a core made of a low melting point alloy is applied to an intake pipe. First, the core sand mold 20 and the two outer mold sand molds 30 and 32 that are bent in the three-dimensional direction are formed in a conventional manner.

【0015】此処で、三次元方向に屈曲する中子用砂型
20は、従来の中子用砂型と同様に、外面形状が吸気管
の内面形状と一致するように形成されると共に、その上
部側の壁面21にはアルミニュウム製ケレンから成る間
隔調整具40が複数個取り付けられている。アルミニュ
ウム製ケレンから成る間隔調整具40は、例えば、図3
乃至図5に示す如く、棒41の両端に円盤42を平行且
つ垂直に固定し、棒41が円盤42の中央にくるように
してある。因みに、此処では、棒41の径が2mm,高さ
が5mm、円盤42の径が10mmのものを使用した。
Here, the core sand mold 20 bent in the three-dimensional direction is formed so that the outer surface shape matches the inner surface shape of the intake pipe, as in the conventional sand mold for the core, and the upper side thereof. A plurality of interval adjusters 40 made of aluminum keren are attached to the wall surface 21 of the first embodiment. The spacing adjuster 40 made of aluminum kelen is, for example, shown in FIG.
As shown in FIG. 5 to FIG. 5, a disk 42 is fixed to both ends of a rod 41 in a parallel and vertical manner so that the rod 41 is located at the center of the disk 42. Incidentally, here, a rod 41 having a diameter of 2 mm, a height of 5 mm, and a disk 42 having a diameter of 10 mm was used.

【0016】又、外型用砂型30,32は、従来の外型
用砂型と同様に、吸気管の外面形状と一致する成形面が
壁面31,33に刻設されている。又、外型用砂型3
0,32には、中子用砂型20の両端部22,23を突
出する切欠き部が形成されている。次に、上部側に複数
個の間隔調整具40を取り付けた三次元形状の中子用砂
型20を、下型となる外型用砂型30上に配する。
The outer mold dies 30 and 32 have, in the same manner as the conventional outer molds, molding surfaces formed on the wall surfaces 31 and 33 so as to conform to the outer shape of the intake pipe. In addition, sand mold for outer mold 3
At 0 and 32, notches are formed to protrude both ends 22, 23 of the core sand mold 20. Next, the three-dimensional core sand mold 20 to which a plurality of interval adjusters 40 are attached on the upper side is placed on the outer mold sand mold 30 which is a lower mold.

【0017】そして、その上方から上型となる外型用砂
型32を取り付ける。次いで、両外型用砂型30,32
の切欠き部から突出する中子用砂型20の両端部22,
23を固定する。斯して、中子用砂型20の壁面21と
両外型用砂型30,32の壁面31,33との間には、
隙間(キャビティ)50が形成される。
Then, an outer mold sand mold 32 serving as an upper mold is attached from above. Then, sand molds 30, 32 for both outer molds
Ends 22 of the core sand mold 20 protruding from the notch
23 is fixed. Thus, between the wall surface 21 of the core sand mold 20 and the wall surfaces 31 and 33 of both outer mold sand molds 30 and 32,
A gap (cavity) 50 is formed.

【0018】その後、何れかの外型用砂型30,32に
設けた湯口から、溶解した低融点合金(Bi57−Sn
43)51を注入する。この時、隙間(キャビティ)5
0内に鋳込まれた溶融低融点合金は、中子用砂型20よ
り比重が大きいため、三次元形状の中子用砂型20の下
方から流入し、三次元形状の中子用砂型20を上方へ浮
き上がらせようとする。然し、三次元形状の中子用砂型
20と上型となる外型用砂型30の壁面31との間に
は、低融点合金より融点の高い金属材料で構成された独
立した間隔調整具40が固定されているので、三次元形
状の中子用砂型20に掛かる浮力を阻止し、三次元形状
の中子用砂型20を隙間(キャビティ)50内の所定位
置に保持することができる。
Thereafter, the molten low melting point alloy (Bi57-Sn) was poured through a gate provided in one of the outer mold sand molds 30, 32.
43) Inject 51. At this time, a gap (cavity) 5
Since the molten low-melting point alloy cast in 0 has a higher specific gravity than the core sand mold 20, it flows in from below the three-dimensional core sand mold 20 and moves the three-dimensional core sand mold 20 upward. Try to make them rise. However, between the three-dimensional core sand mold 20 and the wall 31 of the outer sand mold 30 which is the upper mold, a metal material having a melting point higher than that of the low melting point alloy is used.
Since the standing space adjuster 40 is fixed, buoyancy applied to the three-dimensional core sand mold 20 is prevented, and the three-dimensional core sand mold 20 is held at a predetermined position in the gap (cavity) 50. can do.

【0019】従って、隙間(キャビティ)50内に鋳込
まれた溶解低融点合金が固化すると、三次元形状の中子
用砂型20の壁面21周囲には、肉厚の均一な低融点合
金層52が、この中に複数個の間隔調整具40を埋設し
た状態で形成される。次いで、両外型用砂型30,32
を壊して、壁面21周囲に肉厚の均一な低融点合金層5
2が形成された三次元形状の中子用砂型20を取り出
す。そして、三次元形状の中子用砂型20を壊して、中
空の中子を得ることができる。
Therefore, when the molten low melting point alloy cast in the gap (cavity) 50 is solidified, the low melting point alloy layer 52 having a uniform thickness is formed around the wall surface 21 of the three-dimensional core sand mold 20. However , a plurality of space adjusters 40 are embedded in this.
It is formed in the state where it was. Then, sand molds 30, 32 for both outer molds
And the low-melting-point alloy layer 5 having a uniform thickness around the wall 21.
Take out the three-dimensional core sand mold 20 on which 2 is formed. Then, the three-dimensional core sand mold 20 can be broken to obtain a hollow core.

【0020】以上の如く、本実施例によれば、2つの外
型用砂型30,32内に、三次元形状の中子用砂型20
を配すると共に、上部側の外型用砂型30の壁面31と
三次元形状の中子用砂型20の壁面21の上部側とを
融点合金より融点の高い金属材料で構成された独立した
間隔調整具40を介して固定した後、複数の外型用砂型
30,32の壁面31,33と三次元形状の中子用砂型
20の壁面21との間の隙間50内に、溶解した低融点
合金を注入し、三次元形状の中子用砂型20の壁面21
周囲に肉厚の均一な低融点合金層52を、この中に複数
個の間隔調整具40を埋設した状態で形成するものであ
るから、均一肉厚の中子が得られ、成形性が向上する。
間隔調整具40の寸法を自由にコントロールすることに
より、任意の肉厚の製品を製造できる等の利点がある。
As described above, according to the present embodiment, the three-dimensional core sand mold 20 is provided in the two outer mold sand molds 30 and 32.
And the upper surface of the wall surface 31 of the sand mold for outer mold 30 on the upper side and the upper surface of the wall surface 21 of the sand mold for core core 20 in the three-dimensional shape are lowered.
After fixing via an independent spacing adjuster 40 made of a metal material having a melting point higher than that of the melting point alloy, the walls 31 and 33 of the plurality of sand dies 30 and 32 and the three-dimensional core are formed. The melted low melting point alloy is injected into the gap 50 between the wall surface 21 of the sand mold 20 and the wall surface 21 of the three-dimensional core sand mold 20.
A plurality of low-melting alloy layers 52 of uniform thickness around the
Since the spacers 40 are formed in a state where they are buried, a core having a uniform thickness is obtained, and the moldability is improved.
By freely controlling the size of the spacing adjuster 40, there is an advantage that a product of an arbitrary thickness can be manufactured.

【0021】本発明に於て、間隔調整具40としては、
上記実施例では、アルミニュウム製ケレンを使用した
が、融点が140℃以上あれば、アルミニュウムに限ら
ず、例えば、鉄系,銅系,非鉄系(例えば、ビスマス,
錫)金属又はその合金が好ましい。
In the present invention, the spacing adjuster 40 includes:
In the above embodiment, aluminum-made kelen was used. However, as long as the melting point is 140 ° C. or more, not only aluminum but also iron-based, copper-based, and non-ferrous-based (for example, bismuth,
Tin) metals or alloys thereof are preferred.

【0022】更に、鉄系等の間隔調整具40を埋設した
状態で使用する場合には、射出成形後に、大気中又は油
中或いは高周波等で、低融点合金製中子を溶解する際
に、鉄系等の間隔調整具40が低融点合金製中子より早
く昇温し、その熱により低融点合金が短時間で溶出す
る。而も、鉄系等の融点140℃以上の間隔調整具40
は、溶解せず、又、低融点合金に対しても組成変化を与
えることが無いので、再利用が可能となる。。
Further, in the case where the iron-based spacing adjuster 40 is used in a buried state, after the injection molding, when the low-melting alloy core is melted in the air, oil, high frequency, or the like, The temperature of the interval adjuster 40 made of iron or the like rises faster than that of the core made of the low melting point alloy, and the heat causes the low melting point alloy to elute in a short time. Also, an interval adjuster 40 having a melting point of 140 ° C. or more, such as an iron-based material.
Can be reused because it does not melt and does not change the composition of the low melting point alloy. .

【0023】図6及び図7は間隔調整具40の変形例を
示すもので、図6には縦横が夫々10mm,高さ5mmの箱断
面形状のものが示され、図7には斜辺5mm,10mmの波板
形状のものが示されている。尚、上記実施例では、中子
用砂型20に間隔調整具40を固定した場合について説
明したが、外型用砂型30の壁面31に間隔調整具40
を固定しても良い。又、三次元形状の合成樹脂製品とし
て吸気管について説明したが、本発明はこれに限らず、
通常の射出成形によって単純に成形することができない
三次元方向への屈曲を有するものであれば如何なるもの
にも適用できるものである。
FIGS. 6 and 7 show a modification of the spacing adjuster 40. FIG. 6 shows a box having a cross section of 10 mm in length and width and 5 mm in height, and FIG. A 10 mm corrugated plate is shown. In the above embodiment, the case where the spacing adjuster 40 is fixed to the core sand mold 20 has been described, but the spacing adjuster 40 is fixed to the wall surface 31 of the outer mold sand mold 30.
May be fixed. Although the intake pipe has been described as a three-dimensional synthetic resin product, the present invention is not limited to this.
The present invention can be applied to any object having a three-dimensional bending that cannot be simply formed by ordinary injection molding.

【0024】[0024]

【発明の効果】以上説明したように、本発明は、三次元
方向へ屈曲する低融点合金製の中子を製造するに際し、
中子用砂型と外型用砂型との間に低融点合金より融点の
高い金属材料で構成された独立した間隔調整具を介挿す
ることによって、隙間(キャビティ)内に鋳込まれる低
融点合金が中子用砂型の下方に流れ込み、中子用砂型を
浮上させようとする力を阻止し、中子用砂型の周囲に均
一な低融点合金層を、この中に複数個の間隔調整具を埋
設した状態で形成することができるので、中子用砂型の
偏心を防止できると共に、中子の溶解時に間隔調整具を
容易に回収し、再利用することができる
As described above, according to the present invention, when manufacturing a core made of a low melting point alloy which is bent in three dimensions,
Between the sand mold for core and the sand mold for outer mold .
By inserting an independent spacing adjuster made of a high metal material, the low melting point alloy cast into the gap (cavity) flows below the core sand mold and tries to lift the core sand mold. And a uniform low-melting alloy layer around the core sand mold, and a plurality of spacing adjusters embedded in it.
Since it can be formed in the installed state , the core sand mold
Eccentricity can be prevented, and a spacing adjuster is used when the core is melted.
It can be easily collected and reused .

【0025】従って、均一肉厚の中空中子が得られ、生
産性が向上する。又、耐圧性,耐熱性が優れた三次元形
状の合成樹脂製品を得ることができる。
Accordingly, a hollow core having a uniform thickness is obtained, and the productivity is improved. Further, a three-dimensional synthetic resin product having excellent pressure resistance and heat resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る低融点合金製中子の製
造方法を示す説明図である。
FIG. 1 is an explanatory view showing a method for manufacturing a core made of a low melting point alloy according to one embodiment of the present invention.

【図2】図1に於ける要部を示す断面図である。FIG. 2 is a sectional view showing a main part in FIG.

【図3】図1に用いた間隔調整具の斜視図である。FIG. 3 is a perspective view of an interval adjuster used in FIG. 1;

【図4】図1に用いた間隔調整具の平面図である。FIG. 4 is a plan view of the spacing adjuster used in FIG.

【図5】図1に用いた間隔調整具の側面図である。FIG. 5 is a side view of the spacing adjuster used in FIG.

【図6】間隔調整具の変形例を示す斜視図である。FIG. 6 is a perspective view showing a modified example of the spacing adjuster.

【図7】間隔調整具の変形例を示す斜視図である。FIG. 7 is a perspective view showing a modified example of the spacing adjuster.

【図8】従来の低融点合金製中子の製造方法を示す説明
図である。
FIG. 8 is an explanatory view showing a method for manufacturing a conventional core made of a low melting point alloy.

【図9】図8で想定される低融点合金製中子の要部断面
図である。
FIG. 9 is a sectional view of a main part of a core made of a low melting point alloy assumed in FIG. 8;

【図10】図8で生ずる手続補正書融点合金の流れを示
す要部断面図である。
FIG. 10 is a cross-sectional view of a main part showing the flow of a procedure amendment melting point alloy generated in FIG. 8;

【符号の説明】[Explanation of symbols]

20 三次元形状の中子用砂型 21 壁面 30,32 外型用砂型 31,33 壁面 40 間隔調整具 50 隙間 52 低融点合金層 Reference Signs List 20 three-dimensional core sand mold 21 wall surface 30, 32 sand mold for outer die 31, 33 wall surface 40 spacing adjuster 50 gap 52 low melting point alloy layer

フロントページの続き (51)Int.Cl.7 識別記号 FI // B29L 23:00 (58)調査した分野(Int.Cl.7,DB名) B29C 33/00 - 33/76 B29C 45/00 - 45/84 Continuation of the front page (51) Int.Cl. 7 identification code FI // B29L 23:00 (58) Field surveyed (Int.Cl. 7 , DB name) B29C 33/00-33/76 B29C 45/00- 45/84

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の外型用砂型(30,32)内に、
三次元形状の中子用砂型(20)を配すると共に、上部
側の外型用砂型(30)の壁面(31)と三次元形状の
中子用砂型(20)の壁面(21)の上部側とを低融点
合金より融点の高い金属材料で構成された独立した間隔
調整具(40)を介して固定した後、複数の外型用砂型
(30,32)の壁面(31,33)と三次元形状の中
子用砂型(20)の周囲との間の隙間(50)内に、溶
解した低融点合金を注入し、三次元形状の中子用砂型
(20)の壁面(21)周囲に肉厚の均一な低融点合金
層(52)を、この中に前記間隔調整具(40)を埋設
した状態で形成することを特徴とする低融点合金製中子
の製造方法。
1. A plurality of outer mold sand molds (30, 32),
The three-dimensional core sand mold (20) is arranged, and the upper wall of the outer mold sand mold (30) and the upper wall of the three-dimensional core sand mold (20) are disposed. Low melting point
After fixing via an independent spacing adjuster (40) made of a metal material having a melting point higher than that of the alloy , a plurality of sand molds (30, 32) for the outer mold (30, 32) and the three-dimensional shape with the wall (31, 33). The melted low melting point alloy is injected into the gap (50) between the core sand mold (20) and the periphery thereof, and the wall thickness (21) of the three-dimensional core sand mold (20) is uniform around the wall (21). A low melting point alloy layer (52), and the spacing adjuster (40) embedded therein.
A method for producing a core made of a low-melting-point alloy, wherein the core is formed in a state where the core is formed.
JP10748091A 1991-05-13 1991-05-13 Manufacturing method of core made of low melting point alloy Expired - Lifetime JP3070693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10748091A JP3070693B2 (en) 1991-05-13 1991-05-13 Manufacturing method of core made of low melting point alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10748091A JP3070693B2 (en) 1991-05-13 1991-05-13 Manufacturing method of core made of low melting point alloy

Publications (2)

Publication Number Publication Date
JPH04336211A JPH04336211A (en) 1992-11-24
JP3070693B2 true JP3070693B2 (en) 2000-07-31

Family

ID=14460288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10748091A Expired - Lifetime JP3070693B2 (en) 1991-05-13 1991-05-13 Manufacturing method of core made of low melting point alloy

Country Status (1)

Country Link
JP (1) JP3070693B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752767B (en) * 2013-12-18 2016-06-22 桐乡合德机械有限公司 Foundry goods Elongated hole sand core molding structure and manufacturing process
CN106738510B (en) * 2016-11-23 2019-02-22 西安奥尔科复合材料研究所 A kind of abnormal shape ventilation duct mandrel molding method

Also Published As

Publication number Publication date
JPH04336211A (en) 1992-11-24

Similar Documents

Publication Publication Date Title
CN1015518B (en) Method of casting metals with integral heat exchange piping
US6298899B1 (en) Water jacket core
CN1074953C (en) Pump housing and manufacturing method therefor
JPH09216046A (en) Production of cylinder block in internal combustion engine
US4705092A (en) Manufacturing method for an integral type crankshaft bearing cap
JP3070693B2 (en) Manufacturing method of core made of low melting point alloy
JP3392509B2 (en) Manufacturing method of amorphous alloy coated member
CN106583646B (en) A kind of railway locomotive high capacity motor shell running gate system and its casting technique
DE10125615A1 (en) Mold and method for making a lost foam cast model for a light metal liner
JPS63295852A (en) Manufacture of synthetic resin intake pipe for engine
JP3019113B2 (en) Manufacturing method of hollow core made of low melting point alloy
JP2948672B2 (en) Method for producing synthetic resin hollow body
JP2801917B2 (en) Manufacturing method of low melting point alloy core
JPH06344394A (en) Production of tubular member made of synthetic resin
KR100240581B1 (en) Method of manufacturing power steering oil pump housing
JP2723325B2 (en) Manufacturing method of core for pressure casting
JPS61172709A (en) Manufacture of resin mold for synthetic resin molding
JPS6057416B2 (en) Casting method for double-flanked pipes
KR100245745B1 (en) Method of housing of power streering oil pump
JP2741283B2 (en) Mold manufacturing method
KR100588886B1 (en) Mold structure for casting parts of an Automobile capable of preventing heat shrinkage
JPS5827023B2 (en) Manufacturing method of fiber reinforced composite member
JPH02190223A (en) Manufacture of radiator
JPH08141699A (en) Manufacture of manifold
JPH0242420Y2 (en)