JPH07249517A - Temperature-sensitive magnetic thin film, its manufacture, and photodetecting type thin film temperature sensor - Google Patents

Temperature-sensitive magnetic thin film, its manufacture, and photodetecting type thin film temperature sensor

Info

Publication number
JPH07249517A
JPH07249517A JP6661194A JP6661194A JPH07249517A JP H07249517 A JPH07249517 A JP H07249517A JP 6661194 A JP6661194 A JP 6661194A JP 6661194 A JP6661194 A JP 6661194A JP H07249517 A JPH07249517 A JP H07249517A
Authority
JP
Japan
Prior art keywords
thin film
temperature
sensitive
sensitive magnetic
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6661194A
Other languages
Japanese (ja)
Other versions
JP3312637B2 (en
Inventor
Yoshimitsu Otani
佳光 大谷
Bunichi Yoshimura
文一 吉村
Iwao Hatakeyama
巌 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP06661194A priority Critical patent/JP3312637B2/en
Publication of JPH07249517A publication Critical patent/JPH07249517A/en
Application granted granted Critical
Publication of JP3312637B2 publication Critical patent/JP3312637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To provide techniques related to a temperature-sensitive magnetic thin film to which a designated temperature can be set easily with high accuracy and which can be formed through a simple process, the manufacturing method of the thin film, and a temperature sensor which utilizes the thin film and can accurately detect the temperature of a very small area by light from a remote area. CONSTITUTION:A temperature-sensitive magnetic thin film composed of a thin film 2 of an Fe-Rh alloy which has the crystal structure of cesium chloride and contains an element selected from among Pd, Pt, Ir, Ru, and Os by <=5atm% and a nonmagnetic thin film 3 which is formed on the thin film 2 and a partially varying thickness, a temperature-sensitive thin film manufacturing method by which the nonmagnetic thin film 3 is unevenly formed on the alloy thin film 2, and a photodetecting type thin film temperature sensor using the temperature-sensitive magnetic thin film. Therefore, the temperature-sensitive thin film which can be arbitrarily controlled to a designated temperature with accuracy can be easily manufactured and a manufacturing method by which the temperature-sensitive thin film can be manufactured through a simple process so that the sensitive temperature of the thin film can be easily corrected is provided. In addition, a thin film temperature sensor which can detect the temperature of a very small area by light from a remote place can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は感温磁性薄膜とその
作製方法ならびに光検出型薄膜温度センサ、さらに詳細
には、様々な感温センサ、感温アクチュエータ等に応用
できる磁性薄膜およびその作製法、ならびに感温磁性薄
膜を利用した温度センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature-sensitive magnetic thin film, a method for producing the same, a photo-detecting thin film temperature sensor, and more specifically, a magnetic thin film applicable to various temperature sensors, temperature-sensitive actuators, etc., and a method for producing the same. , And a temperature sensor using a temperature-sensitive magnetic thin film.

【0002】[0002]

【従来の技術】温度の変化に伴って、磁性体の磁化、透
磁率、保磁力などの磁気的性質が急激変化することを利
用した、いわゆる感温素子が広く用いられている。サー
マルリードスイッチはその代表的なもので、指定温度に
キュリー温度を持つフェライト磁心と永久磁石、リード
スイッチを組み合わせたものである。これは、指定温度
におけるフェライトの透磁率の急激な低下によってリー
ドスイッチに加わる磁界が変化することで、主回路を開
閉する温度制御素子であり、冷蔵庫、電子ポット、自動
車のエンジンの監視などに実用されている。この温度セ
ンサとしての利用の他にも、感温磁性材料は熱エネルギ
ーを電気・機械エネルギーなどへの変換素子、生体加熱
等へも応用されている。
2. Description of the Related Art A so-called temperature-sensitive element is widely used, which utilizes the fact that magnetic properties such as magnetization, magnetic permeability, and coercive force of a magnetic material change rapidly with changes in temperature. A typical thermal reed switch is a combination of a ferrite core having a Curie temperature at a specified temperature, a permanent magnet, and a reed switch. This is a temperature control element that opens and closes the main circuit when the magnetic field applied to the reed switch changes due to a sudden decrease in the magnetic permeability of ferrite at a specified temperature.It is used for monitoring refrigerators, electronic pots, automobile engines, etc. Has been done. In addition to the use as the temperature sensor, the temperature-sensitive magnetic material is also applied to a conversion element for converting heat energy into electrical / mechanical energy, heating of a living body, and the like.

【0003】近年は、電子機器の小型、軽量化への要請
が一層高ま植り、電子回路のシリコンチップ上一体化し
て薄膜形態で使用するセンサ、アクチュエータに対する
期待が大きい。また、温度に対する精度の増加、多様な
指定温度の設定が必要となっている。
In recent years, demands for smaller and lighter electronic devices have been further heightened, and there are great expectations for sensors and actuators which are integrated on a silicon chip of an electronic circuit and used in a thin film form. Further, it is necessary to increase the accuracy with respect to temperature and set various designated temperatures.

【0004】[0004]

【発明が解決しようとする課題】これら要請に対して従
来技術では次のような不都合があった。すなわち、一つ
は、指定温度を精密に制御することが困難であることで
ある。指定温度を変えるには材料のキュリー点を変化さ
せる必要がある。キュリー点は材料固有の性質であり、
これ変化させるためには材料の組性を直接変える必要が
ある。Mn−Cu系フェライト、Fe−Ni−Cr系合
金、Cu−Ni系合金などが多く使用される材料である
が、これらにおいて、各々の系における組成比率、ある
いは温度によっては、合金系そのものを選択、変化させ
なければならない。またキュリー点が変われば、磁化の
絶対値なども同時に変化するので、指定温度、機能によ
って、単品としての設計が必要となる。
In order to meet these demands, the prior art has the following disadvantages. That is, one is that it is difficult to precisely control the specified temperature. To change the specified temperature, it is necessary to change the Curie point of the material. Curie point is a property peculiar to materials,
In order to change this, it is necessary to directly change the composition of the material. Mn-Cu-based ferrite, Fe-Ni-Cr-based alloy, Cu-Ni-based alloy and the like are often used materials, but depending on the composition ratio of each system or temperature, the alloy system itself is selected. , Have to change. Also, if the Curie point changes, the absolute value of the magnetization also changes at the same time, so it is necessary to design as a single item depending on the specified temperature and function.

【0005】二つには、薄膜化、プロセス化に当たって
の困難性である。薄膜化に当たっては、上記組成に対す
る制御の厳密性はさらに要求される。また、集積化にあ
ったり、いくつもの指定温度の材料を組み合わせるには
それぞれの組成の膜を別々に堆積せねばならず、プロセ
スが膨大になってしまう。さらに、これらに加え設計変
更、指定温度の変更に際しては、以前の薄膜プロセスは
適用できず、素子形成後の指定値変更は不可能である。
The second problem is the difficulty in forming a thin film and processing. In forming a thin film, strict control of the above composition is further required. In addition, in order to integrate or combine materials of several specified temperatures, films of respective compositions have to be deposited separately, resulting in an enormous number of processes. Furthermore, in addition to these, when changing the design and the designated temperature, the previous thin film process cannot be applied, and it is impossible to change the designated value after element formation.

【0006】これら不都合に加え、医療分野、耐電磁ノ
イズの要求される分野および、防爆性の要求される分野
においては、電気的な回路、接点などを用いず、しかも
微小領域の温度を光によりセンシングする遠隔的な温度
センサが望まれているが、従来、このような温度センサ
はなかった。
In addition to these inconveniences, in the medical field, the field requiring electromagnetic noise resistance, and the field requiring explosion proof, electric circuits, contacts, etc. are not used, and the temperature of a minute region is controlled by light. Although a remote temperature sensor for sensing is desired, there has been no such temperature sensor in the past.

【0007】本発明は、上記問題点に対して、指定温度
を精密に、しかも簡便に設定でき、かつ薄膜化プロセス
化が容易な感温磁性薄膜およびその作製法ならびに、こ
の薄膜を利用した、微小領域の温度を精度よく、遠隔的
に光によって検知する温度センサに関する技術を提供す
ることを目的としている。
In order to solve the above problems, the present invention uses a temperature-sensitive magnetic thin film which can set a designated temperature precisely and easily and can be easily formed into a thin film, a method for producing the same, and a method of using the thin film. It is an object of the present invention to provide a technique relating to a temperature sensor that remotely and accurately detects the temperature of a minute area by light.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明による感温磁性薄膜は、Pd、Pt、Ir、
Ru、Osから選ばれた元素を5atm%以下含有す
る、塩化セシウム結晶構造のFe−Rh系合金の薄膜上
に、部分的に厚さの異なる非磁性の薄膜が堆積されてな
ることを特徴とする。
In order to solve the above problems, the temperature-sensitive magnetic thin film according to the present invention comprises Pd, Pt, Ir,
A non-magnetic thin film having a partially different thickness is deposited on a thin film of an Fe-Rh-based alloy having a cesium chloride crystal structure and containing 5 atm% or less of an element selected from Ru and Os. To do.

【0009】また、本発明による感温磁性薄膜の作製方
法は、Pd、Pt、Ir、Ru、Osから選ばれた元素
を5atm%以下含有する、塩化セシウム結晶構造のF
e−Rh系合金薄膜を形成し、前記合金薄膜上に非磁性
の薄膜を不均一に堆積することを特徴とするものであ
る。
Further, the method for producing a temperature-sensitive magnetic thin film according to the present invention is an F-containing cesium chloride crystal structure containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru and Os.
An e-Rh-based alloy thin film is formed, and a non-magnetic thin film is non-uniformly deposited on the alloy thin film.

【0010】さらに本発明による感温磁性薄膜を使用し
た光検出型薄膜温度センサは、Pd、Pt、Ir、R
u、Osから選ばれた元素を5atm%以下含有する、
塩化セシウム結晶構造のFe−Rh系合金の薄膜上に、
部分的に厚さの異なる非磁性の薄膜が堆積されてなる感
温磁性薄膜と、前記感温磁性薄膜に直線偏光を入射する
手段と、前記直線偏光の前記感温磁性薄膜からの反射光
を検出する手段と、前記感温磁性薄膜の表面に略平行な
方向に磁場を印加する起磁力源とを有することを特徴と
するものである。
Further, the photo-detecting type thin film temperature sensor using the temperature-sensitive magnetic thin film according to the present invention is Pd, Pt, Ir, R.
Containing 5 atm% or less of an element selected from u and Os,
On a thin film of Fe-Rh-based alloy having a cesium chloride crystal structure,
A temperature-sensitive magnetic thin film formed by partially depositing non-magnetic thin films having different thicknesses, a means for injecting linearly polarized light into the temperature-sensitive magnetic thin film, and a reflected light from the temperature-sensitive magnetic thin film of the linearly polarized light. It is characterized by having a means for detecting and a magnetomotive force source for applying a magnetic field in a direction substantially parallel to the surface of the temperature-sensitive magnetic thin film.

【0011】本発明の特徴の一つは、キュリー温度にお
ける磁気特性の変化を利用するのではなく、Fe−Rh
系合金の薄膜における反強磁性から強磁性へ変化する磁
気相転移を利用する点である。Fe−50at%Rh近
傍組成の合金(Fe−45〜56at%Rh組成)はC
sClタイプのbcc規則合金となる。この規則合金
は、低温において反強磁性であるが、60℃〜100℃
において強磁性に遷移する。また、0〜5原子%のP
d、Pt、Ir、Ru、Osを前記合金に添加すると、
転移温度は50〜400℃程度の範囲で変化させること
ができる。転移温度において磁化のほとんどない状態か
ら不連続に磁化約1000G程度が発生するために、温
度センサや感熱駆動アクチュエータなど多くの応用の可
能性がある。このバルクにおける特性を薄膜で利用する
ことに着目している。
One of the characteristics of the present invention is that Fe-Rh is not utilized by utilizing the change in magnetic characteristics at the Curie temperature.
This is the point of utilizing the magnetic phase transition in which the antiferromagnetism changes to the ferromagnetism in the thin film of a system alloy. An alloy with a composition in the vicinity of Fe-50 at% Rh (Fe-45 to 56 at% Rh composition) is C
It becomes an sCl type bcc ordered alloy. This ordered alloy is antiferromagnetic at low temperatures, but at 60 ° C to 100 ° C.
Changes to ferromagnetism at. In addition, 0 to 5 atomic% P
When d, Pt, Ir, Ru and Os are added to the alloy,
The transition temperature can be changed within the range of about 50 to 400 ° C. Since the magnetization of about 1000 G is discontinuously generated from the state where there is almost no magnetization at the transition temperature, there are many possible applications such as a temperature sensor and a thermosensitive actuator. We focus on utilizing the properties of this bulk in a thin film.

【0012】特徴の二つ目は、上記Fe−Rh系合金薄
膜をまず基板上に作製してから、非磁性の薄膜をオーバ
ーコートする点である。このオーバーコート薄膜はFe
Rh薄膜に加わる応力を制御する目的で形成するもので
ある。Fe−Rh系合金における反強磁性−強磁性相転
移は、応力に敏感であり、バルクにおいては、100M
Paの静水圧(圧縮応力)あたり、5から6℃の相転移
点の増加が生じることが知られているが、静水圧下で素
子を形成するのは実用的でない。発明者らは、非磁性薄
膜オーバーコートという手法により、薄膜に適した、2
次元的な応力付与によって、転移点の制御ができること
を発見し、本発明に至ったのである。
The second characteristic is that the above Fe-Rh alloy thin film is first formed on a substrate and then a nonmagnetic thin film is overcoated. This overcoat thin film is Fe
It is formed for the purpose of controlling the stress applied to the Rh thin film. The antiferromagnetic-ferromagnetic phase transition in Fe-Rh based alloys is stress sensitive and, in bulk, 100M
It is known that an increase in the phase transition point of 5 to 6 ° C. occurs per hydrostatic pressure (compressive stress) of Pa, but it is not practical to form an element under hydrostatic pressure. The inventors of the present invention used a non-magnetic thin film overcoating method, which is suitable for thin films.
The inventors have found that the transition point can be controlled by applying a dimensional stress, and arrived at the present invention.

【0013】詳細は実施例にて後程述べるが、図1に、
薄膜構成の模式図、図2にオーバーコートによる磁化の
温度に対する挙動の変化の例を示した。図1において1
は基板、2はFe−Rh系合金薄膜、3は非磁性オーバ
ーコート薄膜を示す。また、図2において、Aがオーバ
ーコート前の厚さ2000ÅのFe51Rh49合金薄
膜をスパッタ法で形成して、1000℃でアニールした
後の磁化の温度変化を示すものである。この薄膜に厚さ
2000ÅのSiO2をスパッタ法で形成すると、Bの
ように相転移温度が高温側にシフトしていることがわか
る。これはオーバーコートによって、Fe−Rh系合金
薄膜に圧縮応力が加わったためである。このオーバーコ
ートによる応力付与で都合の良い点は、オーバーコート
の膜厚を変えることで、応力の大きさを簡便に制御でき
ることである。さらには、オーバーコートする際の薄膜
形成条件や材料を変えることによって、圧縮、引っ張り
の両応力を付与することもできる。このため、初めに形
成してあるFe−Rh系合金薄膜の磁気相転移点を高温
側にも、低温側にも、後から調整ができるという極めて
利便性に富む作製法である。加えて、薄膜全体のみなら
ず、薄膜一部領域だけの相転移温度の変更、あるいは、
温度に対する磁化変化量を任意にするということが可能
になる。
The details will be described later in an embodiment.
Fig. 2 is a schematic diagram of the thin film structure, and Fig. 2 shows an example of changes in the behavior of the magnetization due to overcoating with respect to temperature. 1 in FIG.
Indicates a substrate, 2 indicates an Fe-Rh-based alloy thin film, and 3 indicates a non-magnetic overcoat thin film. Further, in FIG. 2, A shows the temperature change of the magnetization after the Fe51Rh49 alloy thin film having a thickness of 2000Å before the overcoat was formed by the sputtering method and annealed at 1000 ° C. It can be seen that, when SiO 2 having a thickness of 2000 Å is formed on this thin film by the sputtering method, the phase transition temperature shifts to the high temperature side as in B. This is because compressive stress was applied to the Fe—Rh alloy thin film by the overcoat. The advantage of applying stress by this overcoat is that the magnitude of stress can be easily controlled by changing the film thickness of the overcoat. Furthermore, both the compressive stress and the tensile stress can be applied by changing the thin film forming conditions and the material for overcoating. Therefore, the magnetic phase transition point of the Fe-Rh-based alloy thin film formed first can be adjusted to the high temperature side or the low temperature side later, which is a very convenient manufacturing method. In addition, not only the entire thin film, but the change of the phase transition temperature only in a partial region of the thin film, or
It is possible to make the amount of change in magnetization with respect to temperature arbitrary.

【0014】ある設定温度において、オンオフする感温
スイッチを集積して、複数の異なる温度で各々スイッチ
ングする素子を形成しようとする際には、従来技術であ
れば、それぞれ別な組成の薄膜を別々に形成し集積化す
る必要があった。本発明によれば、もとになるFe−R
h系合金薄膜は同一のものを用いて、部分的に、コート
する非磁性薄膜の膜厚を変えることは容易である。ま
た、ある薄膜の領域において、非磁性薄膜の膜厚を連続
的に変化させる、すなわち、膜厚勾配をつけることも可
能となる。
When it is attempted to form temperature-sensitive switches that are turned on and off at a certain set temperature to form an element that switches at a plurality of different temperatures, according to the prior art, thin films having different compositions are separately formed. Had to be formed and integrated. According to the invention, the underlying Fe-R
It is easy to partially change the thickness of the non-magnetic thin film to be coated by using the same h-based alloy thin film. It is also possible to continuously change the film thickness of the non-magnetic thin film in a certain thin film region, that is, to form a film thickness gradient.

【0015】図3はオーバーコート薄膜3に膜厚勾配を
つけた際の構成の模式図である。オーバーコートに膜厚
勾配(分布)があると、Fe−Rh系合金に対する応力
にも勾配が生じ、転移温度にも分布が生じるため、温度
増加とともに、部分的に相転移が起き、徐々に磁化が増
加するという効果が現われる。これにより従来の材料で
は不可能であった。温度上昇とともに直線的に磁化増加
を示す薄膜材料の作製が可能になる。
FIG. 3 is a schematic view of a structure when the overcoat thin film 3 has a film thickness gradient. If the overcoat has a film thickness gradient (distribution), the stress on the Fe-Rh-based alloy also has a gradient, and the transition temperature also has a distribution. Therefore, as the temperature increases, a partial phase transition occurs and the magnetization gradually increases. The effect is to increase. This makes it impossible with conventional materials. It is possible to manufacture a thin film material that exhibits a linear increase in magnetization with an increase in temperature.

【0016】上記感温薄膜の作製法によって、薄膜の部
分部分で転移温度を変えれば、従来にできなかった温度
に対して非常に精密な、しかも微小領域で光によって遠
隔的に温度を検出するセンサができる。図4は、本発明
の光検出型薄膜温度センサの模式図である。41はFe
−Rh系合金薄膜、42は基板、43は永久磁石であ
り、ヨーク44を通して、膜面平行に磁場が印加されて
いる。一方、発光素子45からの光は光ファイバ46な
らびに、偏光子47をとおして偏光が薄膜41面に照射
される。薄膜41から反射した光は、カー効果によっ
て、磁化の大きさに対応して偏光面が回転した後、検光
子48、ファイバ49を通じて、受光素子410にて光
強度が検出される。温度上昇によって、Fe−Rh系合
金の磁化が発生するとそれに対応して受光強度が変化す
るために、温度を遠隔的に調べることができる。
By changing the transition temperature in the thin film portion by the above-mentioned method for producing the temperature-sensitive thin film, the temperature can be detected remotely by light in a minute region, which is very precise with respect to the temperature which could not be obtained in the past. A sensor can be created. FIG. 4 is a schematic diagram of the photo-detecting thin film temperature sensor of the present invention. 41 is Fe
A -Rh-based alloy thin film, 42 is a substrate, 43 is a permanent magnet, and a magnetic field is applied in parallel to the film surface through a yoke 44. On the other hand, the light from the light emitting element 45 is irradiated with the polarized light on the surface of the thin film 41 through the optical fiber 46 and the polarizer 47. The light reflected from the thin film 41 has its polarization plane rotated by the Kerr effect according to the magnitude of the magnetization, and then the light intensity is detected by the light receiving element 410 through the analyzer 48 and the fiber 49. When the Fe—Rh-based alloy is magnetized due to the temperature rise, the received light intensity changes correspondingly, so that the temperature can be remotely examined.

【0017】光の照射、検出はファイバをもちずに、空
間を飛ばしても差し支えない。本発明の特徴は、薄膜4
1であり、図5に示すようにいくつかの部分411に別
れていて、それぞれ別な膜厚のオーバーコートがなされ
ている。すなわち、薄膜部分411はそれぞれ、異なる
温度で磁化発生する。この分割数、ならびに温度設定は
オーバーコートの種類、膜厚で指定の範囲に設定でき
る。各分割を多くするほど、温度に対する精度が向上す
る。プロセスの点からも、マスクをずらしながらオーバ
ーコートするなどすれば、各分割領域での膜厚の変化は
簡単である。また、分割しなくとも、オーバーコート薄
膜の膜厚に勾配があって、磁気相転移が温度に対して連
続的に発生させることもできる。従来技術で本センサと
同様の機能を持たせようとすると、薄膜部分411の各
々を別々の組成の感温材料薄膜を膜厚や組成の精度よく
形成する必要があったが、本発明によれば、格段に簡便
であることは明白であろう。
Irradiation and detection of light may be carried out in space without using a fiber. The feature of the present invention is that the thin film 4
1 and is divided into some portions 411 as shown in FIG. 5, and overcoats having different film thicknesses are formed. That is, the thin film portions 411 generate magnetization at different temperatures. The number of divisions and the temperature can be set within a specified range depending on the type of overcoat and the film thickness. As each division is increased, the accuracy with respect to temperature is improved. From the point of view of the process, the film thickness change in each divided region is easy by overcoating while shifting the mask. Further, even if it is not divided, the film thickness of the overcoat thin film has a gradient so that the magnetic phase transition can be continuously generated with respect to the temperature. In order to have the same function as the present sensor in the prior art, it was necessary to form the temperature sensitive material thin film having a different composition for each of the thin film portions 411 with high accuracy in terms of film thickness and composition. Obviously, it would be much easier.

【0018】以下、実施例をあげて説明する。Examples will be described below.

【0019】[0019]

【実施例1】まず、非磁性オーバーコート薄膜の応力が
膜厚とともにどのように変化するか調べた。Si基板上
に、Arガス圧3×10-1Pa、パワー300Wの条件
でSiO2薄膜をスパッタリングにて膜厚を変化させて
作製した。これとは別にSi基板にECRプラズマCV
D法により、プラズマ形成ガスにArを、反応ガスとし
てSiH4/C24=1.15の流量比率でガス流量5
0sccm、基板温度700℃の条件でSiC薄膜を形
成した。それぞれの薄膜の膜厚と応力の関係を図6に示
す。スパッタで形成したSiO2は圧縮応力となり、E
CRプラズマCVDで形成したSiCは引っ張り応力と
なった。膜厚1000Åに対してそれぞれ2.3×10
8、−1.6×108Paの増加率で、膜厚に対して応力
は比例していた。
Example 1 First, it was investigated how the stress of a non-magnetic overcoat thin film changed with the film thickness. A SiO 2 thin film was formed on a Si substrate by changing the film thickness by sputtering under the conditions of Ar gas pressure of 3 × 10 −1 Pa and power of 300 W. Separately from this, ECR plasma CV is applied to the Si substrate.
According to the D method, Ar was used as a plasma forming gas and SiH 4 / C 2 H 4 = 1.15 as a reaction gas at a gas flow rate of 5
A SiC thin film was formed under the conditions of 0 sccm and a substrate temperature of 700 ° C. The relationship between the film thickness of each thin film and the stress is shown in FIG. SiO 2 formed by sputtering becomes compressive stress, and E
SiC formed by CR plasma CVD became tensile stress. 2.3 × 10 for each 1000 Å
The stress was proportional to the film thickness at an increasing rate of 8 , 1.6 × 10 8 Pa.

【0020】さて、Fe50Rh50合金薄膜、すなわ
ちFeとRhの1:1の組成の薄膜をArガス圧3×1
-1Pa、パワー150Wにてスパッタで石英基板に2
000Å形成して、1000℃でアニールした単層薄膜
は50℃で磁気相転移を示した。この薄膜の上に、前記
SiO2、SiCをそれぞれ応力測定時と同一条件で、
膜厚を変化させて、オーバーコートした。その結果、F
e50Rh50薄膜の相転移温度は図7のようになっ
た。オーバーコート薄膜単独での応力量を反映して、S
iO2膜の圧縮応力では高温側に、SiC膜の引っ張り
応力では低温側に転移点が変化していることがわかる。
膜厚に対する変化も直線関係で示されている。
A Fe50Rh50 alloy thin film, that is, a thin film having a composition of Fe and Rh of 1: 1 is Ar gas pressure 3 × 1.
2 on a quartz substrate by sputtering at 0 -1 Pa and power of 150 W
The single layer thin film formed at 000Å and annealed at 1000 ° C showed a magnetic phase transition at 50 ° C. On top of this thin film, the SiO 2 and SiC were respectively subjected to the same conditions as the stress measurement,
Overcoating was performed by changing the film thickness. As a result, F
The phase transition temperature of the e50Rh50 thin film was as shown in FIG. Reflecting the stress amount of the overcoat thin film alone, S
It can be seen that the transition point changes to the high temperature side with the compressive stress of the iO 2 film and to the low temperature side with the tensile stress of the SiC film.
The change with film thickness is also shown in a linear relationship.

【0021】このように、オーバーコートが堆積する際
の応力を利用して、先に形成してあったFe−Rh系薄
膜の相転移温度を制御できること、しかもオーバーコー
ト薄膜の作製条件により、低温側にも高温側にも変化さ
せられることがわかる。スパッタで形成したSiNの薄
膜についても、図6、図7で示すように同様な効果が確
認された。オーバーコート薄膜は上記薄膜に限らず、非
磁性であれば、特に制限はない。なお、図6、図7図
中、△はSiC、○はSiO2、□はSiNの結果を示
すグラフである。
As described above, the stress at the time of depositing the overcoat can be utilized to control the phase transition temperature of the Fe-Rh-based thin film that has been previously formed. It can be seen that it can be changed to both the high temperature side and the high temperature side. Similar effects were confirmed for the SiN thin film formed by sputtering as shown in FIGS. 6 and 7. The overcoat thin film is not limited to the above thin film, and is not particularly limited as long as it is non-magnetic. 6 and 7, Δ is a graph showing results of SiC, ◯ is SiO 2 and □ is a graph showing results of SiN.

【0022】[0022]

【実施例2】実施例1と同様に、スパッタならびにアニ
ールしたFe50Rh50合金薄膜(膜厚2000Å)
に、図3のような構成でSiO2を膜厚に勾配を持たせ
て形成した。SiO2の作製条件は実施例1と同様であ
るが、基板とターゲットの間にシャッターを設けて、シ
ャッターを等速で移動させて、堆積させる膜厚を変え、
膜厚勾配を0から4000Åとしたものである。オーバ
ーコート後の温度に対する磁化変化を図8に示す。オー
バーコート薄膜の膜厚勾配を付与することによって、4
0℃から100℃にかけて、直線的に磁化増加が認めら
れた。この直線性を利用すれば、従来不可能であった、
連続的な磁化変化を検出して温度をモニターしたり、力
の大きさを制御したアクチュエータなどが形成できる。
Example 2 Similar to Example 1, a sputtered and annealed Fe50Rh50 alloy thin film (film thickness 2000Å)
Then, SiO 2 was formed with a structure as shown in FIG. 3 with a gradient in film thickness. The conditions for producing SiO 2 are the same as in Example 1, but a shutter is provided between the substrate and the target, the shutter is moved at a constant speed, and the film thickness to be deposited is changed.
The film thickness gradient is from 0 to 4000 Å. FIG. 8 shows the change in magnetization with temperature after overcoating. By providing a film thickness gradient of the overcoat thin film, 4
A linear increase in magnetization was observed from 0 ° C to 100 ° C. If this linearity is used, it was impossible before.
It is possible to form an actuator or the like in which the temperature is monitored by detecting a continuous change in magnetization and the magnitude of force is controlled.

【0023】[0023]

【実施例3】Fe49Rh50Pd1なる組成の薄膜を
2000Å実施例1と同一条件でスパッタで形成、アニ
ールした、この薄膜は40℃で磁気相転移が発生した。
この同一薄膜を基板ごと0.5mm角に切断したものを
6個用意した。それぞれは、切断前と同じ相転移温度を
有している。これら小片ごと、膜厚を変えてSiO2
ーバーコートを施した。すなわち、膜厚0から800Å
きざみで膜厚を増やした。図9にそれぞれの磁化の温度
変化を示した。
Example 3 A thin film having a composition of Fe49Rh50Pd1 was formed by sputtering under the same conditions as in 2000Å Example 1 and annealed. This thin film had a magnetic phase transition at 40 ° C.
Six pieces of the same thin film were cut along with the substrate into 0.5 mm square pieces. Each has the same phase transition temperature as before cutting. The SiO 2 overcoat was applied to each of these pieces by changing the film thickness. That is, the film thickness is 0 to 800Å
The film thickness was increased in steps. FIG. 9 shows the temperature change of each magnetization.

【0024】これらを、図4で示したような構成とし
て、光検出型温度センサを作製した。この図中で、Fe
−Rh合金薄膜41はこの場合前記小片を配列してスラ
イド硝子に固定した。永久磁石43にはNdFeB(B
r:1.5T)を、光照射にはファイバを用いず、He
Ne(波長630nm)を用いフォトマルで検出した。
上記のような構成のセンサのプローブに対応する磁性膜
の集合体の裏面にヒータと熱電対を配置して、温度上昇
させた際の光強度を測定した。
A photo-detection type temperature sensor having the above-mentioned structure was manufactured. In this figure, Fe
In this case, the Rh alloy thin film 41 was prepared by arranging the small pieces and fixing them on the slide glass. The permanent magnet 43 has NdFeB (B
r: 1.5 T), He was used for light irradiation without using a fiber.
It was detected by a photomul using Ne (wavelength 630 nm).
A heater and a thermocouple were arranged on the back surface of the magnetic film assembly corresponding to the probe of the sensor having the above-mentioned configuration, and the light intensity when the temperature was raised was measured.

【0025】結果は図10のように、各小片の磁化変化
に対応した光出力が得られ、センサとしての有用性が示
された。この例の場合にはオーバーコート膜厚の違う小
片を集合させ、また、磁石と組み合わせたが、磁石やプ
ローブは薄膜プロセスで一体形成できることは言うまで
もない。
As a result, as shown in FIG. 10, an optical output corresponding to the change in magnetization of each small piece was obtained, which showed its usefulness as a sensor. In this example, small pieces having different overcoat film thicknesses are assembled and combined with a magnet, but it goes without saying that the magnet and the probe can be integrally formed by a thin film process.

【0026】[0026]

【発明の効果】以上説明したように、本発明の感温磁性
薄膜およびその作製方法を用いれば、指定温度を任意
に、しかも精密に制御できる感温磁性薄膜が簡便に作製
でき、且つ薄膜化、プロセス化が容易で、感温設定を修
正できる感温磁性薄膜の作製法ならびに、微小領域の温
度を精度よく、遠隔的に光によって検知する薄膜温度セ
ンサが実現できるという利点がある。
As described above, by using the temperature-sensitive magnetic thin film and the method for producing the same according to the present invention, a temperature-sensitive magnetic thin film capable of controlling a designated temperature arbitrarily and precisely can be easily produced and thinned. The advantages are that it is possible to realize a method of manufacturing a temperature-sensitive magnetic thin film that can be easily processed and can correct the temperature-sensitive setting, and a thin-film temperature sensor that remotely detects the temperature of a minute region with light accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一例の構成図。FIG. 1 is a configuration diagram of an example of the present invention.

【図2】オーバーコートによる磁化−温度特性の変化を
示す図。
FIG. 2 is a diagram showing changes in magnetization-temperature characteristics due to overcoating.

【図3】本発明の他の具体例の構成図。FIG. 3 is a configuration diagram of another specific example of the present invention.

【図4】本発明の光検出型薄膜検知センサの一例の模式
図。
FIG. 4 is a schematic view of an example of a photo-detecting thin film detection sensor of the present invention.

【図5】合金薄膜の拡大図。FIG. 5 is an enlarged view of an alloy thin film.

【図6】実施例1におけるオーバーコートの膜厚と応力
の関係を示す図。
FIG. 6 is a diagram showing the relationship between overcoat film thickness and stress in Example 1.

【図7】実施例1におけるオーバーコートの膜厚と磁気
相転移温度の関係を示す図。
FIG. 7 is a graph showing the relationship between the overcoat film thickness and the magnetic phase transition temperature in Example 1.

【図8】実施例2におけるオーバーコート後の薄膜の磁
化の温度変化を示す図。
FIG. 8 is a diagram showing temperature change of magnetization of a thin film after overcoating in Example 2.

【図9】実施例3におけるオーバーコート後の薄膜の磁
化の温度変化を示す図。
FIG. 9 is a diagram showing temperature change of magnetization of a thin film after overcoating in Example 3.

【図10】実施例3における温度変化に対応した光検出
強度を示す図。
FIG. 10 is a diagram showing a light detection intensity corresponding to a temperature change in the third embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 Fe−Rh系合金薄膜 3 オーバーコート薄膜 41 Fe−Rh系合金薄膜 42 基板 43 永久磁石 44 ヨーク 45 発光素子 46 光ファイバ 47 偏光子 48 検光子 49 ファイバ 410 受光素子 411 薄膜部分 1 Substrate 2 Fe-Rh-based alloy thin film 3 Overcoat thin film 41 Fe-Rh-based alloy thin film 42 Substrate 43 Permanent magnet 44 Yoke 45 Light emitting element 46 Optical fiber 47 Polarizer 48 Analyzer 49 Fiber 410 Light receiving element 411 Thin film portion

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Pd、Pt、Ir、Ru、Osから選ばれ
た元素を5atm%以下含有する、塩化セシウム結晶構
造のFe−Rh系合金の薄膜上に、部分的に厚さの異な
る非磁性の薄膜が堆積されてなることを特徴とする感温
磁性薄膜。
1. A non-magnetic film having a partially different thickness on a thin film of an Fe-Rh-based alloy having a cesium chloride crystal structure containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru and Os. A temperature-sensitive magnetic thin film, which is formed by depositing a thin film of.
【請求項2】前記非磁性の薄膜が、SiO2、SiC、
SiNから選ばれた1種以上であることを特徴とする請
求項1記載の感温性磁性薄膜。
2. The non-magnetic thin film is made of SiO 2 , SiC,
The temperature-sensitive magnetic thin film according to claim 1, which is one or more selected from SiN.
【請求項3】Pd、Pt、Ir、Ru、Osから選ばれ
た元素を5atm%以下含有する、塩化セシウム結晶構
造のFe−Rh系合金薄膜を形成し、前記合金薄膜上に
非磁性の薄膜を不均一に堆積することを特徴とする感温
性磁性薄膜の作製方法。
3. An Fe—Rh-based alloy thin film having a cesium chloride crystal structure containing an element selected from Pd, Pt, Ir, Ru and Os in an amount of 5 atm% or less, and a non-magnetic thin film on the alloy thin film. A method for producing a temperature-sensitive magnetic thin film, which comprises depositing non-uniformly.
【請求項4】前記非磁性の薄膜が、SiO2、SiC、
SiNから選ばれた1種以上であることを特徴とする請
求項3記載の感温性磁性薄膜の作製方法。
4. The non-magnetic thin film is made of SiO 2 , SiC,
The method for producing a temperature-sensitive magnetic thin film according to claim 3, wherein the temperature-sensitive magnetic thin film is at least one selected from SiN.
【請求項5】Pd、Pt、Ir、Ru、Osから選ばれ
た元素を5atm%以下含有する、塩化セシウム結晶構
造のFe−Rh系合金の薄膜上に、部分的に厚さの異な
る非磁性の薄膜が堆積されてなる感温磁性薄膜と、前記
感温磁性薄膜に直線偏光を入射する手段と、前記直線偏
光の前記感温磁性薄膜からの反射光を検出する手段と、
前記感温磁性薄膜の表面に略平行な方向に磁場を印加す
る起磁力源とを有することを特徴とする光検出型薄膜温
度センサ。
5. A non-magnetic film having a partially different thickness on a thin film of an Fe—Rh-based alloy having a cesium chloride crystal structure, containing 5 atm% or less of an element selected from Pd, Pt, Ir, Ru and Os. A temperature-sensitive magnetic thin film formed by depositing a thin film of, a means for injecting linearly polarized light into the temperature-sensitive magnetic thin film, and means for detecting reflected light from the temperature-sensitive magnetic thin film of the linearly polarized light,
A photodetection type thin film temperature sensor, comprising a magnetomotive force source for applying a magnetic field in a direction substantially parallel to the surface of the temperature-sensitive magnetic thin film.
JP06661194A 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor Expired - Fee Related JP3312637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06661194A JP3312637B2 (en) 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06661194A JP3312637B2 (en) 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Publications (2)

Publication Number Publication Date
JPH07249517A true JPH07249517A (en) 1995-09-26
JP3312637B2 JP3312637B2 (en) 2002-08-12

Family

ID=13320879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06661194A Expired - Fee Related JP3312637B2 (en) 1994-03-10 1994-03-10 Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor

Country Status (1)

Country Link
JP (1) JP3312637B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308565A (en) * 2004-04-22 2005-11-04 Osaka Sealing Printing Co Ltd Temperature sensing member, temperature sensing device and temperature sensing method
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
JP2019003029A (en) * 2017-06-15 2019-01-10 日本電信電話株式会社 Optical waveguide and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417269B2 (en) 2002-11-21 2008-08-26 Denso Corporation Magnetic impedance device, sensor apparatus using the same and method for manufacturing the same
US7582489B2 (en) 2002-11-21 2009-09-01 Denso Corporation Method for manufacturing magnetic sensor apparatus
JP2005308565A (en) * 2004-04-22 2005-11-04 Osaka Sealing Printing Co Ltd Temperature sensing member, temperature sensing device and temperature sensing method
JP2019003029A (en) * 2017-06-15 2019-01-10 日本電信電話株式会社 Optical waveguide and method of manufacturing the same

Also Published As

Publication number Publication date
JP3312637B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
Basantkumar et al. Integration of thin-film galfenol with MEMS cantilevers for magnetic actuation
US7830143B2 (en) Magnetic sensor, method of manufacturing the same, and electronic device
US7463447B2 (en) Magnetic thin film sensor based on the extraordinary Hall effect
EP1636810A1 (en) Method of manufacturing a device with a magnetic layer-structure
JP2612997B2 (en) Magnetoresistance read transducer
KR100596196B1 (en) Oxide thin film for bolometer and infrared detector using the oxide thin film
EP0989411A2 (en) Magneto-impedance effect element
US5529814A (en) Method of producing exchange coupled magnetic thin films with post-deposition annealing
JP3312637B2 (en) Temperature-sensitive magnetic thin film, fabrication method thereof, and light detection type thin film temperature sensor
US20060164204A1 (en) Magnetoresistance effect element and production method and application method therefor same
Kim et al. Measurements of residual stress in the thin film micro-gas sensors containing metallic layers
JPH01148928A (en) Stress sensor
Sharp et al. Unidirectional anisotropy in multilayer films of Cr and NiFe
KR0180590B1 (en) Granular magnetroresistane element and its manufacture
JPH0499005A (en) Magnetostriction film
JP3551134B2 (en) Method for manufacturing magnetic tunnel effect element
JP2003279423A (en) Strain sensor
Maetani et al. Combinatorial search of Fe-Ni-Cr system magnetostrictive alloys for force sensors
JPH09113379A (en) Thin film temperature sensor and use thereof
JPS6421977A (en) Magnetoresistance element
JP2850584B2 (en) Method of manufacturing magnetoresistive element
JPH0499006A (en) Magnetostriction film for magnetostriction
JP2569623B2 (en) Magnetoresistive thin film magnetic head
Kitada et al. Tungsten/Permalloy bilayer thin films and its application to magnetoresistive elements
RU2233350C2 (en) Method for making laminate magnetic films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110531

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120531

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees