JP3070022B2 - Ultra wide-angle endoscope - Google Patents

Ultra wide-angle endoscope

Info

Publication number
JP3070022B2
JP3070022B2 JP9102044A JP10204497A JP3070022B2 JP 3070022 B2 JP3070022 B2 JP 3070022B2 JP 9102044 A JP9102044 A JP 9102044A JP 10204497 A JP10204497 A JP 10204497A JP 3070022 B2 JP3070022 B2 JP 3070022B2
Authority
JP
Japan
Prior art keywords
image
wide
angle
solid
endoscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9102044A
Other languages
Japanese (ja)
Other versions
JPH10290777A (en
Inventor
幸男 福井
正明 持丸
康司 山内
樹里 山下
和則 横山
Original Assignee
工業技術院長
茨城県厚生農業協同組合連合会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長, 茨城県厚生農業協同組合連合会 filed Critical 工業技術院長
Priority to JP9102044A priority Critical patent/JP3070022B2/en
Publication of JPH10290777A publication Critical patent/JPH10290777A/en
Application granted granted Critical
Publication of JP3070022B2 publication Critical patent/JP3070022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超広角撮像系を具え
た超広角内視鏡に関し、特に細い隙間から内部に管状光
学系を挿入して工業製品の内部の光学検査に用いる工業
用内視鏡、あるいは、患者の身体的負担を軽減して体腔
内を検査、あるいは治療するために用いられる医療用内
視鏡に好適な超広角内視鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-wide-angle endoscope provided with an ultra-wide-angle imaging system, and more particularly to an industrial endoscope for inserting a tubular optical system into a narrow gap and using it for optical inspection inside an industrial product. The present invention relates to a mirror or an ultra-wide-angle endoscope suitable for a medical endoscope used for examining or treating the inside of a body cavity while reducing the physical burden on a patient.

【0002】[0002]

【従来の技術】従来の内視鏡は、工業用、医療用とも、
その構造として可撓性の撓性内視鏡と不撓性の硬性内視
鏡があるが、いずれもその先端に結像光学系が設置され
ている。先端で結像された光学像を、撓性内視鏡ではグ
ラスファイバー束を経由し、硬性内視鏡ではリレーレン
ズ系を経由して、内視鏡の後端に光学像を転送し、そこ
に設置された観察用接眼レンズ、あるいはテレビカメラ
へと像を伝える構造となっている。また、一部の内視鏡
では先端光学系で結像される位置に受光素子アレイを配
置して画像を電気信号に変換しているものもある。
2. Description of the Related Art Conventional endoscopes are used for both industrial and medical purposes.
As its structure, there are a flexible flexible endoscope and an inflexible rigid endoscope, both of which have an imaging optical system installed at the tip thereof. The optical image formed at the distal end is transferred to the rear end of the endoscope via a glass fiber bundle for a flexible endoscope, and via a relay lens system for a rigid endoscope. The structure is such that the image is transmitted to an observation eyepiece lens installed in the camera or a television camera. Some endoscopes have a light receiving element array arranged at a position where an image is formed by the tip optical system to convert an image into an electric signal.

【0003】内視鏡には、一般に30度程度の狭い視野
角のものから、80度以上の広い視野角のものがある。
内視鏡において、見える範囲と方向は作業にとって重要
であり、そのため作業の用途別に光軸の方向を変えた内
視鏡(斜視鏡という)が製造されている。すなわち、内
視鏡の先端から見る方向として、内視鏡の筒(ファイバ
ー束管)の延長上を見る方向角を0度とすると、前方視
型(直視型)の0度の他に、前方視型では30度、60
度、70度など、さらに側視型では90度、後方斜視型
では120度などの斜視鏡がある。いずれにしても、斜
視鏡では進行方向と見えるものとがずれるために、誤っ
て壁面などに過度な力を加えてしまうことが多いのが現
状である。
[0003] Endoscopes generally range from a narrow viewing angle of about 30 degrees to a wide viewing angle of 80 degrees or more.
In an endoscope, a visible range and a direction are important for an operation, and therefore, an endoscope (referred to as a perspective mirror) in which the direction of an optical axis is changed for each application of the operation is manufactured. That is, assuming that the viewing angle from the distal end of the endoscope as viewed from the extension of the tube (fiber bundle tube) of the endoscope is 0 °, in addition to 0 ° of the forward-looking type (direct-viewing type), 30 degrees, 60 for visual type
There is a perspective mirror such as 90 degrees for the side-view type and 120 degrees for the rear oblique type. In any case, in the current situation, an excessive force is often applied to a wall surface or the like by mistake because a perspective mirror deviates from what is seen in the traveling direction.

【0004】[0004]

【発明が解決しようとする課題】内視鏡の中で、手術と
いう操作が伴うために、使い方により細心の注意が必要
な鼻腔内手術用内視鏡を例にとって、従来の内視鏡の問
題点を説明する。
The problem of the conventional endoscope is that of an endoscope for intranasal surgery, which requires careful attention due to the operation of the endoscope. Points will be described.

【0005】その内視鏡を用いた手術操作は3段階に分
けると、次のようになる。
The operation using the endoscope can be divided into three stages as follows.

【0006】1)まず、内視鏡を鼻腔内に挿入してテレ
ビモニタ、またはアイピースにより観察する。
[0006] 1) First, an endoscope is inserted into a nasal cavity and observed with a television monitor or an eyepiece.

【0007】2)次に、手術器具(ピンセット、鉗子、
はさみなど)を鼻腔内に入れて、操作目的部位の視野内
に導く。
2) Next, surgical instruments (tweezers, forceps,
Scissors) into the nasal cavity and guide them into the field of view of the operation target site.

【0008】3)しかる後に、手術器具の操作を行う。3) After that, the operation of the surgical instrument is performed.

【0009】以上の操作のうちで、最も難しいのが、上
記2)の操作である。通常は、上記1)の操作に続いて
そのまま手術器具を挿入して行くことはできない。実際
に、内視鏡に映っている画面は鼻腔の深部でしかも視野
が狭いので、なかなか器具の先端が見えてこない。従っ
て、内視鏡で鼻腔内を観察した後は、一旦その内視鏡を
鼻腔から取り出して、必要な器具と一緒に内視鏡を再び
鼻腔内に入れていく。その際に、器具の先端を内視鏡よ
りも少し先に入れて、内視鏡画面で観察しながら器具の
先端を見失わないようにしているが、慣れないと難しい
非常に熟練を要する作業であった。
Of the above operations, the most difficult is the operation 2). Normally, it is not possible to insert a surgical instrument directly after the operation 1). Actually, since the screen shown on the endoscope is deep in the nasal cavity and has a narrow field of view, it is difficult to see the tip of the instrument. Therefore, after observing the inside of the nasal cavity with an endoscope, the endoscope is once taken out of the nasal cavity, and the endoscope is put back into the nasal cavity together with necessary instruments. At that time, the tip of the instrument is inserted a little before the endoscope so that you do not lose track of the tip of the instrument while observing on the endoscope screen. there were.

【0010】特に、このような斜視鏡の場合は、操作上
次に示すような欠点があった。
In particular, such a perspective mirror has the following drawbacks in operation.

【0011】a)画面に見えていない視野外の部分で、
人体の構造物に当たって先に進めなくなり、かつ粘膜に
傷を付けて出血させてしまうことがある。そうすると、
手術の続行が困難になる。
A) In a portion outside the visual field that is not visible on the screen,
In some cases, it may not be able to move forward when hitting a structure of the human body, and may damage the mucous membrane and cause bleeding. Then,
It is difficult to continue surgery.

【0012】b)画面に見えていても、対物レンズが粘
膜面に触って粘液付着で曇ってしまい、内視鏡を一旦取
り出してレンズ面を拭き直さなければならないことがあ
る。
B) Even when the objective lens is visible on the screen, the objective lens may touch the mucous membrane surface and become cloudy due to the adhesion of mucus, and the endoscope may need to be removed once and the lens surface must be wiped again.

【0013】c)見る方向を変える際には、内視鏡の軸
を中心として回転させなければならないが、その際には
両手操作が必要になり、手術器具を手放す必要が生じ
る。更に重大なことは、内視鏡を回しているうちに方向
感覚を失う危険がある。
C) When changing the viewing direction, the endoscope must be rotated around the axis of the endoscope. In this case, two-handed operation is required, and it is necessary to release the surgical instrument. More importantly, there is a danger of losing direction while turning the endoscope.

【0014】本発明は、上述の点に鑑みてなされたもの
で、その目的とするところは従来の斜視鏡において挿入
時の挿入方向が見えないために過度に壁面に力が加えら
れてしまう頻度が高い等の操作上の課題を解決し、しか
も作業時で必要とする方向の視野を良好に確保すること
を可能にした超広角内視鏡を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned points, and an object of the present invention is to prevent a conventional oblique mirror from being seen in the insertion direction at the time of insertion, so that a frequency at which excessive force is applied to a wall surface. It is an object of the present invention to provide an ultra-wide-angle endoscope that solves operational problems such as a high endoscope and that can properly secure a visual field in a direction required during work.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の超広角内視鏡の発明は、光ファイバーま
たはリレーレンズ系を用いた管体の先端に結像光学系を
備えた内視鏡において、前記結像光学系として前記管体
の先端に装備された超広角レンズ系と、該超広角レンズ
系で捉えられた広範囲の光学像を受光して画像信号に変
換する固体撮像手段と、該固体撮像手段の前記画像信号
から得られる広角度の画像を通常の視野角の画像に変換
するための画像処理を行う画像処理手段と、該画像処理
手段の出力信号により映像を表示する画像表示手段とを
具え、前記画像処理手段は、前記固体撮像手段から入力
する画像データを画像フレーム毎に順次記憶する画像記
憶手段と、ポインテイングデバイスで指示された方向を
中心とする一定範囲の視線方向を演算する視線方向演算
手段と、該視線方向演算手段により演算された各視線方
向に対して前記固体撮像手段上の対応画素の位置を演算
し、演算された各々の該対応画素のアドレスの画像信号
を前記画像記憶手段から読み出して出力する対応画素演
算手段とを具えたことを特徴とする。
In order to achieve the above object, the invention of an ultra wide-angle endoscope according to claim 1 is an invention in which an imaging optical system is provided at the tip of a tube using an optical fiber or a relay lens system. In an endoscope, an ultra-wide-angle lens system provided at the tip of the tube as the imaging optical system, and a solid-state imaging means for receiving a wide-range optical image captured by the ultra-wide-angle lens system and converting the optical image into an image signal Image processing means for performing image processing for converting a wide-angle image obtained from the image signal of the solid-state imaging means into an image having a normal viewing angle; and displaying an image based on an output signal of the image processing means. Image display means, wherein the image processing means includes: image storage means for sequentially storing image data input from the solid-state imaging means for each image frame; and a fixed range centered on a direction designated by a pointing device. A line-of-sight direction calculating means for calculating a line-of-sight direction; calculating a position of a corresponding pixel on the solid-state imaging means with respect to each line-of-sight direction calculated by the line-of-sight direction calculating means; And a corresponding pixel operation means for reading and outputting the image signal from the image storage means.

【0016】また、上記目的を達成するため、請求項2
の超広角内視鏡の発明は、管体の先端に結像光学系を備
えた内視鏡において、前記結像光学系として前記管体の
先端に装備された超広角レンズ系と、前記管体の先端近
傍に装備され、前記超広角レンズ系で捉えられた広範囲
の光学像を受光して画像信号に変換する固体撮像手段
と、該固体撮像手段の前記画像信号から得られる広角度
の画像を通常の視野角の画像に変換するための画像処理
を行う画像処理手段と、該画像処理手段の出力信号によ
り映像を表示する画像表示手段とを具え、前記画像処理
手段は、前記固体撮像手段から入力する画像データを画
像フレーム毎に順次記憶する画像記憶手段と、ポインテ
イングデバイスで指示された方向を中心とする一定範囲
の視線方向を演算する視線方向演算手段と、該視線方向
演算手段により演算された各視線方向に対して前記固体
撮像手段上の対応画素の位置を演算し、演算された各々
の該対応画素のアドレスの画像信号を前記画像記憶手段
から読み出して出力する対応画素演算手段とを具えたこ
とを特徴とする。
According to another aspect of the present invention, the above object is achieved.
The invention of an ultra-wide-angle endoscope according to the present invention relates to an endoscope having an imaging optical system at the distal end of a tube, wherein an ultra-wide-angle lens system provided at the distal end of the tube as the imaging optical system; A solid-state imaging unit that is provided near the tip of the body and receives a wide-range optical image captured by the ultra-wide-angle lens system and converts it into an image signal; and a wide-angle image obtained from the image signal of the solid-state imaging unit. Image processing means for performing image processing for converting the image into an image having a normal viewing angle, and image display means for displaying an image based on an output signal of the image processing means, wherein the image processing means comprises the solid-state imaging means Image storage means for sequentially storing image data input from each of the image frames, a gaze direction calculation means for calculating a gaze direction in a certain range centered on a direction designated by a pointing device, and a gaze direction calculation means Calculation Corresponding pixel operation means for calculating the position of the corresponding pixel on the solid-state imaging means for each of the line-of-sight directions obtained, reading out the calculated image signal of the address of the corresponding pixel from the image storage means, and outputting the image signal. It is characterized by having.

【0017】ここで、前記視線方向演算手段および前記
対応画素演算手段の少なくとも一方はルックアップテー
ブルを利用して演算処理を行うことを特徴とすることが
できる。
Here, at least one of the line-of-sight direction calculating means and the corresponding pixel calculating means performs a calculating process using a look-up table.

【0018】また、前記固体撮像手段と前記画像処理手
段間に接続する外部記憶装置をさらに有し、該外部記憶
装置は前記固体撮像手段から入力する画像データを記憶
し、該記憶した画像データを読み出し指示信号に応じて
前記画像処理手段へ供給することを特徴とすることがで
きる。
The image processing apparatus further includes an external storage device connected between the solid-state imaging means and the image processing means. The external storage device stores image data input from the solid-state imaging means, and stores the stored image data. The image processing device may be supplied to the image processing unit in response to a read instruction signal.

【0019】[0019]

【0020】[0020]

【0021】本発明は、上記構成により、内視鏡の先端
部分に超広角レンズ(例えば、魚眼レンズ)を装備する
ことで、重要な視野方向を中心として180度近い視野
角度を確保するようにし、また操作者の指示する方向を
中心に一定範囲の視線方向を演算し、演算された各視線
方向に対して固体撮像手段上の対応画素の位置を演算
し、演算された各々の該対応画素のアドレスの画像信号
を読み出して出力するので、操作者の指示する方向を中
心に通常の視線角度の画像が超広角レンズのために生ず
る画像の歪みが取り除かれて表示画面上に表示される。
このため、本発明によれば、内視鏡の挿入時には前方を
見ながら内視鏡を、または作業器具(例えば、手術器
具)と共に内視鏡を挿入して行き、作業時には挿入方向
とは異なる作業方向でも内視鏡を回転せずに画面切り出
し操作だけでその作業方向を注視することができるた
め、作業が正確・迅速になるばかりでなく、組織の壁面
などに内視鏡や作業器具が衝突して傷をつけるなどの事
故が起きる確率が低減する。
According to the present invention, by providing the endoscope with an ultra-wide-angle lens (for example, a fish-eye lens) at the distal end of the endoscope, a viewing angle close to 180 degrees around an important viewing direction is secured. Further, a line of sight direction within a certain range is calculated around the direction instructed by the operator, the position of the corresponding pixel on the solid-state imaging means is calculated for each of the calculated line of sight directions, and the calculated corresponding pixel of the corresponding pixel is calculated. Since the image signal of the address is read and output, an image with a normal line-of-sight angle centered on the direction specified by the operator is displayed on the display screen with the distortion of the image caused by the super wide-angle lens being removed.
For this reason, according to the present invention, when inserting the endoscope, the endoscope is inserted while looking forward, or the endoscope is inserted together with a working instrument (for example, a surgical instrument). Even in the working direction, it is possible to gaze at the working direction simply by cutting out the screen without rotating the endoscope, so that work is not only accurate and quick, but also the endoscope and working equipment are placed on the wall of tissue etc. The probability of an accident such as a collision resulting in injury is reduced.

【0022】[0022]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0023】図1は本発明の一実施形態として、本発明
を硬性内視鏡に適用した場合の全体の概略構成を示す。
ここで、1は本願発明による超広角内視鏡の全体を示
し、2はその内視鏡1の先端に配設された超広角撮像光
学系、3は照明光を導く光ファイバー(ライトガイドケ
ーブル)である。光ファイバー3の後端部分には通常、
吸引コネクタ、空気/水供給ターミナル、ランプや集光
レンズを収納したライトガイドプラグ(いずれも図示し
ない)等が作業内容に応じて設けられる。
FIG. 1 shows an overall schematic configuration of an embodiment of the present invention in which the present invention is applied to a rigid endoscope.
Here, reference numeral 1 denotes an entire ultra-wide-angle endoscope according to the present invention, 2 denotes an ultra-wide-angle imaging optical system disposed at the tip of the endoscope 1, and 3 denotes an optical fiber (light guide cable) for guiding illumination light. It is. Usually, the rear end of the optical fiber 3 is
A suction connector, an air / water supply terminal, a light guide plug (not shown) containing a lamp and a condenser lens, and the like are provided according to the work content.

【0024】光ファイバー3によって照明光が内視鏡1
の先端に導かれ、その先端の前方を180度近い範囲で
照らす。操作者は本体部分4を握って内視鏡1を操作す
る。本体部分4には先端を操作するためのアングル調節
ダイヤルや焦点ダイヤル等(いずれも図示しない)を必
要に応じて設けてもよい。超広角撮像光学系2で得られ
た対象物(被写体)の光学像は、カラーCCD(電荷結
合素子)等の固体撮像素子を用いた固体撮像カメラ(T
Vカメラ)5により電気信号(画像信号)に変換され、
画像処理装置6に送られる。
The illumination light is transmitted from the endoscope 1 by the optical fiber 3.
And illuminates the front of the tip in a range close to 180 degrees. The operator operates the endoscope 1 while holding the main body 4. The main body 4 may be provided with an angle adjustment dial, a focus dial, and the like (both not shown) for operating the tip as required. An optical image of an object (subject) obtained by the ultra wide-angle imaging optical system 2 is a solid-state imaging camera (T) using a solid-state imaging device such as a color CCD (charge coupled device).
V camera) 5 converts it into an electric signal (image signal),
It is sent to the image processing device 6.

【0025】画像処理装置6は超広角レンズ系で結像さ
れ画像信号に変換された広範囲の映像を通常の視野角で
の映像に変換して表示するための装置である。この画像
処理装置6においては、後述のように、画像メモリ61
に記憶された180度近い広角画像(電子像)から、ジ
ョイスティック7のようなポインティングデバイスで与
えられた方向を中心とした一定の範囲の視野角に限定し
て超広角撮像光学系2の超広角レンズにより生じた画像
歪みを取り除かれた状態の画像信号が出力される。
The image processing device 6 is a device for converting a wide-range image formed by an ultra-wide-angle lens system and converted into an image signal into an image having a normal viewing angle and displaying the image. In the image processing device 6, as described later, an image memory 61
From the wide-angle image (electronic image) close to 180 degrees stored in the super-wide-angle imaging optical system 2 with a limited range of viewing angles centered on a direction given by a pointing device such as the joystick 7. An image signal in a state where the image distortion caused by the lens has been removed is output.

【0026】このような画像処理を受けて画像処理装置
6から出力された画像信号は、CRT−TV受像機、あ
るいは液晶ディスプレイ等のモニタ装置8に送られ、操
作者がジョイスティック7で指定した方向のカラー映像
(動画)が裸眼で対象物を見たと同様な光学的に歪みの
無い状態で、実質的にリアルタイムでモニタ装置8の画
面に拡大表示される。
An image signal output from the image processing device 6 after receiving such image processing is sent to a monitor device 8 such as a CRT-TV receiver or a liquid crystal display, and the direction specified by the operator with the joystick 7 is used. Is enlarged and displayed on the screen of the monitor device 8 substantially in real time in a state where there is no optical distortion similar to when the target is viewed with the naked eye.

【0027】図2は上記の超広角内視鏡1の内部構造の
詳細例を示す。図2に示すように、超広角内視鏡1の屈
曲可能な細長い筒の先端部分に、上記の超広角撮像光学
系2を構成する魚眼レンズのような超広角レンズ系1
1、光軸折り曲げ用プリズム12および対物レンズ13
を取り付ける。その筒の中に所定の等間隔で複数のリレ
ーレンズ14を配設し、このリレーレンズ14の後方に
接眼レンズ15、固体撮像カメラ5の順に配置する。さ
らに、対象物(被写体)を照らすために、ライトガイド
ファイバー17を内視鏡1の筒の先端部まで導くように
設計している。
FIG. 2 shows a detailed example of the internal structure of the above-mentioned ultra-wide-angle endoscope 1. As shown in FIG. 2, an ultra-wide-angle lens system 1 such as a fish-eye lens constituting the above-described ultra-wide-angle imaging optical system 2 is provided at the tip of a bendable elongated cylinder of the ultra-wide-angle endoscope 1.
1. Optical axis bending prism 12 and objective lens 13
Attach. A plurality of relay lenses 14 are arranged in the cylinder at predetermined regular intervals, and an eyepiece 15 and a solid-state imaging camera 5 are arranged behind the relay lenses 14 in this order. Further, the light guide fiber 17 is designed to be guided to the distal end of the tube of the endoscope 1 in order to illuminate an object (subject).

【0028】対象物は内視鏡1の先端部から出射した光
により照明され、対象物からの反射光は、超広角レンズ
系11、光軸折り曲げ用プリズム12、対物レンズ1
3、リレーレンズ14および接眼レンズ15を通って超
広角の光学像となり、固体撮像カメラ5の固体撮像素子
に受光され、電子像に変換される。固体撮像カメラに
は、固体撮像素子の種類によって単板面順次方式と単板
同時方式の2方式が知られているが、いずれの方式にも
本発明は適用可能である。
The object is illuminated by the light emitted from the end of the endoscope 1, and the reflected light from the object is reflected by the ultra-wide-angle lens system 11, the prism 12 for bending the optical axis, and the objective lens 1.
3. Through the relay lens 14 and the eyepiece 15, an ultra-wide-angle optical image is formed, received by the solid-state imaging device of the solid-state imaging camera 5, and converted into an electronic image. There are two known solid-state imaging cameras, a single-panel surface sequential system and a single-panel simultaneous system, depending on the type of solid-state imaging device. The present invention can be applied to either system.

【0029】図3は図1の固体撮像カメラ5と画像処理
装置6の概略回路構成例を示す。固体撮像カメラ5はC
CD等の一般的な固体撮像素子51と、この固体撮像素
子51から供給されるアナログのカラー画像信号に対し
てA/D変換、γ補正等の通常行っている公知の画像処
理を施すカメラ回路52とを具える。
FIG. 3 shows a schematic circuit configuration example of the solid-state imaging camera 5 and the image processing device 6 of FIG. The solid-state imaging camera 5 is C
A general solid-state imaging device 51 such as a CD, and a camera circuit that performs a known image processing such as A / D conversion and γ correction on an analog color image signal supplied from the solid-state imaging device 51. 52.

【0030】画像処理装置6は、カメラ回路52からの
デジタル出力データ(画像データ)を画像フレーム毎に
順次記憶する画像メモリ61と、ポインティングデバイ
スであるジョイスティック7で指示された方向を中心と
する一定範囲の視線方向を演算する視線方向演算回路6
2と、この視線方向演算回路62により演算された各視
線方向に対して上記固体撮像素子51上の対応画素の位
置を演算し、演算された各々の対応画素のアドレスの画
像信号を画像メモリ61から読み出して出力する対応画
素演算回路63とを有する。
The image processing device 6 has an image memory 61 for sequentially storing digital output data (image data) from the camera circuit 52 for each image frame, and a fixed value centered on a direction designated by the joystick 7 as a pointing device. Gaze direction calculation circuit 6 for calculating the gaze direction of the range
2 and the position of the corresponding pixel on the solid-state imaging device 51 for each line-of-sight direction calculated by the line-of-sight direction calculation circuit 62, and stores the calculated image signal of the address of each corresponding pixel in the image memory 61. And a corresponding pixel operation circuit 63 that reads out and outputs the same.

【0031】次に、図4および図5を参照して、上記画
像処理装置6により固体撮像カメラ5で捉えた歪んだ画
像をどの様に修復するかの動作原理を説明する。
Next, with reference to FIGS. 4 and 5, the operation principle of how the image processing device 6 restores a distorted image captured by the solid-state imaging camera 5 will be described.

【0032】図4、図5は超広角撮像光学系2による撮
影方向と固体撮像素子51の画像上の点との対応を示
す。z方向を超広角撮像光学系2の光軸方向とし、x軸
およびy軸が含まれるxy平面を固体撮像素子51の撮
像面とする。単位球の中心Oからz軸方向に角度θだけ
傾いた任意の方向をw軸とし、この方向ベクトルと単位
球との交点をP、z軸を負の方向に延長して単位球との
交点をEとし、線分PEとxy平面との交点をQとする
と、任意の方向w軸方向の像が点Qに写像されるものと
する。
FIGS. 4 and 5 show the correspondence between the photographing direction by the ultra-wide-angle imaging optical system 2 and points on the image of the solid-state imaging device 51. FIG. The z direction is defined as the optical axis direction of the ultra-wide-angle imaging optical system 2, and the xy plane including the x-axis and the y-axis is defined as the imaging surface of the solid-state imaging device 51. An arbitrary direction inclined by an angle θ in the z-axis direction from the center O of the unit sphere is defined as a w-axis, an intersection between the direction vector and the unit sphere is defined as P, and the z-axis is extended in a negative direction to define an intersection with the unit sphere. Is E, and the intersection of the line segment PE and the xy plane is Q, an image in an arbitrary direction w-axis is mapped to the point Q.

【0033】すなわち、球上の点Pを球の中心Oから見
る方向の画像は、固体撮像カメラ5の固体撮像素子(例
えば、CCDイメージセンサ)51上では点Qに撮影さ
れるものとする。そうすると、点Oから点Pをみたw方
向の画像全体は、図4に示すように点Pを中心とする球
面上の四角の領域の方向となる。この四角の領域の画像
は、図4に示すようにxy平面上では点Qを中心とする
曲線で囲まれた領域に投影される。逆に、魚眼レンズに
よって投影された歪んだ画像はQを中心とした曲線閉領
域であり、その曲線閉領域の画像を元のPを中心とする
四角領域の画像へと変換するのが画像処理装置6であ
る。
That is, it is assumed that an image in the direction in which the point P on the sphere is viewed from the center O of the sphere is captured at the point Q on the solid-state imaging device (for example, a CCD image sensor) 51 of the solid-state imaging camera 5. Then, the entire image in the w direction from the point O to the point P is in the direction of a square area on the spherical surface centered on the point P as shown in FIG. The image of this square area is projected on an area surrounded by a curve centered on the point Q on the xy plane as shown in FIG. Conversely, the distorted image projected by the fisheye lens is a curved closed area centered on Q, and the image processing device converts the image of the curved closed area into an original image of a square area centered on P. 6.

【0034】画像処理装置6の視線方向演算回路62で
は、ジョイスティック7から2つの角度パラメータθと
φの値をアナログ的に取り込み、視線方向wを理解す
る。そして、対応画素演算回路63によりw方向を中心
とした四角領域の内部の各画素の画像値を次のようにし
て出力する。
The line-of-sight direction calculation circuit 62 of the image processing device 6 fetches two values of the angle parameters θ and φ from the joystick 7 in an analog manner to understand the line-of-sight direction w. Then, the corresponding pixel operation circuit 63 outputs the image value of each pixel inside the square region centered on the w direction as follows.

【0035】まず、視線方向演算回路62において、w
方向を中心とした四角領域内部の画素を点Oから見た方
向wi (i=1、2、…、n)のθi (i=1、2、
…、n)を求める。なお、このnの値はモニタ装置8の
分解能(画素数、または走査線数)に対応して一定値に
決められる。これは、逆にθi とφi を与えれば、w方
向は次式(1)で容易に算出できるため、あらかじめ対
応するルックアップテーブルを作っておいて逆算をこの
テーブルから求めてもよい。wi 方向を方向余弦(u
i ,vi ,wi )で表せば、次式(1)で求められる。
First, in the line-of-sight direction calculation circuit 62, w
Θ i (i = 1, 2,...) In the direction w i (i = 1, 2,..., N) when the pixel inside the square region centered on the direction is viewed from the point O.
.., N). The value of n is determined to be a constant value in accordance with the resolution (the number of pixels or the number of scanning lines) of the monitor device 8. Conversely, if θ i and φ i are given, the w direction can be easily calculated by the following equation (1). Therefore, a corresponding look-up table may be created in advance, and the back calculation may be obtained from this table. w i direction the direction cosine (u
i, v i, if indicated by the w i), is calculated by the following equation (1).

【0036】[0036]

【数1】 ui =sinθi cosφii =sinθi sinφi …(1) wi =cosθi 次に、対応画素演算回路63において、θi とφi を次
式(2)に代入することによって固体撮像素子51の画
面上に対応する画素(xi 、yi )の位置(アドレス)
を求めて、その画素の画像値を画像メモリ61から読み
出して画像処理装置6の出力とする。なお、対応画素演
算回路63にもルックアップテーブルを用いることは可
能である。
U i = sin θ i cos φ i v i = sin θ i sin φ i (1) w i = cos θ i Next, in the corresponding pixel operation circuit 63, θ i and φ i are substituted into the following equation (2). By doing so, the position (address) of the corresponding pixel (x i , y i ) on the screen of the solid-state imaging device 51
Is obtained, the image value of the pixel is read out from the image memory 61, and is output from the image processing device 6. Note that a look-up table can be used for the corresponding pixel operation circuit 63 as well.

【0037】[0037]

【数2】 xi =cos φi ・ sinθi /(1+cosθi ) …(2) yi =sin φi ・ sinθi /(1+cosθi ) 対応画素演算回路63により、結果的に画像データの補
間が行われるので超広角レンズが原因の画像歪みを取り
除かれる。しかも、前述のように、モニタ装置8に表示
される画像領域は、超広角撮像光学系2で撮像された画
像のうちの一部分であって、その表示画像の中心方向を
ジョイスティック7で指定できるので、操作者が望む方
向を選択的に表示できるという優れた利点を有する。
X i = cos φ i · sin θ i / (1 + cos θ i ) (2) y i = sin φ i · sin θ i / (1 + cos θ i ) The corresponding pixel operation circuit 63 results in interpolation of image data. Is performed, the image distortion caused by the ultra wide angle lens is removed. Moreover, as described above, the image area displayed on the monitor device 8 is a part of the image captured by the ultra-wide-angle imaging optical system 2, and the center direction of the displayed image can be specified by the joystick 7, This has an excellent advantage that the direction desired by the operator can be selectively displayed.

【0038】対応画素演算回路63により画像メモリ6
1から読み出された画像信号はモニタ装置8へ送られ、
ジョイスティック7で指示された方向の通常の視野角の
映像が表示される。
The image memory 6 is operated by the corresponding pixel operation circuit 63.
The image signal read from 1 is sent to the monitor device 8,
An image with a normal viewing angle in the direction designated by the joystick 7 is displayed.

【0039】この画像処理装置6は例えば公知のマイク
ロプロセッサやROM、RAM等の電子回路を用いて構
築でき、また市販のパーソナルコンピュータを利用する
ことも可能である。
The image processing device 6 can be constructed using a known microprocessor or an electronic circuit such as a ROM or a RAM, or a commercially available personal computer can be used.

【0040】上述のように、本発明は全方位内視鏡を実
現するため、内視鏡1の先端に超広角レンズ11を装着
している。魚眼レンズのような超広角レンズから得られ
る画像は、周知のように、特に画像の周辺領域で大きく
歪んでいる。すなわち、画像の中心部から周辺部に移る
に従って急激に像が縮まり、対象物が湾曲して見える。
このため、この画像をそのまま通常の画像表示装置に出
力表示してもほとんど元の形状が同定できない。そこ
で、本例では、超広角レンズ11を通って図2の固体撮
像カメラ5内の固体撮像素子51に平面的に投影された
光学像の歪みを、視線方向演算回路62と対応画素演算
回路63とにより取り除いて、元の形状の画像に戻して
いる。
As described above, according to the present invention, in order to realize an omnidirectional endoscope, the ultra wide angle lens 11 is attached to the end of the endoscope 1. As is well known, an image obtained from an ultra-wide-angle lens such as a fisheye lens is largely distorted, particularly in a peripheral region of the image. That is, as the image moves from the center to the periphery of the image, the image rapidly shrinks, and the object appears to be curved.
Therefore, even if this image is output and displayed as it is on a normal image display device, the original shape can hardly be identified. Therefore, in this example, the distortion of the optical image projected two-dimensionally onto the solid-state imaging device 51 in the solid-state imaging camera 5 of FIG. And the image is returned to the original shape.

【0041】さらに、超広角レンズ11の視野角度は重
要な視野方向を中心として180度近く、非常に広い範
囲を一度にカバーするものであるので、固体撮像素子5
1で受光されて歪みを取り除かれた画像の全てを通常の
画像表示装置に一度に表示することは、技術的ばかりで
なく表示スペース等の関係からも無理があり、また公知
の画面分割技術を用いて表示したとしても画像が極端に
小さくなって実用に供し得ない。そこで、本発明では、
操作者がジョイスティック7で指定した方向を中心とし
た通常の視野角での一定範囲で画像を抽出するようにし
て、内視鏡1の挿入時と作業時の観察方向を電子的に分
けて観察できるようにし、機械的な可動部分がなくても
1つの内視鏡で多くの方向を自在に観察できるようにし
ている。
Further, the viewing angle of the ultra wide-angle lens 11 is close to 180 degrees around the important viewing direction and covers a very wide range at a time.
Displaying all of the images received in step 1 without distortion on an ordinary image display device at the same time is not only technically impossible but also from the viewpoint of display space and the like. Even if it is displayed by using, the image becomes extremely small and cannot be put to practical use. Therefore, in the present invention,
An image is extracted within a certain range at a normal viewing angle centered on the direction specified by the joystick 7 by the operator, and the observation direction at the time of insertion of the endoscope 1 and the observation direction at the time of work are electronically divided for observation. This makes it possible to freely observe many directions with one endoscope without any mechanically movable parts.

【0042】さらに、操作者の選択により、上記のカメ
ラ回路52から出力する画像信号を画像メモリ61ヘ送
るのと同時に外部記憶装置22にも出力して記憶させ、
その後に外部記憶装置22から読み出した画像信号を画
像メモリ61に出力してモニタ表示するようにしても好
ましい。この場合、同じ画像信号を繰返し読み出すこと
ができ、また何回もジョイスティック7で色々な任意の
方向の画像を自由に切り出して表示させることができる
ので、例えば胃カメラ等による診断検査時間を短縮して
患者の負担を軽減し、また診断検査の精度向上が期待で
きる等の利点が得られる。
Further, according to the operator's selection, the image signal output from the camera circuit 52 is sent to the image memory 61 and simultaneously output to the external storage device 22 for storage.
Thereafter, the image signal read from the external storage device 22 is preferably output to the image memory 61 and displayed on a monitor. In this case, the same image signal can be repeatedly read out, and images in various arbitrary directions can be freely cut out and displayed with the joystick 7 many times. Thus, the patient's burden can be reduced, and the accuracy of the diagnostic test can be expected to be improved.

【0043】また、モニタ装置8に抽出画像を表示させ
る際に、公知の画像合成技術を利用して、その表示画面
の隅位置に画像メモリ61から読み出した広角画像の全
体を縮小画像で一緒に表示し、かつ切り出し画像の切り
出し位置を枠線で明示するようにしても好ましい。この
場合、目的物(患部)の全体の認識と画像切り出し位置
が正確に把握できるので、画像切り出し位置の選択が容
易となり、作業の能率向上が期待できる。
When displaying the extracted image on the monitor device 8, the entire wide-angle image read out from the image memory 61 is reduced to a reduced image at the corner position of the display screen using a known image synthesizing technique. It is preferable that the cutout image is displayed and the cutout position of the cutout image is clearly indicated by a frame line. In this case, since the entire target object (affected part) can be recognized and the image cutout position can be accurately grasped, the image cutout position can be easily selected, and improvement in work efficiency can be expected.

【0044】(他の実施形態)本発明の好ましい実施形
態を説明したが、本発明はこれに限定されない。
(Other Embodiments) Although the preferred embodiment of the present invention has been described, the present invention is not limited to this.

【0045】例えば、図2では硬性内視鏡に適用したも
のを例示したが、本発明は、光ファイバーを用いた撓性
内視鏡にも同様に適用可能である。
For example, FIG. 2 shows an example in which the present invention is applied to a rigid endoscope. However, the present invention is similarly applicable to a flexible endoscope using an optical fiber.

【0046】また、固体撮像素子を内視鏡の挿入筒の先
端部に配置し、超広角レンズを通った光像をその固体撮
像素子で受光し画像信号に変換するような構造でも良
い。
Further, a structure may be employed in which a solid-state imaging device is disposed at the distal end of an insertion tube of an endoscope, and a light image passing through an ultra-wide-angle lens is received by the solid-state imaging device and converted into an image signal.

【0047】また、視野角180度近い超広角レンズを
例示したが、これ以下の角度の視野角を有する広角レン
ズ系を使用する内視鏡でも本発明の適用範囲となる。
Although an ultra-wide-angle lens having a viewing angle close to 180 degrees has been exemplified, an endoscope using a wide-angle lens system having a viewing angle smaller than this is also applicable to the present invention.

【0048】また、照明光は可視光線とは限らず、赤外
線等も本発明の適用範囲となる。
The illumination light is not limited to visible light, and infrared light is also applicable to the present invention.

【0049】[0049]

【発明の効果】以上説明してきたように、本発明によれ
ば、内視鏡の先端部分に超広角レンズを装備すること
で、重要な視野方向を中心として180度近い視野角度
を確保するようにし、また操作者の指示する方向を中心
に通常の視野角で画像を切り出し、かつ超広角レンズの
ために生じた画像の歪みを画像処理により取り除いてか
らモニタ画面に表示するようにしたので、内視鏡を狭い
箇所から挿入して奥の特定の場所で特定方向を向いて作
業を行う場合に、内視鏡を挿入する時には挿入方向であ
る前方方向を確認しながら内視鏡を、または内視鏡と作
業器具とを挿入でき、特定の場所に到着したら、内視鏡
を回転せずに画面切り出し操作だけで、挿入方向とは異
なる別の作業方向を注視しながら作業をすることができ
るため、作業が正確・迅速になるばかりでなく、壁面な
どに内視鏡や作業器具が衝突するという挿入時や作業時
のトラブルを防ぐことができるという優れた効果が得ら
れる。
As described above, according to the present invention, by equipping the end portion of the endoscope with the ultra-wide-angle lens, a viewing angle close to 180 degrees around the important viewing direction can be secured. In addition, the image was cut out at a normal viewing angle around the direction instructed by the operator, and the image distortion caused by the super wide-angle lens was removed by image processing before being displayed on the monitor screen. When inserting an endoscope from a narrow place and working in a specific direction at a specific place in the back, when inserting the endoscope, check the insertion direction in front of the endoscope, or You can insert the endoscope and work equipment, and when you arrive at a specific place, you can work while watching the different work direction different from the insertion direction simply by cutting out the screen without rotating the endoscope. Work is accurate Not only becomes faster, an excellent effect that it is possible to prevent trouble during insertion and task of collision endoscope and working instruments such as the wall surface is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の超広角内視鏡の全体の構成
を示す模式図である。
FIG. 1 is a schematic diagram showing an overall configuration of an ultra-wide-angle endoscope according to an embodiment of the present invention.

【図2】本発明の実施形態の超広角内視鏡(斜視鏡)の
内部構造の一例を拡大して示す部分縦断面図である。
FIG. 2 is a partial longitudinal sectional view showing an enlarged example of the internal structure of the ultra-wide-angle endoscope (perspective mirror) according to the embodiment of the present invention.

【図3】本発明を適用した画像処理装置の構成の一例を
示すブロック図である。
FIG. 3 is a block diagram illustrating an example of a configuration of an image processing apparatus to which the present invention has been applied.

【図4】超広角撮像系によって得られた歪んだ画像の画
素領域とそれに対応する撮影方向の画像の領域との対応
関係を説明する模式図である。
FIG. 4 is a schematic diagram illustrating a correspondence relationship between a pixel region of a distorted image obtained by an ultra-wide-angle imaging system and a corresponding image region in a shooting direction.

【図5】図4の角度関係を示す模式図である。FIG. 5 is a schematic diagram showing the angle relationship of FIG. 4;

【符号の説明】[Explanation of symbols]

1 超広角内視鏡 2 超広角撮像光学系 3 光ファイバー 4 本体部分 5 固体撮像カメラ 6 画像処理装置 7 ジョイスティック 8 モニタ装置 11 超広角レンズ系(超広角レンズ) 12 光軸折り曲げ用プリズム 13 対物レンズ 14 リレーレンズ 15 接眼レンズ 17 ライトガイドファイバー 22 外部記憶装置 51 固体撮像素子 52 カメラ回路 61 画像メモリ 62 視線方向演算回路 63 対応画素演算回路 DESCRIPTION OF SYMBOLS 1 Ultra-wide-angle endoscope 2 Ultra-wide-angle imaging optical system 3 Optical fiber 4 Body part 5 Solid-state imaging camera 6 Image processing device 7 Joystick 8 Monitoring device 11 Ultra-wide-angle lens system (ultra-wide-angle lens) 12 Prism for bending optical axis 13 Objective lens 14 Relay lens 15 Eyepiece 17 Light guide fiber 22 External storage device 51 Solid-state imaging device 52 Camera circuit 61 Image memory 62 Viewing direction calculation circuit 63 Corresponding pixel calculation circuit

フロントページの続き (72)発明者 山内 康司 茨城県つくば市東1丁目1番3 工業技 術院 生命工学工業技術研究所内 (72)発明者 山下 樹里 茨城県つくば市東1丁目1番3 工業技 術院 生命工学工業技術研究所内 (72)発明者 横山 和則 茨城県土浦市真鍋新町11番7号 総合病 院 土浦協同病院内 審査官 峰 祐治 (56)参考文献 特開 昭57−78834(JP,A) 特開 平1−136625(JP,A) 特開 平9−56662(JP,A) 特開 平2−244021(JP,A) 特開 平8−332169(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 23/24 A61B 1/00 300 A61B 1/04 372 G02B 23/26 Continued on the front page (72) Inventor Koji Yamauchi 1-1-3 Higashi, Tsukuba City, Ibaraki Pref. Industrial Technology Research Institute Inside Biotechnology Research Institute (72) Inventor Juri Yamashita 1-3-1 Higashi, Tsukuba City, Ibaraki Pref. In Biotechnology Research Institute (72) Inventor Kazunori Yokoyama 11-7 Manabe Shinmachi, Tsuchiura City, Ibaraki Prefectural General Hospital Tsuchiura Kyodo Hospital Examiner Yuji Mine (56) References JP-A-57-78834 (JP, A) JP-A-1-136625 (JP, A) JP-A-9-56662 (JP, A) JP-A-2-244021 (JP, A) JP-A-8-332169 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G02B 23/24 A61B 1/00 300 A61B 1/04 372 G02B 23/26

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光ファイバーまたはリレーレンズ系を用
いた管体の先端に結像光学系を備えた内視鏡において、 前記結像光学系として前記管体の先端に装備された超広
角レンズ系と、 該超広角レンズ系で捉えられた広範囲の光学像を受光し
て画像信号に変換する固体撮像手段と、 該固体撮像手段の前記画像信号から得られる広角度の画
像を通常の視野角の画像に変換するための画像処理を行
う画像処理手段と、 該画像処理手段の出力信号により映像を表示する画像表
示手段とを具え、 前記画像処理手段は、 前記固体撮像手段から入力する画像データを画像フレー
ム毎に順次記憶する画像記憶手段と、 ポインテイングデバイスで指示された方向を中心とする
一定範囲の視線方向を演算する視線方向演算手段と、 該視線方向演算手段により演算された各視線方向に対し
て前記固体撮像手段上の対応画素の位置を演算し、演算
された各々の該対応画素のアドレスの画像信号を前記画
像記憶手段から読み出して出力する対応画素演算手段と
を具えたことを特徴とする超広角内視鏡。
1. An endoscope having an imaging optical system at the tip of a tube using an optical fiber or a relay lens system, comprising: an ultra-wide-angle lens system provided at the tip of the tube as the imaging optical system. A solid-state imaging unit that receives a wide-range optical image captured by the ultra-wide-angle lens system and converts the optical image into an image signal; and a wide-angle image obtained from the image signal of the solid-state imaging unit is an image having a normal viewing angle. Image processing means for performing image processing for converting the image data into image data; and image display means for displaying an image based on an output signal of the image processing means. The image processing means converts image data input from the solid-state imaging means into an image. Image storage means for sequentially storing each frame, line-of-sight direction calculating means for calculating a line-of-sight direction within a certain range centered on the direction specified by the pointing device, and a line-of-sight direction calculating means. Corresponding pixel calculation means for calculating the position of the corresponding pixel on the solid-state imaging means for each of the line-of-sight directions calculated, reading out the calculated image signal of the address of the corresponding pixel from the image storage means, and outputting the read image signal; An ultra-wide-angle endoscope comprising:
【請求項2】 管体の先端に結像光学系を備えた内視鏡
において、 前記結像光学系として前記管体の先端に装備された超広
角レンズ系と、 前記管体の先端近傍に装備され、前記超広角レンズ系で
捉えられた広範囲の光学像を受光して画像信号に変換す
る固体撮像手段と、 該固体撮像手段の前記画像信号から得られる広角度の画
像を通常の視野角の画像に変換するための画像処理を行
う画像処理手段と、 該画像処理手段の出力信号により映像を表示する画像表
示手段とを具え、 前記画像処理手段は、 前記固体撮像手段から入力する画像データを画像フレー
ム毎に順次記憶する画像記憶手段と、 ポインテイングデバイスで指示された方向を中心とする
一定範囲の視線方向を演算する視線方向演算手段と、 該視線方向演算手段により演算された各視線方向に対し
て前記固体撮像手段上の対応画素の位置を演算し、演算
された各々の該対応画素のアドレスの画像信号を前記画
像記憶手段から読み出して出力する対応画素演算手段と
を具えたことを特徴とする超広角内視鏡。
2. An endoscope having an imaging optical system at a distal end of a tube, comprising: an ultra-wide-angle lens system provided at the distal end of the tube as the imaging optical system; A solid-state imaging means for receiving and converting a wide-range optical image captured by the ultra-wide-angle lens system into an image signal; and a wide-angle image obtained from the image signal of the solid-state imaging means at a normal viewing angle. Image processing means for performing image processing for converting the image into an image, and image display means for displaying a video in accordance with an output signal of the image processing means. The image processing means includes image data input from the solid-state imaging means. Image storage means for sequentially storing image data for each image frame; gaze direction calculation means for calculating a gaze direction within a certain range centered on a direction designated by a pointing device; and gaze direction calculation means. Corresponding pixel operation means for calculating the position of the corresponding pixel on the solid-state imaging means with respect to the line of sight, reading out the calculated image signal of the address of the corresponding pixel from the image storage means, and outputting the read out image signal. An ultra-wide-angle endoscope, characterized in that:
【請求項3】 前記視線方向演算手段および前記対応画
素演算手段の少なくとも一方はルックアップテーブルを
利用して演算処理を行うことを特徴とする請求項1また
は2に記載の超広角内視鏡。
3. The ultra-wide-angle endoscope according to claim 1, wherein at least one of the line-of-sight direction calculation unit and the corresponding pixel calculation unit performs a calculation process using a lookup table.
【請求項4】 前記固体撮像手段と前記画像処理手段間
に接続する外部記憶装置をさらに有し、該外部記憶装置
は前記固体撮像手段から入力する画像データを記憶し、
該記憶した画像データを読み出し指示信号に応じて前記
画像処理手段へ供給することを特徴とする請求項1から
3のいずれかに記載の超広角内視鏡。
4. An external storage device connected between the solid-state imaging means and the image processing means, wherein the external storage device stores image data input from the solid-state imaging means,
The ultra-wide-angle endoscope according to any one of claims 1 to 3, wherein the stored image data is supplied to the image processing means in response to a read instruction signal.
JP9102044A 1997-04-18 1997-04-18 Ultra wide-angle endoscope Expired - Lifetime JP3070022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9102044A JP3070022B2 (en) 1997-04-18 1997-04-18 Ultra wide-angle endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9102044A JP3070022B2 (en) 1997-04-18 1997-04-18 Ultra wide-angle endoscope

Publications (2)

Publication Number Publication Date
JPH10290777A JPH10290777A (en) 1998-11-04
JP3070022B2 true JP3070022B2 (en) 2000-07-24

Family

ID=14316784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9102044A Expired - Lifetime JP3070022B2 (en) 1997-04-18 1997-04-18 Ultra wide-angle endoscope

Country Status (1)

Country Link
JP (1) JP3070022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024754A1 (en) 2019-08-02 2021-02-11 ソニー株式会社 Endoscope system, control device, and control method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345645B2 (en) 2000-06-20 2002-11-18 東京大学長 Body cavity observation device
JP2006026312A (en) * 2004-07-21 2006-02-02 Olympus Corp Endoscope apparatus and image signal processing device
JP4789490B2 (en) * 2005-03-14 2011-10-12 オリンパス株式会社 Endoscope device
JP5198138B2 (en) * 2008-05-12 2013-05-15 オリンパスメディカルシステムズ株式会社 Endoscopic imaging device
US10092169B2 (en) 2008-07-08 2018-10-09 Karl Storz Imaging, Inc. Solid state variable direction of view endoscope
US8771177B2 (en) 2008-07-08 2014-07-08 Karl Storz Imaging, Inc. Wide angle flexible endoscope
US8814782B2 (en) * 2008-07-08 2014-08-26 Karl Storz Imaging, Inc. Solid state variable direction of view endoscope
US8758234B2 (en) 2008-07-08 2014-06-24 Karl Storz Imaging, Inc. Solid state variable direction of view endoscope
EP2617349B1 (en) * 2012-01-20 2017-09-27 Karl Storz Imaging Inc. Wide angle flexible endoscope
US9763563B2 (en) 2012-07-11 2017-09-19 Karl Storz Imaging, Inc. Endoscopic camera single-button mode activation
WO2020208715A1 (en) * 2019-04-09 2020-10-15 ヨネ株式会社 Search-use camera device
CN111025619A (en) * 2019-11-27 2020-04-17 苏州灵猴机器人有限公司 Device for detecting defects of inner wall of cylinder
WO2021261236A1 (en) * 2020-06-22 2021-12-30 ソニーグループ株式会社 Medical observation system, image processing method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024754A1 (en) 2019-08-02 2021-02-11 ソニー株式会社 Endoscope system, control device, and control method

Also Published As

Publication number Publication date
JPH10290777A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US5313306A (en) Omniview motionless camera endoscopy system
JP4500096B2 (en) Endoscope and endoscope system
JP3070022B2 (en) Ultra wide-angle endoscope
KR100556232B1 (en) Flexible dual endoscopy for laproscope
WO2005055817A1 (en) Endoscope system, and endoscope
TW201919537A (en) Endoscope system
JPH09313435A (en) Endoscope device
JP3827752B2 (en) Endoscope device
WO2017199926A1 (en) Endoscope device
JP3816599B2 (en) Body cavity treatment observation system
JPS63262613A (en) Stereoscopic vision endoscope device
JP3251076B2 (en) Endoscope device
JPH0642644Y2 (en) Endoscopic bending device
JPH0820603B2 (en) Video scope equipment
JPH05297288A (en) Endoscope and device using the same
JPH01197716A (en) Enlargement photographing mechanism for electronic endoscope
JPH09294709A (en) Endoscope
JP2000271081A (en) Method for controlling visual field of endoscope camera
JP2933161B2 (en) Endoscope device
JPH01136625A (en) Endoscopic apparatus
CN219940557U (en) Polarized light endoscope device and endoscope imaging system
JPH0829703A (en) Electronic endoscope device
JP2003140056A (en) Measuring endoscope apparatus
CN219126292U (en) Electronic laparoscope
JP5042550B2 (en) Endoscope device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080526

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term