JP3070193B2 - Method of manufacturing magnetoresistive element - Google Patents

Method of manufacturing magnetoresistive element

Info

Publication number
JP3070193B2
JP3070193B2 JP3305871A JP30587191A JP3070193B2 JP 3070193 B2 JP3070193 B2 JP 3070193B2 JP 3305871 A JP3305871 A JP 3305871A JP 30587191 A JP30587191 A JP 30587191A JP 3070193 B2 JP3070193 B2 JP 3070193B2
Authority
JP
Japan
Prior art keywords
thin film
magnetoresistive element
substrate
magnetoresistive
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3305871A
Other languages
Japanese (ja)
Other versions
JPH05145141A (en
Inventor
和弘 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3305871A priority Critical patent/JP3070193B2/en
Publication of JPH05145141A publication Critical patent/JPH05145141A/en
Application granted granted Critical
Publication of JP3070193B2 publication Critical patent/JP3070193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気式位相・変位量検
出装置に使用する、ニッケル合金の強磁性薄膜からなる
磁気抵抗素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetoresistive element comprising a ferromagnetic thin film of a nickel alloy, which is used in a magnetic phase / displacement detector.

【0002】[0002]

【従来の技術】現在おもに用いられている回転検出装置
の中で、光半導体を用いた光式回転検出装置や、ホール
ICを用いた磁気式回転検出装置は、耐熱温度が125
℃以下であり、産業機器に対して使用する際には大きな
障害となっているのが現状である。そこで200℃以上
の耐熱温度のある強磁性磁気抵抗素子の産業機器への利
用がますます高まってきている。特に電装品分野では、
180℃以上の耐熱性を要求される電子部品が多く、検
出体の物性から見て、強磁性磁気抵抗素子以外の回転検
出装置は使用できないことは明らかであり、その期待度
は高まる一方である。
2. Description of the Related Art Among rotation detection devices currently mainly used, an optical rotation detection device using an optical semiconductor and a magnetic rotation detection device using a Hall IC have a heat resistant temperature of 125.
It is below ℃, which is a major obstacle when used for industrial equipment. Therefore, the use of ferromagnetic magnetoresistive elements having a heat-resistant temperature of 200 ° C. or more for industrial equipment is increasing. Especially in the field of electrical components,
There are many electronic components that require heat resistance of 180 ° C. or higher, and it is clear from the physical properties of the detector that rotation detection devices other than ferromagnetic magnetoresistive elements cannot be used. .

【0003】一方、強磁性磁気抵抗素子はガラスまたは
セラミック基板上などにニッケル合金からなる膜厚約5
00Åの強磁性薄膜をパターニングし、その上に保護膜
SiNなどをコーティングすることによって構成され
る。強磁性薄膜は、あらゆる方向に対し強い形状異方性
を示すため、パターンの長手方向に異方性を生じせしめ
て使用する磁気抵抗素子の場合、その基板の表面状態は
鏡面にせねばならない。
On the other hand, a ferromagnetic magnetoresistive element is formed on a glass or ceramic substrate or the like by a nickel alloy having a thickness of about 5 mm.
The ferromagnetic thin film is formed by patterning a ferromagnetic thin film having a thickness of 00 ° and coating a protective film such as SiN thereon. Since a ferromagnetic thin film exhibits strong shape anisotropy in all directions, in the case of a magnetoresistive element used by generating anisotropy in the longitudinal direction of a pattern, the surface state of the substrate must be mirror-finished.

【0004】強磁性磁気抵抗素子は、磁界による抵抗値
変化(磁気抵抗効果)を電気信号に変換するものである
が、この際に電気信号出力に最も影響を与えるのが磁気
抵抗変化特性である。磁気抵抗変化特性は、以下の要因
にて影響を及ぼされる。 1.基板の表面平滑性 2.強磁性磁気抵抗薄膜の形状異方性 3.強磁性磁気抵抗薄膜の結晶異方性 4.強磁性磁気抵抗薄膜の電子スピンの配向性 このうち、1と2の要因に関しては使用する材料の選択
時やパターン設計の段階において予想することができ
る。
A ferromagnetic magnetoresistive element converts a change in resistance (magnetoresistive effect) due to a magnetic field into an electric signal. At this time, the magnetoresistive change characteristic has the greatest influence on the electric signal output. . The magnetoresistance characteristics are influenced by the following factors. 1. 1. Surface smoothness of substrate 2. Shape anisotropy of ferromagnetic magnetoresistive thin film 3. Crystal anisotropy of ferromagnetic magnetoresistive thin film Electron spin orientation of the ferromagnetic magnetoresistive thin film Among these, factors 1 and 2 can be expected at the time of selecting a material to be used or at the stage of pattern design.

【0005】一方、3や4の要因に関してはその現象が
決定されるのが強磁性磁気抵抗薄膜の形成時であると考
えられるので、これらの現象の制御は以下の手法で行わ
れている。 1.磁場中での蒸着 2.基板に対して90°以下の一定の角度をつけた斜め
蒸着 3.磁場中での高温アニーリング 上記の手法による磁気抵抗効果の向上は外部からの影響
を極めて受け易く、そのため強磁性磁気抵抗薄膜の結晶
異方性と電子スピンの配向性の制御に関しては、現在工
業的に検討されていないのが現状である。
On the other hand, the factors 3 and 4 are considered to be determined when the ferromagnetic magnetoresistive thin film is formed. Therefore, these phenomena are controlled by the following method. 1. 1. Deposition in a magnetic field 2. Oblique deposition at a certain angle of 90 ° or less with respect to the substrate. High-temperature annealing in a magnetic field The improvement of the magnetoresistance effect by the above method is extremely susceptible to external influences. Therefore, the control of crystal anisotropy and electron spin orientation of ferromagnetic magnetoresistive thin films is currently an industrial issue. It is not currently considered.

【0006】また、磁気抵抗素子を磁気センサとして使
用する場合、連続使用において、抵抗値変化率で2%以
下、中点電位変化量で5V印加時に1mV以下に抑えな
ければ使用することが極めて困難である。
In addition, when the magnetoresistive element is used as a magnetic sensor, it is extremely difficult to use the magnetic sensor unless the resistance change rate is 2% or less and the midpoint potential change is 5 mV or less when applied at 5 V in continuous use. It is.

【0007】[0007]

【発明が解決しようとする課題】以下、具体的に従来の
磁気抵抗素子について説明する。
Hereinafter, a conventional magnetoresistive element will be specifically described.

【0008】従来の方式は、図5に示すごとくアルカリ
ガラス、ほう珪酸ガラス、グレーズドアルミナの基板の
上にニッケル合金からなる磁気抵抗薄膜を着膜し、その
上からSiN等の保護膜を着膜したものである。ここ
で、2は強磁性磁気抵抗素子、4は基板、3は保護膜で
ある。
In the conventional method, as shown in FIG. 5, a magnetoresistive thin film made of a nickel alloy is formed on an alkali glass, borosilicate glass, or glazed alumina substrate, and a protective film such as SiN is formed thereon. It was done. Here, 2 is a ferromagnetic magnetoresistive element, 4 is a substrate, and 3 is a protective film.

【0009】この磁気抵抗素子の抵抗値変化率Δρ/ρ
は常温で3.5%程度であり、これ以上の特性を得るに
は以下の方法しかなかった。 1.磁場中での蒸着 2.斜め蒸着 3.磁場中でのアニーリング これらの方法には以下の欠点をはらんでいる。 1.安定した特性が得られない 2.工法的に困難な点があり、量産設備を設計すること
ができない 3.他の因子の影響を受けやすい さらに従来方式の200℃での連続使用による中点電位
変化量を図3に示すが、どの方式も10mV以上マイナ
ス側にずれていることが判る。
The rate of change of the resistance value of this magnetoresistive element Δρ / ρ
Is about 3.5% at room temperature, and the only way to obtain further characteristics is as follows. 1. 1. Deposition in a magnetic field Oblique deposition 3. Annealing in a magnetic field These methods have the following disadvantages. 1. 1. Stable characteristics cannot be obtained. 2. There are difficulties in the construction method, and mass production equipment cannot be designed. FIG. 3 shows the amount of change in the midpoint potential due to continuous use at 200 ° C. in the conventional method. FIG. 3 shows that all the methods are shifted to the minus side by 10 mV or more.

【0010】以上より従来方式の基板での問題点は以下
のものが考えられる。 1.基板中に含まれるアルカリ成分またはハロゲン分子
の、電気泳動によるニッケル合金中への拡散 2.基板材料とニッケル合金薄膜の界面の熱による移動 3.磁気抵抗薄膜の結晶粒の移動 以上の問題を鑑みて、磁気抵抗効果を容易に0.5%以
上向上させ、200℃で3000時間以上の使用におい
て、中点電位変化量1mV以下の磁気抵抗素子を安価に
提供することを目的とする。
From the above, the following problems are conceivable in the conventional substrate. 1. 1. Diffusion of alkali components or halogen molecules contained in a substrate into a nickel alloy by electrophoresis. 2. Heat transfer at the interface between the substrate material and the nickel alloy thin film Movement of crystal grains in magnetoresistive thin film In view of the above problems, a magnetoresistive element that easily improves the magnetoresistive effect by 0.5% or more and has a midpoint potential change of 1 mV or less when used at 200 ° C. for 3000 hours or more. The purpose is to provide a low-cost.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、Na + ,K + ,Cl - の含有量が10ppm
以下の基板表面にニッケル合金の強磁性薄膜を形成し、
高温負荷によるエージングを行うものである。
Means for Solving the Problems The present invention to achieve the above object, Na +, K +, Cl - content 10ppm of
Form a ferromagnetic thin film of nickel alloy on the following substrate surface,
Aging by high temperature load is performed.

【0012】[0012]

【作用】本発明によれば、熱によるニッケル合金薄膜内
へのNa+ + Cl-などの拡散による影響をなくす
ため、前記Na+ + Cl-の含有量が10ppm以
下の基板を用い、高温負荷をかけることにより、ニッケ
ル合金薄膜パターンを自己発熱させてエージングし、ニ
ッケル合金薄膜の基板との応力を緩和し、さらに磁気抵
抗薄膜の結晶粒の異方性を前記磁気抵抗薄膜パターンの
長手方向に向ける。また、熱と金属薄膜中の電子によ
り、基板中に含有する微量のアルカリの移動を終了さ
せ、200℃で3000時間以上の連続使用に於いて前
記ニッケル合金薄膜の抵抗値が全く変化しないようにし
た。
According to the present invention, to heat by a nickel alloy thin film Na +, K +, Cl - to eliminate the influence of diffusion, such as the Na +, K +, Cl - content 10ppm or less of
By using a lower substrate and applying a high temperature load, the nickel alloy thin film pattern self-heats and ages, thereby relaxing the stress of the nickel alloy thin film with the substrate and further reducing the anisotropy of the crystal grains of the magnetoresistive thin film. Orient in the longitudinal direction of the magnetoresistive thin film pattern. In addition, the transfer of a trace amount of alkali contained in the substrate is terminated by heat and electrons in the metal thin film so that the resistance of the nickel alloy thin film does not change at all during continuous use at 200 ° C. for 3000 hours or more. did.

【0013】[0013]

【実施例】以下、本発明の一実施例の磁気抵抗素子の製
造方法について説明する。図1は、本発明の一実施例の
磁気抵抗素子の構造を示したものであり、1は基板、
はニッケル合金の強磁性薄膜、3はSiNからなる保護
膜である。なお、基板1の一例としてサファイヤなどか
らなる基板も使用可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a magnetoresistive element according to one embodiment of the present invention will be described below. FIG. 1 shows the structure of a magnetoresistive element according to one embodiment of the present invention, where 1 is a substrate, 2
Is a ferromagnetic thin film of a nickel alloy, and 3 is a protective film made of SiN. Note that sapphire or the like is used as an example of the substrate 1.
A substrate made of such a material can be used.

【0014】本実施例では、1000Ωの磁気抵抗素子
に200℃にて100時間の5V印加を行い、高温負荷
によるエージングとした。図2(a),(b)はそれぞ
れ本実施例と従来例の素子の磁気抵抗効果を表す抵抗値
変化率Δρ/ρを示す特性図であるが、ここで縦軸は磁
気抵抗変化率、横軸は磁界強度を示している。これによ
ると、本実施例によるところの素子は、Δρ/ρが従来
の3.5%に対し約0.75%向上して4.25%にな
っていることがわかった。図3は本実施例の素子を用い
て200℃での連続使用を行った後の中点電位ドリフト
量の結果であり、横軸は時間、縦軸は中点電位のドリフ
ト量を示している。図において、従来例1,2,3はそ
れぞれ基板にほう珪酸ガラス、アルカリガラス、グレー
ズドアルミナを用いている。これによると、従来例は1
0mV以上ドリフトしているのに対し、本実施例は0.
5mVしかドリフトしていないことが判る。図4は本実
施例によるところの素子と前記従来例1,2,3の素子
を用いて200℃で5V印加した際の抵抗値の経時変化
を示したものである。これによると従来例と比較して、
本発明実施例はほとんど変化していないことがわかる。
なお、基板1の一例としてサファイヤで説明したが、上
述した作用の欄で説明した通り、Na + ,K + ,Cl -
含有量が10ppm以下の基板でもよい。
In this embodiment, aging was performed by applying a 5 V voltage to a 1000 Ω magnetoresistive element at 200 ° C. for 100 hours. FIGS. 2A and 2B are characteristic diagrams showing the resistance change rate Δρ / ρ representing the magnetoresistance effect of the elements of the present embodiment and the conventional example, where the vertical axis represents the magnetoresistance change rate, The horizontal axis indicates the magnetic field strength. According to this, it was found that in the device according to the present example, Δρ / ρ was improved by about 0.75% from the conventional 3.5% to 4.25%. FIG. 3 shows the result of the midpoint potential drift amount after continuous use at 200 ° C. using the device of the present example. The horizontal axis represents time, and the vertical axis represents the drift amount of the midpoint potential. . In the figure, conventional examples 1, 2, and 3 respectively use borosilicate glass, alkali glass, and glazed alumina for the substrate. According to this, the conventional example is 1
In contrast to the drift of 0 mV or more, in the present embodiment, the drift is 0.1 mV.
It can be seen that only 5 mV drifts. FIG. 4 shows the change over time of the resistance value when 5 V is applied at 200 ° C. using the device according to the present embodiment and the devices according to the conventional examples 1, 2, and 3. According to this, compared to the conventional example,
It can be seen that the embodiment of the present invention has hardly changed.
In addition, although sapphire was explained as an example of the substrate 1,
As mentioned in the description of the action that predicate, Na +, K +, Cl - of
A substrate having a content of 10 ppm or less may be used.

【0015】さらに従来の斜め蒸着、磁場中蒸着や磁場
中アニーリング法と比較して1回の基板処理枚数が約2
0倍であることがわかった。以上のように、本実施例に
よれば、 1.磁気抵抗効果Δρ/ρが0.5%以上向上した 2.200℃での連続使用に於いて、中点電位のドリフ
トが全く無い 3.高出力で熱的に安定な磁気抵抗素子を簡便に、大量
に得ることができる といった効果が得られる。
Further, compared with the conventional oblique deposition, magnetic field deposition, or magnetic field annealing, the number of substrates processed per process is about 2 times.
It turned out to be 0 times. As described above, according to the present embodiment, 2. The magnetoresistance effect Δρ / ρ is improved by 0.5% or more 2. In continuous use at 200 ° C., there is no drift of the midpoint potential. The effect is obtained that a large number of high-output, thermally stable magnetoresistive elements can be obtained easily and easily.

【0016】[0016]

【発明の効果】以上のように本発明によれば、磁気抵抗
効果を容易に0.5%以上向上させ、200℃で300
0時間以上の使用において、中点電位変化量1mV以下
の磁気抵抗素子を安価に提供することができる。
As described above, according to the present invention, the magnetoresistance effect is easily improved by 0.5% or more,
When used for 0 hours or more, a magnetoresistive element having a midpoint potential change of 1 mV or less can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の磁気抵抗素子の断面図FIG. 1 is a sectional view of a magnetoresistive element according to one embodiment of the present invention.

【図2】(a)は本実施例の磁気抵抗効果を示す特性図 (b)は従来の磁気抵抗効果を示す特性図FIG. 2A is a characteristic diagram showing a magnetoresistive effect of the present embodiment; FIG. 2B is a characteristic diagram showing a conventional magnetoresistive effect;

【図3】本実施例と従来例の中点電位ドリフト量を示す
特性図
FIG. 3 is a characteristic diagram showing a midpoint potential drift amount of the present embodiment and a conventional example.

【図4】本実施例と従来例の抵抗値変化率を示す特性図FIG. 4 is a characteristic diagram showing resistance value change rates of the present embodiment and a conventional example.

【図5】従来の磁気抵抗素子の断面図FIG. 5 is a sectional view of a conventional magnetoresistive element.

【符号の説明】[Explanation of symbols]

基板 2 強磁性薄膜 3 保護膜1 substrate 2 ferromagnetic thin film 3 protective film

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Na + ,K + ,Cl - の含有量が10pp
m以下の基板表面にニッケル合金の強磁性薄膜を形成
し、高温負荷によるエージングを行うことを特徴とする
磁気抵抗素子の製造方法。
1. A Na +, K +, Cl - content of 10pp
2. A method for manufacturing a magnetoresistive element, comprising forming a ferromagnetic thin film of a nickel alloy on a substrate surface of not more than m and performing aging under a high temperature load.
JP3305871A 1991-11-21 1991-11-21 Method of manufacturing magnetoresistive element Expired - Fee Related JP3070193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3305871A JP3070193B2 (en) 1991-11-21 1991-11-21 Method of manufacturing magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3305871A JP3070193B2 (en) 1991-11-21 1991-11-21 Method of manufacturing magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH05145141A JPH05145141A (en) 1993-06-11
JP3070193B2 true JP3070193B2 (en) 2000-07-24

Family

ID=17950352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3305871A Expired - Fee Related JP3070193B2 (en) 1991-11-21 1991-11-21 Method of manufacturing magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3070193B2 (en)

Also Published As

Publication number Publication date
JPH05145141A (en) 1993-06-11

Similar Documents

Publication Publication Date Title
JP4890891B2 (en) Magnetic sensor, manufacturing method thereof, and electronic apparatus
CN107690718A (en) Mtj
JP3070193B2 (en) Method of manufacturing magnetoresistive element
WO2019149194A1 (en) Resetable bipolar switch sensor
JPH05145142A (en) Magnetoresistance element
US20060164204A1 (en) Magnetoresistance effect element and production method and application method therefor same
JPH0521863A (en) Ferromagnetoresistance element
CN110165045B (en) W-B alloy material and spin-orbit torque-based spin electronic device
JPH05335654A (en) Ferromagnetic magnetic resistance element
US10559748B2 (en) Tunnel magnetic resistance element and method for manufacturing same
Hanson et al. STRIPE DOMAINS IN Ni–Fe FILMS WITH ZERO AND POSITIVE MAGNETOSTRICTION
JP3590291B2 (en) Magnetoresistive element
JP2990971B2 (en) Semiconductor thin film magnetoresistive element and method of manufacturing the same
JP2003279423A (en) Strain sensor
JP3551134B2 (en) Method for manufacturing magnetic tunnel effect element
JPS62177412A (en) Magnetic rotary sensor and its production
Andreev et al. Magnetic properties of thin film amr sensor structures implemented by magnetization after annealing
JPH02159080A (en) Manufacture of magnetoresistance element
JPH07249517A (en) Temperature-sensitive magnetic thin film, its manufacture, and photodetecting type thin film temperature sensor
JPH0963843A (en) Multilayer structure for integrated magnetic sensor
JP2001281310A (en) Magnetic impedance effect element and its manufacturing method
JPH05304325A (en) Semiconductor thin film magnetic resistor element and fabrication thereof
JPH03257977A (en) Manufacture of magnetoresistance element
JPH0590660A (en) Magneto-resistance element
CN112305468A (en) Method and structure for annealing giant magnetoresistance sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees