JP3068174B2 - Biodegradable plastic - Google Patents

Biodegradable plastic

Info

Publication number
JP3068174B2
JP3068174B2 JP2295122A JP29512290A JP3068174B2 JP 3068174 B2 JP3068174 B2 JP 3068174B2 JP 2295122 A JP2295122 A JP 2295122A JP 29512290 A JP29512290 A JP 29512290A JP 3068174 B2 JP3068174 B2 JP 3068174B2
Authority
JP
Japan
Prior art keywords
biodegradable plastic
lactic acid
molecular weight
plastic
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2295122A
Other languages
Japanese (ja)
Other versions
JPH04168150A (en
Inventor
修 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2295122A priority Critical patent/JP3068174B2/en
Publication of JPH04168150A publication Critical patent/JPH04168150A/en
Application granted granted Critical
Publication of JP3068174B2 publication Critical patent/JP3068174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は生分解性プラスチックに関する。特に、ゴミ
焼却用の袋、食器、ポリ容器など大衆消費材として用い
られる生分解性プラスチックに関する。
The present invention relates to a biodegradable plastic. In particular, the present invention relates to a biodegradable plastic used as a mass consumer such as bags for incineration of garbage, tableware and plastic containers.

[従来技術およびその課題] 近年、環境保全に対する必要性と意識の高まりから生
分解性プラスチックが脚光をあびている。生分解性プラ
スチックは使用済みのプラスチックが土中や水中の微生
物の作用で二酸化炭素と水に分解され自然環境に戻るも
のと一般に定義されている。このような生分解性プラス
チックは世界的に注目されているものの、まだ開発が始
まったばかりであり、現在、様々な材料素材の開発が行
われている。
[Prior art and its problems] In recent years, biodegradable plastics have been in the spotlight due to the increasing need and awareness of environmental conservation. Biodegradable plastics are generally defined as used plastics that are broken down into carbon dioxide and water by the action of microorganisms in the soil or water and return to the natural environment. Although such biodegradable plastics have attracted worldwide attention, their development has only just begun, and various materials are currently being developed.

生分解性プラスチックに求められる性質は、加水分解
性を有し、しかも材料強度が高いことである。しかしな
がら、加水分解性は分子量の増加に伴って低下し、一方
材料強度は分子量の増加に伴って大きくなるため、これ
らは一般に相反する性質である。特にエステル基により
結合したポリエステル樹脂においてはこの傾向が強い。
The properties required for biodegradable plastics are that they have hydrolyzability and have high material strength. However, these are generally contradictory properties, as the hydrolyzability decreases with increasing molecular weight, while the material strength increases with increasing molecular weight. This tendency is particularly strong in a polyester resin bonded by an ester group.

このような問題を解決するため、従来、延伸など材料
の加工法により伸び、引張り強度を向上させることも行
われているが、コストの増加が避けられない。また、紫
外線照射などの外部エネルギーによりポリマーを分解し
て処理する方法も提案されているが、かかる処理方法を
一般家庭で実施することは困難である。
In order to solve such a problem, elongation and tensile strength have been conventionally improved by a material processing method such as stretching, but an increase in cost is inevitable. Further, a method of decomposing a polymer by external energy such as irradiation with ultraviolet rays to treat the polymer has been proposed, but it is difficult to carry out such a treating method in ordinary households.

本発明の目的は通常の使用時には高い強度を有し、一
方、不要となって廃棄されたときには速やかに分解され
地球環境を破壊するおそれのない生分解性プラスチック
を提供することにある。
An object of the present invention is to provide a biodegradable plastic which has high strength during normal use, but is quickly degraded when it is no longer needed and is not likely to destroy the global environment.

[課題を解決するための手段] 本発明は、ベースポリマーとしてポリ乳酸を用い、酵
母エキスを必須の微生物培地成分として配合した生分解
性プラスチックを提供するものである。
Means for Solving the Problems The present invention provides a biodegradable plastic using polylactic acid as a base polymer and blending yeast extract as an essential component of a microorganism medium.

前記ベースポリマーに配合される培地成分としては、
酵母エキスが挙げられ、ペプトン、デンプン、グルコー
スなどの他の微生物の培地成分を併用してもよい。培地
成分の配合量は多いと早く分解し、少量であると分解が
遅くなり、用途、目的に応じて調整し分解時間を制御す
る。通常、プラスチック100部に対して10〜0.01部であ
る。培地成分の配合量がこれより少ないと、充分な生分
解性が得られず、一方この範囲より多くても効果は向上
しない。具体的にはポリマー分子量が数十万以下である
と水中で約1ケ月以内に分解が可能となる。
As a medium component to be mixed with the base polymer,
Yeast extract may be used, and media components of other microorganisms such as peptone, starch, glucose and the like may be used in combination. If the amount of the medium component is large, it is decomposed quickly, and if it is small, the decomposition is slow, and it is adjusted according to the use and purpose to control the decomposition time. Usually, 10 to 0.01 parts per 100 parts of plastic. If the amount of the medium component is less than this, sufficient biodegradability cannot be obtained, while if the amount exceeds this range, the effect is not improved. Specifically, when the molecular weight of the polymer is less than several hundred thousand, it can be decomposed in water within about one month.

また、本発明で用いられるベースポリマーは加水分解
性ポリマーである乳酸の重合体であり、特にポリL−乳
酸が好ましい。ポリ乳酸の分子量は1×104〜300×104
が好ましい。ポリL−乳酸は加水分解してL−乳酸とな
るための生体安全性が高く、近年医用材料としても研究
が活発であり一部実用化されている。また、モノマーで
あるL−乳酸は一般に発酵法により乳酸菌から産生され
るが、医薬品、食品にも使用され、かつ生体内での代謝
系路も明らかである。このため、ポリ乳酸は分解後の生
体安全性も極めて高い。ポリL−乳酸は分子量1000の場
合、生理食塩水中で約2週間以内に分解し材料強度は低
く実用的でない。これに対し、分子量が10万以上になる
と分解しにくく、100万以上では約1年以上変化なく存
在し、材料強度も高くポリスチレンと同等以上になる。
The base polymer used in the present invention is a polymer of lactic acid, which is a hydrolyzable polymer, and poly L-lactic acid is particularly preferable. The molecular weight of polylactic acid is 1 × 10 4 to 300 × 10 4
Is preferred. Poly-L-lactic acid has high biosafety because it is hydrolyzed to L-lactic acid, and has been actively researched as a medical material in recent years, and has been partially put to practical use. L-lactic acid, which is a monomer, is generally produced from lactic acid bacteria by a fermentation method, but is also used in pharmaceuticals and foods, and its metabolic pathway in vivo is clear. For this reason, polylactic acid has extremely high biosafety after decomposition. When the molecular weight of poly-L-lactic acid is 1000, it decomposes in physiological saline within about 2 weeks, and the material strength is low, which is not practical. On the other hand, when the molecular weight is 100,000 or more, it is difficult to decompose.

前記の成分より生分解性プラスチックを調整するに
は、高分子量のポリL−乳酸などの加水分解性樹脂をク
ロロホルム、THFなど適宜の溶媒に溶解し、この溶液に
培地成分を添加し、板状にキャスティング後溶媒を蒸発
させて製膜する。
In order to prepare a biodegradable plastic from the above components, a hydrolyzable resin such as high molecular weight poly-L-lactic acid is dissolved in an appropriate solvent such as chloroform or THF, and a medium component is added to this solution. After casting, the solvent is evaporated to form a film.

また、別法としては加水分解性樹脂と培地成分とを粉
末状態で混合して圧縮成形して均質な成形体を得てもよ
い。
As another method, a hydrolyzable resin and a medium component may be mixed in a powder state and compression-molded to obtain a homogeneous molded body.

なお、本発明の生分解性プラスチックには乳酸エステ
ル、オクチル酸などの可塑剤、添加剤が配合されてよ
い。
The biodegradable plastic of the present invention may contain a plasticizer such as lactic acid ester and octylic acid, and additives.

[作用] 本発明のプラスチックは、通常の使用状態では高い強
度を有するが、使用後、地中や川などの微生物の作用を
受ける環境に廃棄されると、プラスチック中に配合され
た微生物培地成分が環境微生物によるプラスチックの分
解作用を積極的に促進し、分解物の資化が行われて短時
間に分解が進行する。
[Action] The plastic of the present invention has a high strength in a normal use condition, but when used and disposed of in an environment under the action of microorganisms such as underground or a river, a microbial medium component incorporated in the plastic. Actively promotes the action of environmental microorganisms to decompose plastics, assimilation of decomposed products is performed, and decomposition proceeds in a short time.

[実施例] つぎに本発明を実施例によりさらに具体的に説明す
る。
[Examples] Next, the present invention will be described more specifically with reference to Examples.

ポリ乳酸(分子量約10万)10gをクロロホルム400gに
溶解し、これにぺプトン、酵母エキス、デンプンを各1g
添加してガラス板状にキャスティングした。溶媒蒸発後
の膜を庭の土中に埋めるといずれも約3ケ月で膜が破壊
されていた。
Dissolve 10 g of polylactic acid (molecular weight: about 100,000) in 400 g of chloroform, and add 1 g each of peptone, yeast extract, and starch.
It was added and cast into a glass plate. When the film after solvent evaporation was buried in garden soil, the film was destroyed in about 3 months.

[発明の効果] 本発明の生分解性プラスチックは、通常の使用時には
高い強度を有し、廃棄後、速やかに環境微生物により分
解される。
[Effect of the Invention] The biodegradable plastic of the present invention has high strength during normal use, and is rapidly decomposed by environmental microorganisms after disposal.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−222421(JP,A) 特開 平4−58962(JP,A) 特開 平1−156912(JP,A) 特開 平4−124127(JP,A) 化学大辞典編集委員会編,「化学大辞 典(第3巻)」,初版縮刷版第2刷, 1966年4月20日,p.603「酵母エキス」 の項 (58)調査した分野(Int.Cl.7,DB名) C08L 67/04 C08K 5/00 C08L 3/02 C08L 89/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-222421 (JP, A) JP-A-4-58962 (JP, A) JP-A-1-156912 (JP, A) JP-A-4- 124127 (JP, A) Edited by the Chemical Dictionary Editor's Committee, "Chemical Dictionary" (Vol. 3), First Edition, Second Printing, April 20, 1966, p. 603 “Yeast extract” (58) Fields investigated (Int. Cl. 7 , DB name) C08L 67/04 C08K 5/00 C08L 3/02 C08L 89/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ベースポリマーとしてポリ乳酸を用い、酵
母エキスを必須の微生物培地成分として配合した生分解
性プラスチック。
1. A biodegradable plastic containing polylactic acid as a base polymer and a yeast extract as an essential component of a microorganism medium.
JP2295122A 1990-10-30 1990-10-30 Biodegradable plastic Expired - Fee Related JP3068174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2295122A JP3068174B2 (en) 1990-10-30 1990-10-30 Biodegradable plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2295122A JP3068174B2 (en) 1990-10-30 1990-10-30 Biodegradable plastic

Publications (2)

Publication Number Publication Date
JPH04168150A JPH04168150A (en) 1992-06-16
JP3068174B2 true JP3068174B2 (en) 2000-07-24

Family

ID=17816574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295122A Expired - Fee Related JP3068174B2 (en) 1990-10-30 1990-10-30 Biodegradable plastic

Country Status (1)

Country Link
JP (1) JP3068174B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323307B1 (en) 1988-08-08 2001-11-27 Cargill Dow Polymers, Llc Degradation control of environmentally degradable disposable materials
DE69220754T2 (en) * 1991-05-03 1997-12-04 Novamont S.P.A., Novara Biodegradable polymer masses based on starch and thermoplastic polymers
FR2693734B1 (en) * 1992-07-15 1994-10-07 Roquette Freres Thermoformable-biodegradable composition based on a starchy compound and a biodegradable polyester.
JP2915215B2 (en) * 1992-07-27 1999-07-05 工業技術院長 Method for producing solid medium for evaluating polymer biodegradability
WO1994006866A1 (en) * 1992-09-22 1994-03-31 Biopak Technology, Ltd. Degradation control of environmentally degradable disposable materials
DE69425599T2 (en) * 1993-03-02 2001-04-19 Canon K.K., Tokio/Tokyo Recording device containing a waste ink absorbing member
JP3156812B2 (en) 1993-03-11 2001-04-16 東洋紡績株式会社 Biodegradable fiber assembly for civil engineering
FR2709500B1 (en) * 1993-08-02 1996-02-16 Fiberweb Sodoca Sarl Nonwoven based on polymers derived from lactic acid, process for manufacturing and using such a nonwoven.
EP0746224A1 (en) * 1994-12-23 1996-12-11 Licentia Patent-Verwaltungs-GmbH Filter and filter bag for vacuum cleaners
NL1002411C2 (en) * 1996-02-21 1997-08-25 Rijksuniversiteit Biodegradable polymer composition.
RU2004104363A (en) 2001-07-16 2005-07-10 Дау Глобал Текнолоджиз Инк. (Us) POLYESTERS WITH HYDROXYL FUNCTIONAL GROUPS
WO2014035351A1 (en) * 2012-08-30 2014-03-06 Ptt Global Chemical Public Company Limited A bio-based polymer additive, a process for preparing the bio-based polymer additive and a biodegradable polymer composition comprising said bio-based polymer additive
CA3073791A1 (en) * 2017-08-31 2019-03-07 Carbiolice Biodegradable polyester article comprising enzymes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
化学大辞典編集委員会編,「化学大辞典(第3巻)」,初版縮刷版第2刷,1966年4月20日,p.603「酵母エキス」の項

Also Published As

Publication number Publication date
JPH04168150A (en) 1992-06-16

Similar Documents

Publication Publication Date Title
Chandra et al. Biodegradable polymers
Zhong et al. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review
Rosli et al. Comprehensive exploration of natural degradation of poly (lactic acid) blends in various degradation media: A review
Sunte The Municipal Plastic Waste Degradation Techniques
Palmisano et al. Biodegradability of plastics
JP3068174B2 (en) Biodegradable plastic
Hocking The classification, preparation, and utility of degradable polymers
Tyagi et al. A critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications
Amass et al. A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies
US8222316B2 (en) Chemical additives to make polymeric materials biodegradable
CN102352064B (en) Dual-degradant additive for promoting photo oxidative degradation and biodegradation of polymer
Moore et al. Advances in biodegradable polymers
Calil et al. Comparison of the biodegradation of poly (ε-caprolactone), cellulose acetate and their blends by the Sturm test and selected cultured fungi
La Fuente et al. Biodegradable polymers: A review about biodegradation and its implications and applications
JP5053500B2 (en) Method for slowing degradation rate of biodegradable polymers and biodegradable polymer compositions and compositions thereof
Federle et al. Anaerobic biodegradation of aliphatic polyesters: poly (3-hydroxybutyrate-co-3-hydroxyoctanoate) and poly (ε-caprolactone)
CN111409346A (en) Degradable film and preparation method thereof
JP3077704B2 (en) Biodegradable plastic molding
EP2463328A2 (en) Biodegradable polymer film with controlled degree of biodegradability comprising mixture of polyvinyl alcohol and cellulose polymer and preparation method thereof
Shen et al. Comparison of polycaprolactone and starch/polycaprolactone blends as carbon source for biological denitrification
JPH0678475B2 (en) Biodegradability control method for plastics
JP2004058010A (en) Method of treating organic waste containing molded article made of biodegradable resin
Julinová et al. Lignin and starch as potential inductors for biodegradation of films based on poly (vinyl alcohol) and protein hydrolysate
JP3773335B2 (en) Biodegradable aliphatic polyester resin-starch composition
Mudhoo et al. Degradation of biodegradable and green polymers in the composting environment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees