JP3067633B2 - Method for producing perfluorocarbon - Google Patents

Method for producing perfluorocarbon

Info

Publication number
JP3067633B2
JP3067633B2 JP8070294A JP7029496A JP3067633B2 JP 3067633 B2 JP3067633 B2 JP 3067633B2 JP 8070294 A JP8070294 A JP 8070294A JP 7029496 A JP7029496 A JP 7029496A JP 3067633 B2 JP3067633 B2 JP 3067633B2
Authority
JP
Japan
Prior art keywords
reaction zone
gas
reaction
hydrofluorocarbon
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8070294A
Other languages
Japanese (ja)
Other versions
JPH09255598A (en
Inventor
博基 大野
哲夫 中條
龍晴 新井
敏夫 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP8070294A priority Critical patent/JP3067633B2/en
Priority to SG9611696A priority patent/SG99836A1/en
Priority to GB9626079A priority patent/GB2311522B/en
Priority to KR1019960067181A priority patent/KR100294570B1/en
Priority to TW085115907A priority patent/TW509666B/en
Priority to DE19654719A priority patent/DE19654719C2/en
Priority to CN97102131A priority patent/CN1090162C/en
Publication of JPH09255598A publication Critical patent/JPH09255598A/en
Application granted granted Critical
Publication of JP3067633B2 publication Critical patent/JP3067633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/013Preparation of halogenated hydrocarbons by addition of halogens
    • C07C17/06Preparation of halogenated hydrocarbons by addition of halogens combined with replacement of hydrogen atoms by halogens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/269Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of only halogenated hydrocarbons

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気相でハイドロフ
ルオロカーボンとフッ素ガスとを反応させるパーフルオ
ロカーボンの製造方法において、第一反応帯でハイドロ
フルオロカーボンとフッ素ガスとを気相で、高められた
反応温度で接触させて生成した生成ガスを希釈ガスとし
て第二反応帯へ導き、これに第一反応帯とは異なるハイ
ドロフルオロカーボンと必要に応じてフッ素ガスを供給
し高められた反応温度で接触させることを特徴とするパ
ーフルオロカーボンを製造する方法に関する。パーフル
オロカーボンは常温で気体の化合物は、例えば半導体工
業におけるエッチングガス、クリーニングガス等の用
途、また常温で液体の化合物は冷却用液体等の幅広い用
途を有し、工業的に有用な化合物である。
The present invention relates to a method for producing perfluorocarbon by reacting hydrofluorocarbon and fluorine gas in the gas phase, wherein the enhanced reaction of hydrofluorocarbon and fluorine gas in the gas phase in the first reaction zone is carried out. The product gas generated by contacting at the temperature is led to the second reaction zone as a diluent gas, and a hydrofluorocarbon different from the first reaction zone is supplied with a fluorine gas as needed, and the gas is contacted at an increased reaction temperature. And a method for producing a perfluorocarbon. Perfluorocarbon is a compound that is gaseous at room temperature, has a wide range of uses such as an etching gas and a cleaning gas in the semiconductor industry, and a compound that is liquid at room temperature is a liquid for cooling and is industrially useful.

【0002】[0002]

【従来の技術】パーフルオロカーボンの製造方法に関し
ては、従来より様々な方法が提案されている。例えば、
炭素原子1個のパーフルオロカーボンのテトラフルオロ
メタン(以下、「FC−14」または「CF4 」とい
う)の場合、クロロトリフルオロメタン(CClF3 )を
触媒の存在下でHFと反応させる方法(特公昭62−1
0211号)、ジクロロジフルオロメタン(CCl
2 2 )を触媒の存在下でHFと反応させる方法(特公
昭42−3004号)、四塩化炭素(CCl4 )をHFと
反応させる方法(特公昭43−10601号)、トリフ
ルオロメタン(CHF3 )をF2 と反応させる方法(G
B−1116920:1986年)、BrF3 やIF5中で
炭素(C)をF2 と反応させる方法(特開昭58−16
2536号)や、四フッ化エチレン(CF2 =CF2
とCO2 とを高温で熱分解する方法(US−43651
02:1982年)等がある。
2. Description of the Related Art Various methods have been proposed for producing perfluorocarbons. For example,
In the case of perfluorocarbon having one carbon atom, tetrafluoromethane (hereinafter referred to as “FC-14” or “CF 4 ”), a method of reacting chlorotrifluoromethane (CCIF 3 ) with HF in the presence of a catalyst (Japanese Patent Publication No. 62-1
0211), dichlorodifluoromethane (CCl
2 F 2) and No. 42-3004 method (JP-B is reacted with HF in the presence of a catalyst), carbon tetrachloride (method of reacting with the CCl 4) HF (Japanese Patent Publication No. 43-10601), trifluoromethane (CHF 3 ) reacting F 2 with F 2 (G
B-1116920: 1986 years), a method of reacting carbon (C) and F 2 in BrF 3 or IF 5 (JP 58-16
2536), ethylene tetrafluoride (CF 2 = CF 2 )
For thermally decomposing CO 2 and CO 2 at high temperature (US Pat. No. 4,365,651)
02: 1982).

【0003】また、例えば、炭素原子2個のパーフルオ
ロカーボンのヘキサフルオロエタン(以下、「FC−1
16」または「CF3 CF3 」という)の場合、エタン
および/またはエチレンを原料とする電解フッ素化法、
四フッ化エチレン等を熱分解する熱分解法、アセチレ
ン、エチレンおよび/またはエタン等を金属フッ化物を
用いてフッ素化する方法、ジクロロテトラフルオロエタ
ンやクロロペンタフルオロエタン等をフッ化水素を用い
てフッ素化する方法、フッ素ガスを用いてエタン等と反
応させる直接フッ素化法等が知られている。
Further, for example, hexafluoroethane of perfluorocarbon having two carbon atoms (hereinafter referred to as “FC-1”)
16 "or" CF 3 CF 3 "), an electrolytic fluorination method using ethane and / or ethylene as a raw material,
Pyrolysis method of pyrolyzing ethylene tetrafluoride, etc., fluorination of acetylene, ethylene and / or ethane, etc. using metal fluoride, dichlorotetrafluoroethane, chloropentafluoroethane, etc. using hydrogen fluoride A fluorination method, a direct fluorination method of reacting with ethane or the like using fluorine gas, and the like are known.

【0004】さらに、例えば、炭素原子3個のパーフル
オロカーボンのオクタフルオロプロパン(以下、「FC
−218」または「C3 8 」という)の場合、フッ素
ガスを用いてプロパンと反応させる直接フッ素化法(E
P−31519:1981年)等が知られている。
Further, for example, octafluoropropane of perfluorocarbon having three carbon atoms (hereinafter referred to as "FC
-218 "or the" called C 3 F 8 "), directly reacted with propane using a fluorine gas fluorination method (E
P-31519: 1981).

【0005】フッ素ガスを用いる直接フッ素化法は、更
に、(a)ジェットリアクタ−によりフッ素ガスとエタ
ンを反応させFC−14やFC−116を得る方法(・
J.Amer.Chem.Soc.,77,3307(1955)、・J.Amer.Chem.So
c.,82,5827(1960))、(b)多孔質のアルミナ管を持つ
反応器でC−Hをフッ素ガスでフッ素化する方法(EP-3
1519(1981))、(c)多孔質の金属管を持つ反応器(二
重管構造)で、希釈ガス存在下で、直鎖の炭化水素をフ
ッ素ガスでフッ素化する方法:希釈ガスとしてSF6
CF4 、C2 6 、C3 8 使用(EP-33210(1981))等
が知られている。その他のフッ素ガスを用いる反応例と
して、(d)飽和または不飽和炭化水素または部分的に
フッ素化された炭化水素にフッ素ガスを反応させてハイ
ドロフルオロカーボンを製造する方法(US-5406008(199
5))やアルケンとフッ素ガスを吸着含有する炭素とから
フッ化アルケンを製造する方法(特開平 2-207052 )等
も知られている。
In the direct fluorination method using fluorine gas, (a) a method in which fluorine gas and ethane are reacted by a jet reactor to obtain FC-14 or FC-116 (.)
J. Amer. Chem. Soc., 77, 3307 (1955), J. Amer. Chem. So
c., 82, 5827 (1960)), (b) Method of fluorinating CH with fluorine gas in a reactor having a porous alumina tube (EP-3)
1519 (1981)), (c) A method of fluorinating linear hydrocarbons with fluorine gas in a reactor having a porous metal tube (double tube structure) in the presence of a diluent gas: SF as diluent gas 6 ,
Use of CF 4 , C 2 F 6 and C 3 F 8 (EP-33210 (1981)) and the like are known. As another reaction example using a fluorine gas, (d) a method of producing a hydrofluorocarbon by reacting a saturated or unsaturated hydrocarbon or a partially fluorinated hydrocarbon with a fluorine gas (US-5406008 (199)
5)) and a method of producing an alkene fluoride from an alkene and carbon containing fluorine gas by adsorption (Japanese Patent Laid-Open No. 2-207052).

【0006】[0006]

【発明が解決しようとする課題】前記のようにフッ素ガ
スを使用する直接フッ素化法は、極めて反応性に富むフ
ッ素ガスを用いるため、基質である有機化合物とフッ素
ガスとの爆発や腐食等の危険があり、さらには発熱によ
るC−C結合の切断や重合、また炭素(C)の生成、堆
積等による急激な反応や爆発等の副反応も危険である。
例えば、直鎖の炭化水素化合物とフッ素ガスとを反応さ
せる直接フッ素化法によるパーフルオロカーボンの合成
の場合、次のような非常に大きな反応熱を伴う。
As described above, the direct fluorination method using fluorine gas uses fluorine gas which is extremely reactive, so that the explosion and corrosion of the organic compound as a substrate with the fluorine gas can be prevented. There is a danger, and further, a breakage or polymerization of a C—C bond due to heat generation, a sudden reaction due to generation and deposition of carbon (C), and a side reaction such as an explosion are also dangerous.
For example, in the case of synthesizing a perfluorocarbon by a direct fluorination method in which a linear hydrocarbon compound is reacted with a fluorine gas, a very large heat of reaction is involved as follows.

【0007】[0007]

【化1】 このように、C−H結合1個をC−F結合に置換するに
は、約−110Kcal/mol の反応熱が発生する。プロパ
ンとフッ素ガスとを反応させる直接フッ素化法はΔHが
約−880Kcal/molとなる。
Embedded image Thus, in order to replace one C—H bond with a C—F bond, a reaction heat of about −110 Kcal / mol is generated. In the direct fluorination method in which propane and fluorine gas are reacted, ΔH is about -880 Kcal / mol.

【0008】メタンを原料とする場合(式2)はメタン
1モルにつき4モルのフッ素が、エタンを原料とする場
合(式3)はエタン1モルにつき6モルのフッ素が必要
である。このように、反応熱は使用するフッ素のモル数
に比例し、フッ素量が多いほど反応熱が大きくなる。こ
のため発熱によるC−C結合の切断や爆発等が起こりや
すく、さらには収率の低下をもたらし、工業的製造、操
業上の問題となる。このため、直接フッ素化法における
反応熱の急激な発生を抑える方法として、フッ素を他の
不活性ガス(窒素やヘリウム等)で希釈する方法、基質
である有機化合物をフッ素に対して不活性な溶媒に低濃
度に溶かしておく方法、反応を低温領域で行う方法や、
反応を気相で行うときは、基質である有機化合物にフッ
素が少しずつ接触するようにジェットリアクタ−などに
装置を工夫する方法等が考えられていた。
When methane is used as a raw material (formula 2), 4 moles of fluorine are required per mole of methane, and when ethane is used as a raw material (formula 3), 6 moles of fluorine are required per mole of ethane. Thus, the heat of reaction is proportional to the number of moles of fluorine used, and the larger the amount of fluorine, the greater the heat of reaction. For this reason, breakage of the CC bond, explosion, etc. due to heat generation are likely to occur, and furthermore, the yield is lowered, which is a problem in industrial production and operation. For this reason, as a method of suppressing rapid generation of reaction heat in the direct fluorination method, a method of diluting fluorine with another inert gas (nitrogen, helium, or the like), a method of converting an organic compound as a substrate into an inert gas with respect to fluorine. A method of dissolving in a solvent at a low concentration, a method of performing a reaction in a low temperature range,
When the reaction is carried out in the gas phase, a method has been considered in which a device is devised in a jet reactor or the like so that the fluorine gradually contacts the organic compound as a substrate.

【0009】本発明は、前記のような問題や課題を解決
するためになされたものであり、従ってその目的は、基
質である有機化合物とフッ素ガスを使用する直接フッ素
化法において、工業的に安全かつ効率よく経済的にパー
フルオロカーボンを製造することができる製造方法を提
供することにある。
The present invention has been made to solve the above-mentioned problems and problems. Accordingly, the object of the present invention is to provide a direct fluorination method using an organic compound as a substrate and fluorine gas, which is industrially required. An object of the present invention is to provide a production method capable of producing perfluorocarbon safely, efficiently and economically.

【0010】[0010]

【課題を解決するための手段】前記の問題や課題は、気
相でハイドロフルオロカーボンとフッ素ガスとを反応さ
せるパーフルオロカーボンの製造方法において、第一反
応帯でハイドロフルオロカーボンとフッ素ガスとを気相
で、高められた反応温度で接触させて生成した生成ガス
を希釈ガスとして第二反応帯へ導き、これに第一反応帯
とは異なるハイドロフルオロカーボンと必要に応じてフ
ッ素ガスを供給し高められた反応温度で接触させること
を特徴とし、さらに第二反応帯の生成ガスの少なくとも
一部を循環させ、第一反応帯の希釈ガスとして使用す
る。
SUMMARY OF THE INVENTION The above-mentioned problems and problems are to be solved in a method for producing perfluorocarbon by reacting hydrofluorocarbon and fluorine gas in the gas phase. The reaction gas produced by contacting at an elevated reaction temperature is led to the second reaction zone as a diluent gas, and a hydrofluorocarbon different from the first reaction zone and, if necessary, fluorine gas are supplied thereto to increase the reaction. It is characterized in that the contact is performed at a temperature, and at least a part of the product gas in the second reaction zone is circulated and used as a diluent gas in the first reaction zone.

【0011】希釈ガスとしては、テトラフルオロメタ
ン、ヘキサフルオロエタン、オクタフルオロプロパンお
よびフッ化水素であり、好ましくはテトラフルオロメタ
ン、ヘキサフルオロエタンおよびフッ化水素であり、さ
らに好ましくはフッ化水素に富む成分である。
[0011] The diluent gas is tetrafluoromethane, hexafluoroethane, octafluoropropane and hydrogen fluoride, preferably tetrafluoromethane, hexafluoroethane and hydrogen fluoride, more preferably rich in hydrogen fluoride. Component.

【0012】本反応を実施するに際し、原料としてのハ
イドロフルオロカーボンはそれぞれの反応帯入口濃度で
8モルパーセント以下で反応を実施する必要がある。ま
た、反応温度は高められた温度範囲で、好ましくはそれ
ぞれの反応帯で200〜550℃の範囲とすることが望
ましい。反応圧力もそれぞれの反応帯で0〜5MPaの
範囲内で実施することが望ましい。本反応で得られるパ
ーフルオロカーボンは2種類以上であり、FC−14、
FC−116およびFC−218であり、好ましくはF
C−14およびFC−116である。
In carrying out this reaction, it is necessary to carry out the reaction at a concentration of 8 mol% or less at the inlet of each reaction zone with the hydrofluorocarbon as a raw material. Further, it is desirable that the reaction temperature is in an elevated temperature range, preferably in the range of 200 to 550 ° C. in each reaction zone. It is desirable to carry out the reaction pressure within the range of 0 to 5 MPa in each reaction zone. There are two or more types of perfluorocarbons obtained by this reaction, FC-14,
FC-116 and FC-218, preferably
C-14 and FC-116.

【0013】供給されるハイドロフルオロカーボンは次
の一般式、CxHyFz(1≦x≦3、1≦y≦4、1
≦z≦7かつxが1のときy+z=4、xが2のときy
+z=6、xが3のときy+z=8を充す整数であ
る。)で表わされるハイドロフルオロカーボン類の2種
類以上で、好ましくはフルオロメタン(CH3 F)、ジ
フルオロメタン(CH2 2 )、トリフルオロメタン
(CHF3 )、トリフルオロエタン(C2 3 3 )、
テトラフルオロエタン(C2 2 4 )、ペンタフルオ
ロエタン(C2 HF5 )、ペンタフルオロプロパン(C
3 3 5 )、ヘキサフルオロプロパン(C3
2 6 )およびヘプタフルオロプロパン(C3 HF7
の群から選ばれ、より好ましくはフルオロメタン、ジフ
ルオロメタン、トリフルオロメタン、トリフルオロエタ
ン、テトラフルオロエタンおよびペンタフルオロエタン
であり、更に好ましくはジフルオロメタン、トリフルオ
ロメタン、テトラフルオロエタンおよびペンタフルオロ
エタンである。また、供給するハイドロフルオロカーボ
ン中に含有される不純物としての含塩素化合物の濃度が
2モルパーセント以下のハイドロフルオロカーボンを使
用するのが好ましい。
The supplied hydrofluorocarbon has the following general formula: CxHyFz (1 ≦ x ≦ 3, 1 ≦ y ≦ 4, 1
Y + z = 4 when ≦ z ≦ 7 and x is 1, y when x is 2
It is an integer satisfying y + z = 8 when + z = 6 and x is 3. ), Preferably fluoromethane (CH 3 F), difluoromethane (CH 2 F 2 ), trifluoromethane (CHF 3 ), trifluoroethane (C 2 H 3 F 3 ) ,
Tetrafluoroethane (C 2 H 2 F 4 ), pentafluoroethane (C 2 HF 5 ), pentafluoropropane (C
3 H 3 F 5 ), hexafluoropropane (C 3 H
2 F 6) and heptafluoropropane (C 3 HF 7)
And more preferably fluoromethane, difluoromethane, trifluoromethane, trifluoroethane, tetrafluoroethane and pentafluoroethane, even more preferably difluoromethane, trifluoromethane, tetrafluoroethane and pentafluoroethane. . Further, it is preferable to use a hydrofluorocarbon having a concentration of a chlorine-containing compound as an impurity contained in the supplied hydrofluorocarbon of 2 mol% or less.

【0014】[0014]

【発明の実施の形態】以下に、本発明のパーフルオロカ
ーボンの製造方法を更に詳しく説明する。本発明は、第
一反応帯でハイドロフルオロカーボンとフッ素ガスとを
気相で、高められた反応温度で接触させて生成した生成
ガス(パーフルオロカーボンおよび/またはフッ化水
素)を希釈ガスとして第二反応帯へ導き、これに第一反
応帯とは異なるハイドロフルオロカーボンと必要に応じ
てフッ素ガスを供給し高められた反応温度で接触させる
パーフルオロカーボンの製造方法で、さらに第二反応帯
の生成ガス(パーフルオロカーボンおよび/またはフッ
化水素)の少なくとも一部を循環させ第一反応帯の希釈
ガスとして使用することで、従来の直接フッ素法の問題
や課題を克服し工業的に安全かつ効率よく経済的に有用
なパーフルオロカーボンを製造することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing perfluorocarbon of the present invention will be described below in more detail. In the present invention, the second reaction is performed by using a product gas (perfluorocarbon and / or hydrogen fluoride) produced by bringing a hydrofluorocarbon and a fluorine gas into contact with each other in a gas phase at an elevated reaction temperature in a first reaction zone as a diluent gas. A perfluorocarbon, which is supplied to a hydrofluorocarbon different from that of the first reaction zone and, if necessary, is supplied with fluorine gas at an elevated reaction temperature. By circulating at least a portion of fluorocarbon and / or hydrogen fluoride) and using it as a diluent gas in the first reaction zone, it overcomes the problems and problems of the conventional direct fluorine method, and is industrially safe, efficient and economical. Useful perfluorocarbons can be produced.

【0015】本発明の一番目のポイントは希釈ガスであ
る。本反応のハイドロフルオロカーボンとフッ素ガスに
よるパーフルオロカーボンの製造の場合、反応式と反応
熱は以下のようになる。
The first point of the present invention is a diluent gas. In the case of producing perfluorocarbon using hydrofluorocarbon and fluorine gas in this reaction, the reaction formula and reaction heat are as follows.

【化2】 Embedded image

【0016】希釈ガスとしては、一般には窒素、ヘリウ
ムやアルゴン等の不活性ガスが使用されるが、目的物の
パーフルオロカーボンとこれらの不活性ガスとの蒸留工
程での分離、精製等を考慮すると、コスト面から有利な
方法ではなく、希釈ガスとしては、生成ガスであるテト
ラフルオロメタン、ヘキサフルオロエタン、オクタフル
オロプロパンおよびフッ化水素を含有するガスで、好ま
しくはテトラフルオロメタン、ヘキサフルオロエタンお
よびフッ化水素を含有するガスで、より好ましくはフッ
化水素に富む成分が経済的である。
As the diluent gas, an inert gas such as nitrogen, helium, argon or the like is generally used. However, in consideration of the separation and purification of the perfluorocarbon of interest and these inert gases in the distillation step. It is not a method advantageous from the viewpoint of cost, and the diluent gas is a gas containing a product gas of tetrafluoromethane, hexafluoroethane, octafluoropropane and hydrogen fluoride, preferably tetrafluoromethane, hexafluoroethane and A gas containing hydrogen fluoride, more preferably a component rich in hydrogen fluoride, is economical.

【0017】本発明は、例えば上記の式4から式7のよ
うに、副生成物としてフッ化水素(沸点:20℃)が生
成する。例えば、原料の有機化合物としてジフルオロメ
タンを使用すると、FC−14が1モルとフッ化水素が
2モル生成する。また、ペンタフルオロエタンの場合、
FC−116が1モルとフッ化水素が1モル生成し、目
的物であるFC−14(沸点:−127.9℃)やFC
−116(沸点:−78.5℃)と副生成物であるフッ
化水素とは沸点差が約100℃あり、蒸留、精製工程で
フッ化水素を容易に分離することができ、またヘリウム
(沸点:−286.9℃)等と比較してこれらはいずれ
も高沸点であり、分離、精製のエネルギーコストが有利
となる。
According to the present invention, hydrogen fluoride (boiling point: 20 ° C.) is produced as a by-product, for example, as in the above formulas (4) to (7). For example, when difluoromethane is used as a raw material organic compound, 1 mol of FC-14 and 2 mol of hydrogen fluoride are produced. In the case of pentafluoroethane,
One mole of FC-116 and one mole of hydrogen fluoride are produced, and the desired products, FC-14 (boiling point: -127.9 ° C.) and FC
The boiling point difference between −116 (boiling point: −78.5 ° C.) and hydrogen fluoride as a by-product is about 100 ° C., so that hydrogen fluoride can be easily separated in distillation and purification steps, and helium ( (Boiling point: -286.9 ° C.), etc., each of which has a higher boiling point, and has an advantageous energy cost for separation and purification.

【0018】更に、反応の生成ガス(パーフルオロカー
ボンおよびフッ化水素)をそのまま希釈ガスとして使用
することでコスト的により有利である。また、フッ化水
素は希釈ガスとして蒸留、精製工程でフッ化水素として
回収し循環使用されてもよいが、通常は他の用途に使用
される。フッ素ガスを用いる直接フッ素化法では長期間
の反応で前述したようにC−C結合の切断や重合物等に
より炭素の生成、堆積等がおこる。この炭素の生成、堆
積等はフッ素ガスとの急激な反応や爆発の危険性がある
が、フッ化水素に富む成分を希釈ガスとして使用するこ
とで炭素の生成や堆積を抑えることができる。フッ化水
素に富む成分とはフッ化水素を主成分とするという意味
である。
Further, it is more cost-effective to use the reaction gas (perfluorocarbon and hydrogen fluoride) as the diluent gas as it is. In addition, hydrogen fluoride may be recovered as hydrogen fluoride in a distillation and purification process as a diluting gas and recycled, but is usually used for other purposes. In the direct fluorination method using fluorine gas, as described above, carbon is generated or deposited due to cleavage of C—C bonds or a polymer in a long-term reaction. There is a danger of a rapid reaction or explosion with the fluorine gas in the generation and deposition of carbon, but the generation and deposition of carbon can be suppressed by using a component rich in hydrogen fluoride as a diluent gas. The component rich in hydrogen fluoride means that hydrogen fluoride is a main component.

【0019】ハイドロフルオロカーボン(反応の基
質)、フッ素ガスおよび希釈ガスの存在下で反応を行う
が、反応器に導入する前に反応の基質、フッ素ガスのい
ずれか又はどちらも希釈ガスで希釈された後、反応器へ
導入することが一般的である。安全性を考慮すれば、反
応の基質もフッ素ガスも共にできるだけ希釈ガスで低濃
度とすることが望ましい。
The reaction is carried out in the presence of a hydrofluorocarbon (reaction substrate), fluorine gas and a diluent gas. Before introduction into the reactor, either or both of the reaction substrate and fluorine gas are diluted with the diluent gas. Later, it is common to introduce into the reactor. In consideration of safety, it is desirable that both the substrate for the reaction and the fluorine gas be diluted with a diluent gas as low as possible.

【0020】本発明の二番目のポイントは、反応の基質
のハイドロフルオロカーボンを反応器入口濃度で8モル
パーセント以下にして反応を行うことである。前述のよ
うにフッ素ガスを使用する直接フッ素化法は、極めて反
応性に富むフッ素ガスを用いるため、基質である有機化
合物(特に水素を含有する化合物)は、フッ素にさらさ
れると燃焼あるいは爆発する危険がある。本反応では、
基質である有機化合物として水素を含有するハイドロフ
ルオロカーボンを用いるため、ハイドロフルオロカーボ
ンとフッ素の爆発防止が重要なポイントである。爆発を
防ぐためには混合ガスの組成が爆発範囲の中に入らない
ようにする必要がある。本発明者等はハイドロフルオロ
カーボンとフッ素ガスとの爆発範囲を検討したところ、
ハイドロフルオロカーボンの種類によって値が異なる
が、これらのハイドロフルオロカーボンの爆発範囲の下
限値が8モルパーセント以下であることが判明し本反応
の有機化合物入口濃度の安全な範囲が設定できる。
The second point of the present invention is to carry out the reaction with the hydrofluorocarbon as a substrate for the reaction at a reactor inlet concentration of 8 mol% or less. As described above, in the direct fluorination method using fluorine gas, an extremely reactive fluorine gas is used, so that an organic compound (particularly a compound containing hydrogen) serving as a substrate burns or explodes when exposed to fluorine. There is danger. In this reaction,
Since hydrogen-containing hydrofluorocarbon is used as an organic compound as a substrate, prevention of explosion of hydrofluorocarbon and fluorine is an important point. To prevent explosion, it is necessary to keep the composition of the gas mixture out of the explosion range. The present inventors examined the explosion range of hydrofluorocarbon and fluorine gas,
Although the value varies depending on the type of hydrofluorocarbon, it has been found that the lower limit of the explosion range of these hydrofluorocarbons is 8 mol% or less, and a safe range of the organic compound inlet concentration in this reaction can be set.

【0021】反応温度も本反応を効率よく進行させるに
際し重要な条件の一つであり、反応温度は接触時間や原
料のハイドロフルオロカーボンの種類によって最適範囲
が変化する。例えば、1,1,1,2−テトラフルオロ
エタンとフッ素を希釈ガスの存在下で反応する場合、接
触時間が大きい時(接触時間15秒)は反応温度約50
℃から反応が起こり、約250℃で転化率は約100%
である。反応温度は高められた温度範囲で、第一反応帯
および第二反応帯ともそれぞれ好ましくは200〜55
0℃の範囲内である。
The reaction temperature is also one of the important conditions for efficiently proceeding this reaction, and the optimum range of the reaction temperature varies depending on the contact time and the type of the starting material hydrofluorocarbon. For example, when reacting 1,1,1,2-tetrafluoroethane and fluorine in the presence of a diluent gas, when the contact time is long (contact time 15 seconds), the reaction temperature is about 50.
The reaction takes place at about 250 ° C, and the conversion is about 100% at about 250 ° C.
It is. The reaction temperature is in an elevated temperature range, and the first reaction zone and the second reaction zone are preferably 200 to 55, respectively.
Within the range of 0 ° C.

【0022】反応温度が200℃未満では、ハイドロフ
ルオロカーボンの転化率が低下し、550℃を越えると
C−C結合の切断や重合等が生じ収率が低下し、また反
応器等の腐食やエネルギーコスト嵩む等の問題があり好
ましくない。接触時間は特に限定されないが、例えば
0.1〜120秒の範囲で、接触時間を大きくすると反
応器が大きくなり経済的でないので、一般には1〜30
秒、より好ましくは3〜30秒の範囲が望ましく、また
反応基質とフッ素ガスとの混合を良くすることも重要で
ある。
If the reaction temperature is lower than 200 ° C., the conversion of hydrofluorocarbon decreases, and if it exceeds 550 ° C., the C—C bond is broken or polymerized to lower the yield. It is not preferable because it has a problem such as an increase in cost. Although the contact time is not particularly limited, for example, in the range of 0.1 to 120 seconds, if the contact time is increased, the reactor becomes large and it is not economical.
Second, more preferably in the range of 3 to 30 seconds, it is also important to improve the mixing of the reaction substrate with the fluorine gas.

【0023】また、反応系に供給するハイドロフルオロ
カーボンとフッ素ガスとのモル比は0.5〜5.0の範
囲内とすることが好ましく、より好ましくは1.0〜
3.0の範囲内である。フッ素ガスの供給モル比が0.
5未満では反応が進行せず効率が悪く、5.0を越える
とフッ素ガスが過剰となり、その回収のための設備等が
必要で経済的でない。フッ素ガスの供給方法は特に限定
されないが、例えば第一反応帯に過剰量を供給し、残り
の未反応フッ素ガスで第二反応帯の反応を行うこともで
きるが、通常は第一反応帯および第二反応帯とも供給す
るのが安全面から好ましい。
The molar ratio between the hydrofluorocarbon and the fluorine gas supplied to the reaction system is preferably in the range of 0.5 to 5.0, more preferably 1.0 to 5.0.
It is in the range of 3.0. The supply molar ratio of the fluorine gas is 0.
If it is less than 5, the reaction does not proceed and the efficiency is poor. If it exceeds 5.0, the fluorine gas becomes excessive and equipment for recovery thereof is required, which is not economical. The method for supplying the fluorine gas is not particularly limited.For example, an excess amount may be supplied to the first reaction zone, and the reaction of the second reaction zone may be performed with the remaining unreacted fluorine gas. It is preferable to supply both to the second reaction zone from the viewpoint of safety.

【0024】本反応を行うに当たって反応圧力も爆発等
の危険防止の上で重要である。圧力が高くなればなるほ
ど爆発範囲は一般に広くなるため、反応はより低圧で行
うことが望ましく、第一反応帯および第二反応帯とも反
応圧力としては0〜5MPaの範囲内が好ましい。
In carrying out this reaction, the reaction pressure is also important for preventing danger such as explosion. The higher the pressure, the broader the explosion range generally becomes. Therefore, the reaction is desirably performed at a lower pressure, and the reaction pressure in the first reaction zone and the second reaction zone is preferably in the range of 0 to 5 MPa.

【0025】また、反応器の材質としては腐食性ガスに
耐性を有するものが好ましく、その例としてはニッケ
ル,インコネルやハステロイ等を挙げることができる。
前述したように基質としての有機化合物とフッ素ガスと
の直接フッ素化法は非常に大きな反応熱を伴い、反応熱
は使用するフッ素ガスのモル数に比例し、フッ素量が多
いほど反応熱が大きくなることから、C−H結合をC−
F結合に置換する数が少ないほど問題となる反応熱の制
御が容易となり、また高価なフッ素ガスの使用量を少な
くすることができ、経済的である。
The reactor is preferably made of a material having resistance to corrosive gas, and examples thereof include nickel, inconel and hastelloy.
As described above, the direct fluorination method between an organic compound as a substrate and fluorine gas involves a very large heat of reaction, and the heat of reaction is proportional to the number of moles of the fluorine gas used. Therefore, the CH bond is changed to C-
The smaller the number of substitutions by the F bond, the easier the control of the reaction heat, which becomes a problem, and the less the amount of expensive fluorine gas used, the more economical.

【0026】本発明の三番目のポイントは、基質として
の有機化合物を前記のようにC−H結合をC−F結合に
置換する数が多い直鎖の炭化水素を使用せず、部分的に
フッ素化されたハイドロフルオロカーボン(HFC)を
用いることにより、C−H結合をC−F結合に置換する
数を少なくし反応熱の制御を容易とし、更にハイドロフ
ルオロカーボンを2種類以上供給して、2種類以上のパ
ーフルオロカーボンを製造することである。使用される
ハイドロフルオロカーボンとしては、次の一般式で、 CxHyFz (一般式) (式中、x、y、zはそれぞれ、1≦x≦3、1≦y≦
4、1≦z≦7であり、かつxが1のときy+z=4、
xが2のときy+z=6、xが3のときy+z=8を充
す整数である)で表されるハイドロフルオロカーボンで
ある。
The third point of the present invention is that an organic compound as a substrate does not use a linear hydrocarbon having a large number of C—H bonds replaced by C—F bonds as described above, and is partially used. By using a fluorinated hydrofluorocarbon (HFC), the number of substitution of C—H bonds by C—F bonds is reduced to facilitate control of the reaction heat, and two or more types of hydrofluorocarbons are supplied. To produce more than one kind of perfluorocarbon. The hydrofluorocarbon used is represented by the following general formula: CxHyFz (general formula) (where x, y, and z are respectively 1 ≦ x ≦ 3, 1 ≦ y ≦
4, when 1 ≦ z ≦ 7 and x is 1, y + z = 4,
when x is 2, y + z = 6, and when x is 3, it is an integer satisfying y + z = 8).

【0027】好ましくは、C−H結合をC−F結合に置
換する数が3以内であるフルオロメタン、ジフルオロメ
タン、トリフルオロメタン、トリフルオロエタン、テト
ラフルオロエタン、ペンタフルオロエタン、ペンタフル
オロプロパン、ヘキサフルオロプロパンおよびヘプタフ
ルオロプロパンの群から選ばれ、より好ましくは原料の
入手等よりフルオロメタン、ジフルオロメタン、トリフ
ルオロメタン、トリフルオロエタン、テトラフルオロエ
タンおよびペンタフルオロエタンであり、更に好ましく
はC−H結合をC−F結合に置換する数が2以内である
ジフルオロメタン、トリフルオロメタン、トリフルオロ
エタン、テトラフルオロエタンおよびペンタフルオロエ
タンであリ、これらのハイドロフルオロカーボン類は例
えば、クロロフルオロカーボン(CFC)やハイドロク
ロロフルオロカーボン(HCFC)の代替品として、ま
た冷媒として工業生産されており、入手も容易であり純
分も99.9%以上と良好である。
Preferably, fluoromethane, difluoromethane, trifluoromethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, pentafluoropropane, wherein the number of substitution of C—H bonds by C—F bonds is 3 or less. It is selected from the group of fluoropropane and heptafluoropropane, and is more preferably fluoromethane, difluoromethane, trifluoromethane, trifluoroethane, tetrafluoroethane and pentafluoroethane from the availability of raw materials, and more preferably a CH bond. Is a difluoromethane, trifluoromethane, trifluoroethane, tetrafluoroethane, and pentafluoroethane in which the number of substituents to be a C—F bond is 2 or less, and these hydrofluorocarbons are, for example, chlorofuran. As replacements for Rokabon (CFC) and hydrochlorofluorocarbon (HCFC), also have been industrially produced as a refrigerant, it is good and it is easy purity even 99.9% availability.

【0028】このように、直鎖の炭化水素化合物のフッ
素ガスによるパーフルオロカーボンの製造(式2および
式3)と比較すると、上記のようなハイドロフルオロカ
ーボンを使用することで反応熱を約1/2から1/6
(式4から式7)に抑えることができる。これらのハイ
ドロフルオロカーボンは単独でも混合物でも使用可能で
あり、これらから得られる目的物のパーフルオロカーボ
ンは2種類以上で、好ましくはテトラフルオロメタン、
ヘキサフルオロエタンおよび/またはオクタフルオロプ
ロパンであり、さらに好ましくはテトラフルオロメタン
およびヘキサフルオロエタンである。
As described above, when compared with the production of perfluorocarbon using fluorine gas of a linear hydrocarbon compound (formulas 2 and 3), the use of hydrofluorocarbon as described above reduces the heat of reaction by about 1/2. From 1/6
(Equations 4 to 7) can be suppressed. These hydrofluorocarbons can be used alone or in a mixture, and the perfluorocarbons of interest obtained therefrom are two or more, preferably tetrafluoromethane,
Hexafluoroethane and / or octafluoropropane, more preferably tetrafluoromethane and hexafluoroethane.

【0029】また、これらの反応原料としてのハイドロ
フルオロカーボンは含塩素化合物が含有されないことが
望ましく、含塩素化合物が含有されると反応で塩素やフ
ッ化塩素を生成し、装置材質や蒸留操作上好ましくな
い。含塩素化合物の混合の濃度としては2モル%以下が
良く、好ましくは1モル%以下、さらに好ましくは0.
1モル%以下である。
It is desirable that the hydrofluorocarbon as a raw material for the reaction does not contain a chlorine-containing compound, and when the chlorine-containing compound is contained, chlorine or chlorine fluoride is generated by the reaction, which is preferable in terms of equipment materials and distillation operation. Absent. The concentration of the chlorine-containing compound is preferably 2 mol% or less, preferably 1 mol% or less, and more preferably 0.1 mol% or less.
1 mol% or less.

【0030】本発明の四番目の重要なポイントは、上記
の三つのポイントと反応条件をプラスした経済的で安全
かつ効率のよい製造方法の提供で、気相で第一反応帯で
ハイドロフルオロカーボンとフッ素ガスとを、高められ
た反応温度で接触させて第一のパーフルオロカーボンと
フッ化水素を生成させ、これらの一部または全部を希釈
ガスとして第二反応帯に導き、これに第一反応帯に供給
したのと異なるハイドロフルオロカーボンと必要に応じ
てフッ素ガスを供給し、高められた反応温度で接触させ
て第二のパーフルオロカーボンとフッ化水素を生成さ
せ、これらの一部を希釈ガスとして第一反応帯および/
または第二反応帯にリサイクル使用する製造方法であ
る。
The fourth important point of the present invention is to provide an economical, safe and efficient production method which is obtained by adding the above three points and the reaction conditions. Fluorine gas is contacted at an elevated reaction temperature to generate the first perfluorocarbon and hydrogen fluoride, and a part or all of these are introduced into the second reaction zone as a diluent gas, and this is mixed with the first reaction zone. A different hydrofluorocarbon from that supplied to the reactor and a fluorine gas, if necessary, are contacted at an elevated reaction temperature to generate a second perfluorocarbon and hydrogen fluoride, and a part of these is used as a diluent gas to form a second gas. One reaction zone and / or
Alternatively, it is a production method of recycling and using in the second reaction zone.

【0031】例えば、気相でハイドロフルオロカーボン
として1,1,1,2−テトラフルオロエタンとフッ素
ガスとを希釈ガスとしてフッ化水素に富む成分と共に高
められた温度の第一反応帯に供給し、第一反応帯でパー
フルオロカーボンとしてFC−116とフッ化水素を生
成さる。反応器出口ガスはその一部をそのまま希釈ガス
として使用することもでき、また蒸留工程に導くことも
可能であるが、通常は第二反応器に導かれる。第二反応
器の入口で異なるハイドロフルオロカーボンとして、例
えばジフルオロメタンと必要に応じてフッ素ガスが第一
反応帯の出口ガスに混合され高められた反応温度の第二
反応帯へ供給され、パーフルオロカーボンとしてFC−
14とフッ化水素を生成させる。
For example, 1,1,1,2-tetrafluoroethane and fluorine gas as hydrofluorocarbons in a gas phase are supplied as diluent gases together with a component rich in hydrogen fluoride to a first reaction zone at an elevated temperature, In the first reaction zone, FC-116 and hydrogen fluoride are produced as perfluorocarbons. A part of the gas at the outlet of the reactor can be used as it is as a diluent gas or can be led to a distillation step, but is usually led to a second reactor. As a different hydrofluorocarbon at the inlet of the second reactor, for example, difluoromethane and, if necessary, fluorine gas are mixed with the outlet gas of the first reaction zone and supplied to the second reaction zone at an increased reaction temperature, and as perfluorocarbon FC-
14 and hydrogen fluoride.

【0032】第二反応帯の出口ガスはパーフルオロカー
ボンとしてFC−116とFC−14、副生成物として
パーフルオロカーボンに対して過剰のフッ化水素を含む
混合物が得られる。この第二反応帯の出口ガスの混合物
はその一部をそのまま希釈ガスとして第一反応帯および
/または第二反応帯に循環使用され、残りは蒸留、精製
工程にてパーフルオロカーボンとフッ化水素に分離され
る。
As the outlet gas of the second reaction zone, a mixture containing FC-116 and FC-14 as perfluorocarbons and excess hydrogen fluoride with respect to perfluorocarbons as by-products is obtained. A part of the mixture of the outlet gas of the second reaction zone is circulated and used as a dilution gas in the first reaction zone and / or the second reaction zone, and the remainder is converted into perfluorocarbon and hydrogen fluoride in the distillation and purification steps. Separated.

【0033】このように、2種類以上のハイドロフルオ
ロカーボンから2種類以上のパーフルオロカーボンを製
造する本製造方法は、通常の一つのハイドロフルオロカ
ーボンから一つのパーフルオロカーボンの製造に比較
し、蒸留工程等の設備の簡素化やエネルギーコスト等が
経済的である。
As described above, the present production method for producing two or more types of perfluorocarbons from two or more types of hydrofluorocarbons is different from the usual production of one perfluorocarbon from one type of hydrofluorocarbon, and is more difficult in terms of equipment such as a distillation step. It is economical in terms of simplification and energy costs.

【0034】反応帯は一つの反応器をゾ−ンに区切るこ
ともできるが、通常は操作性や安全性から二つ以上の反
応器を使用するのが好ましい。反応器の組み合わせ方は
並列でも直列でも選べるが、通常は直列が好ましい。ま
た、2種以上のハイドロフルオロカーボン、例えばジフ
ルオロメタンとトリフルオロメタンとから1種類のパー
フルオロ化合物、例えばFC−14を製造することも可
能であり、更に、1つのハイドロフルオロカーボン、例
えばジフルオロメタンを第一反応帯と第二反応帯に分割
供給し、反応をマイルドにすることも可能である。この
ように、本製造方法は工業的に安全かつ効率のよい経済
性に富むパーフルオロカーボンの製造方法である。
In the reaction zone, one reactor can be divided into zones, but usually it is preferable to use two or more reactors from the viewpoint of operability and safety. The combination of the reactors can be selected either in parallel or in series, but usually the series is preferred. It is also possible to produce one kind of perfluoro compound, for example FC-14, from two or more kinds of hydrofluorocarbons, for example, difluoromethane and trifluoromethane. It is also possible to feed separately to the reaction zone and the second reaction zone to make the reaction mild. As described above, this production method is an industrially safe, efficient and economical production method of perfluorocarbon.

【0035】[0035]

【実施例】以下に本発明の実施例を示す。まず、本反応
に使用した原料のハイドロフルオロカーボンを以下に示
す。 [ジフルオロメタン]現在、HCFC−22(CHClF
2 )の代替品として供給されているジフルオロメタン
(CH2 2 )・エコロエ−ス32(商品名:昭和電工
製)を用いた。純分は99.95%以上で、不純物とし
て1,1,1−トリフルオロエタン(CF3 CH3 )お
よびフルオロメタン(CH3 F)を含み、含塩素化合物
はほとんど検出されない。
Examples of the present invention will be described below. First, the raw material hydrofluorocarbon used in this reaction is shown below. [Difluoromethane] HCFC-22 (CHClF)
Supplied by and difluoromethane as replacements for 2) (CH 2 F 2) · Ekoroe - scan 32 (trade name: using Showa Denko). The pure content is 99.95% or more, contains 1,1,1-trifluoroethane (CF 3 CH 3 ) and fluoromethane (CH 3 F) as impurities, and almost no chlorine-containing compound is detected.

【0036】[トリフルオロメタン]現在、冷媒として
供給されているトリフルオロメタン(CHF3 )・エコ
ロエ−ス23(商品名:昭和電工製)を用いた。純分は
99.95%以上で、不純物としてクロロジフルオロメ
タン(CHClF2 )やクロロトリフルオロメタン(CCl
3 )等の含塩素化合物を含んでいる。
[Trifluoromethane] Trifluoromethane (CHF 3 ) Ecoloace 23 (trade name, manufactured by Showa Denko) currently supplied as a refrigerant was used. The pure content is 99.95% or more, and chlorodifluoromethane (CHClF 2 ) or chlorotrifluoromethane (CCl
F 3 ) and other chlorine-containing compounds.

【0037】[1,1,1,2−テトラフルオロエタ
ン]現在、CFC−12(CClF2 )の代替品として供
給されている1,1,1,2−テトラフルオロエタン
(CF3 CH2 F)・エコロエ−ス134a(商品名:
昭和電工製)を用いた。純分は99.99%以上で、異
性体の1,1,2,2−テトラフルオロエタンを含み、
含塩素化合物は検出されない。
[1,1,1,2-Tetrafluoroethane] The 1,1,1,2-tetrafluoroethane (CF 3 CH 2 F) currently supplied as a substitute for CFC-12 (CCIF 2 ) Ecoleace 134a (trade name:
(Showa Denko) was used. The pure content is 99.99% or more, including the isomer 1,1,2,2-tetrafluoroethane,
No chlorine-containing compounds are detected.

【0038】[ペンタフルオロエタン]現在、HCFC
−22(CHClF2 )の代替品として供給されているペ
ンタフルオロエタン(CF3 CHF2 )・エコロエ−ス
125(商品名:昭和電工製)を用いた。純分は99.
95%以上で、不純物としてCF3 CH2 F、CF3
3 や含塩素化合物としてクロロペンタフルオロエタン
(CF3 CClF2 )、1−クロロ−1,2,2,2−テ
トラフルオロエタン(CHClFCF3 )を含んでいる。
[Pentafluoroethane] HCFC
Pentafluoroethane (CF 3 CHF 2 ) Ecoloace 125 (trade name, manufactured by Showa Denko) supplied as a substitute for -22 (CHClF 2 ) was used. The pure content is 99.
95% or more, CF 3 CH 2 F, CF 3 C
Chloropentafluoroethane as H 3 and chlorine-containing compounds (CF 3 CClF 2), contains a 1-chloro-1,2,2,2-tetrafluoroethane (CHClFCF 3).

【0039】[実施例1]図1は本発明に係わるパーフ
ルオロカーボンの製造方法のフロ−を示す図である。ハ
イドロフルオロカーボン(図中符号12)として前記の
トリフルオロメタンとフッ素ガス(図中符号11)を希
釈ガス(図中符号19)と混合し混合ガス(図中符号1
3)を第一反応帯(図中符号1)に導入した。第一反応
帯は反応圧力1.5MPa、反応温度400℃、F2
トリフルオロメタンのモル比=1.51およびトリフル
オロメタンの入口濃度2.1モル%の条件で反応させ、
第一反応帯の出口ガス(図中符号14)を得た。
Example 1 FIG. 1 is a diagram showing a flow of a method for producing perfluorocarbon according to the present invention. As the hydrofluorocarbon (symbol 12 in the figure), the above-mentioned trifluoromethane and fluorine gas (symbol 11 in the figure) are mixed with a diluent gas (symbol 19 in the figure) to form a mixed gas (symbol 1 in the figure).
3) was introduced into the first reaction zone (reference numeral 1 in the figure). The first reaction zone has a reaction pressure of 1.5 MPa, a reaction temperature of 400 ° C., and F 2 /
The reaction was carried out under the conditions of a molar ratio of trifluoromethane = 1.51 and an inlet concentration of trifluoromethane of 2.1 mol%,
An outlet gas (reference numeral 14 in the figure) of the first reaction zone was obtained.

【0040】この出口ガスに新たなハイドロフルオロカ
ーボン(図中符号16)として、1,1,1,2−テト
ラフルオロエタンとフッ素ガス(図中符号15)を混合
し混合ガス(図中符号17)を第二反応帯(図中符号
2)に導入した。第二反応帯は反応圧力1.5MPa、
反応温度370℃、F2 /1,1,1,2−テトラフル
オロエタンのモル比=2.06および1,1,1,2−
テトラフルオロエタンの入口濃度1.35モル%の条件
で反応させ、第二反応帯の出口ガス(図中符号18)を
得た。この出口ガスを希釈ガス(図中符号19)と蒸
留、精製工程へ導くかれるガス(図中符号20)に分け
た。その結果を表1に示す。表のNO. は図1の番号であ
る。
As a new hydrofluorocarbon (symbol 16 in the figure), 1,1,1,2-tetrafluoroethane and fluorine gas (symbol 15 in the figure) are mixed with the outlet gas to form a mixed gas (symbol 17 in the figure). Was introduced into the second reaction zone (symbol 2 in the figure). The second reaction zone has a reaction pressure of 1.5 MPa,
Reaction temperature 370 ° C., molar ratio of F 2 /1,1,1,2-tetrafluoroethane=2.06 and 1,1,1,2-
The reaction was carried out under the conditions of an inlet concentration of tetrafluoroethane of 1.35 mol% to obtain an outlet gas (reference numeral 18 in the figure) of the second reaction zone. The outlet gas was divided into a diluent gas (19 in the figure) and a gas (20 in the figure) led to the distillation and purification steps. Table 1 shows the results. The numbers in the table are the numbers in FIG.

【0041】[実施例2]実施例1と同様の製造方法の
フローで、ハイドロフルオロカーボン(図中符号12)
としてペンタフルオロエタンとフッ素ガス(図中符号1
1)を希釈ガス(図中符号19)と混合し混合ガス(図
中符号13)を第一反応帯(図中符号1)に導入した。
第一反応帯は反応圧力1.5MPa、反応温度370
℃、F2 /ペンタフルオロエタンのモル比=1.47お
よびペンタフルオロエタンの入口濃度3.2モル%の条
件で反応させ、第一反応帯の出口ガス(図中符号14)
を得た。
[Example 2] Hydrofluorocarbon (reference numeral 12 in the figure) was manufactured in the same manufacturing method flow as in Example 1.
Pentafluoroethane and fluorine gas (1 in the figure)
1) was mixed with a diluent gas (19 in the figure), and a mixed gas (13 in the figure) was introduced into the first reaction zone (1 in the figure).
The first reaction zone has a reaction pressure of 1.5 MPa and a reaction temperature of 370.
The reaction was carried out under the conditions of ° C., a molar ratio of F 2 /pentafluoroethane=1.47 and an inlet concentration of pentafluoroethane of 3.2 mol%, and an outlet gas in the first reaction zone (reference numeral 14 in the figure)
I got

【0042】この出口ガスに新たなハイドロフルオロカ
ーボン(図中符号16)としてジフルオロメタンとフッ
素ガス(図中符号15)を混合し混合ガス(図中符号1
7)を第二反応帯(図中符号2)に導入した。第二反応
帯は反応圧力1.5MPa、反応温度350℃、F2
ジフルオロメタンのモル比=2.01およびジフルオロ
メタンの入口濃度2.05モル%の条件で反応させ、第
二反応帯の出口ガス(図中符号18)を得た。この出口
ガスを、希釈ガス(図中符号19)と蒸留、精製工程へ
導かれるガス(図中符号20)とに分離した。その結果
を表2に示す。
The outlet gas is mixed with difluoromethane and fluorine gas (reference numeral 15 in the figure) as new hydrofluorocarbons (reference numeral 16 in the figure) to form a mixed gas (reference number 1 in the figure).
7) was introduced into the second reaction zone (reference numeral 2 in the figure). In the second reaction zone, the reaction pressure was 1.5 MPa, the reaction temperature was 350 ° C., and F 2 /
The reaction was carried out under the conditions of a molar ratio of difluoromethane = 2.01 and an inlet concentration of difluoromethane of 2.05 mol% to obtain an outlet gas (reference numeral 18 in the drawing) of the second reaction zone. The outlet gas was separated into a diluent gas (19 in the figure) and a gas (20 in the figure) guided to the distillation and purification steps. Table 2 shows the results.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】本発明のパーフルオロカーボンの製造方
法は、工業的に安全かつ効率よく経済性に富むパーフル
オロカーボンを製造する方法を提供できる。
The method for producing perfluorocarbon of the present invention can provide a method for producing perfluorocarbon which is industrially safe, efficient and economical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のフロ−の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of a flow of the present invention.

【符号の説明】[Explanation of symbols]

1 第一反応帯 2 第二反応帯 3 蒸留、精製工程 11 第一反応帯に供給されるフッ素ガス 12 第一反応帯に供給されるハイドロフルオロカーボ
ン 13 第一反応帯に供給されるガス成分 14 第一反応帯出口ガス成分 15 第二反応帯に供給されるフッ素ガス 16 第二反応帯に供給されるハイドロフルオロカーボ
ン 17 第二反応帯に供給されるガス成分 18 第二反応帯出口ガス成分 19 希釈ガス 20 蒸留、精製工程へ導かれるガス
DESCRIPTION OF SYMBOLS 1 1st reaction zone 2 2nd reaction zone 3 Distillation and purification process 11 Fluorine gas supplied to 1st reaction zone 12 Hydrofluorocarbon supplied to 1st reaction zone 13 Gas component supplied to 1st reaction zone 14th One reaction zone outlet gas component 15 Fluorine gas supplied to the second reaction zone 16 Hydrofluorocarbon supplied to the second reaction zone 17 Gas component supplied to the second reaction zone 18 Second reaction zone outlet gas component 19 Diluent gas 20 Gases led to distillation and purification processes

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 敏夫 神奈川県川崎市川崎区扇町5番1号 昭 和電工株式会社川崎工場内 (56)参考文献 特開 平1−180838(JP,A) 特開 昭60−109533(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 17/10 C07C 19/08 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Oi 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Denko KK Kawasaki Plant (56) References JP-A 1-180838 (JP, A) 60-109533 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 17/10 C07C 19/08

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第一反応帯でハイドロフルオロカーボン
とフッ素ガスとを気相で、高められた反応温度で接触さ
せて生成した生成ガスを希釈ガスとして第二反応帯へ導
き、該第二反応帯では第一反応帯とは異なるハイドロフ
ルオロカーボンと必要に応じてフッ素ガスとを供給し高
められた反応温度で接触させることを特徴とするパーフ
ルオロカーボンの製造方法。
1. A gas produced by contacting hydrofluorocarbon and fluorine gas in a gaseous phase at an elevated reaction temperature in a first reaction zone is led to a second reaction zone as a diluting gas, and the second reaction zone is produced. In the method for producing perfluorocarbon, a hydrofluorocarbon different from the first reaction zone and a fluorine gas, if necessary, are supplied and brought into contact at an elevated reaction temperature.
【請求項2】 第二反応帯の生成ガスの少なくとも一部
を、第一反応帯の希釈ガスとして使用する請求項1に記
載の製造方法。
2. The method according to claim 1, wherein at least a part of the product gas in the second reaction zone is used as a diluent gas in the first reaction zone.
【請求項3】 第一反応帯および/または第二反応帯の
希釈ガスが、テトラフルオロメタン、ヘキサフルオロエ
タン、オクタフルオロプロパンおよびフッ化水素の少な
くとも1種を含有する請求項1または請求項2に記載の
製造方法。
3. The method according to claim 1, wherein the diluent gas of the first reaction zone and / or the second reaction zone contains at least one of tetrafluoromethane, hexafluoroethane, octafluoropropane and hydrogen fluoride. The production method described in 1.
【請求項4】 希釈ガスが、フッ化水素に富む成分であ
る請求項1ないし請求項3に記載の製造方法。
4. The method according to claim 1, wherein the dilution gas is a component rich in hydrogen fluoride.
【請求項5】 ハイドロフルオロカーボンの第一反応帯
および/または第二反応帯の入口濃度が8モルパーセン
ト以下である請求項1に記載の製造方法。
5. The production method according to claim 1, wherein the inlet concentration of the hydrofluorocarbon in the first reaction zone and / or the second reaction zone is 8 mol% or less.
【請求項6】 第一反応帯および/または第二反応帯の
反応温度が200〜550℃の温度範囲である請求項1
に記載の製造方法。
6. The reaction temperature of the first reaction zone and / or the second reaction zone is in a temperature range of 200 to 550 ° C.
The production method described in 1.
【請求項7】 第一反応帯および/または第二反応帯の
反応圧力が0〜5MPaの範囲である請求項1に記載の
製造方法。
7. The method according to claim 1, wherein the reaction pressure in the first reaction zone and / or the second reaction zone is in the range of 0 to 5 MPa.
【請求項8】 得られるパーフルオロカーボンが2種類
以上である請求項1に記載の製造方法。
8. The method according to claim 1, wherein two or more kinds of perfluorocarbons are obtained.
【請求項9】 得られるパーフルオロカーボンが、テト
ラフルオロメタン、ヘキサフルオロエタンおよびオクタ
フルオロプロパンから選ばれる2種以上である請求項8
に記載の製造方法。
9. The obtained perfluorocarbon is at least two kinds selected from tetrafluoromethane, hexafluoroethane and octafluoropropane.
The production method described in 1.
【請求項10】 得られるパーフルオロカーボンが、テ
トラフルオロメタンおよびヘキサフルオロエタンである
請求項9に記載の製造方法。
10. The method according to claim 9, wherein the obtained perfluorocarbons are tetrafluoromethane and hexafluoroethane.
【請求項11】 ハイドロフルオロカーボンが次の一般
式(式1)、 CxHyFz………(式1) (式中、x、y、zはそれぞれ、1≦x≦3、1≦y≦
4、1≦z≦7であり、かつxが1のときy+z=4、
xが2のときy+z=6、xが3のときy+z=8を充
す整数である)で表されるハイドロフルオロカーボンで
ある請求項1に記載の製造方法。
11. A hydrofluorocarbon represented by the following general formula (Formula 1): CxHyFz (Formula 1) (where x, y, and z are respectively 1 ≦ x ≦ 3, 1 ≦ y ≦
4, when 1 ≦ z ≦ 7 and x is 1, y + z = 4,
The production method according to claim 1, wherein x is an integer satisfying y + z = 6 when x is 2, and y + z = 8 when x is 3.)
【請求項12】 ハイドロフルオロカーボンがフルオロ
メタン、ジフルオロメタン、トリフルオロメタン、トリ
フルオロエタン、テトラフルオロエタン、ペンタフルオ
ロエタン、ペンタフルオロプロパン、ヘキサフルオロプ
ロパンおよびヘプタフルオロプロパンの群から選ばれる
2種以上である請求項11に記載の製造方法。
12. The hydrofluorocarbon is at least two members selected from the group consisting of fluoromethane, difluoromethane, trifluoromethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane and heptafluoropropane. The manufacturing method according to claim 11.
【請求項13】 ハイドロフルオロカーボンがジフルオ
ロメタン、トリフルオロメタン、テトラフルオロエタン
およびペンタフルオロエタンの群から選ばれる2種以上
である請求項13に記載の製造方法。
13. The method according to claim 13, wherein the hydrofluorocarbon is at least two members selected from the group consisting of difluoromethane, trifluoromethane, tetrafluoroethane and pentafluoroethane.
【請求項14】 ハイドロフルオロカーボン中に含有さ
れる不純物として含塩素化合物の濃度が2モルパーセン
ト以下のハイドロフルオロカーボンを使用する請求項1
1に記載の製造方法。
14. The hydrofluorocarbon having a chlorine-containing compound concentration of 2 mol% or less as an impurity contained in the hydrofluorocarbon.
2. The production method according to 1.
JP8070294A 1996-03-26 1996-03-26 Method for producing perfluorocarbon Expired - Lifetime JP3067633B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP8070294A JP3067633B2 (en) 1996-03-26 1996-03-26 Method for producing perfluorocarbon
SG9611696A SG99836A1 (en) 1996-03-26 1996-12-12 Process for producing perfluorocarbon
GB9626079A GB2311522B (en) 1996-03-26 1996-12-16 Process for producing perfluorocarbon
KR1019960067181A KR100294570B1 (en) 1996-03-26 1996-12-18 Manufacturing method of perfluorocarbon
TW085115907A TW509666B (en) 1996-03-26 1996-12-23 Process for producing a perfluorocarbon
DE19654719A DE19654719C2 (en) 1996-03-26 1996-12-30 Process for the production of perfluorocarbons
CN97102131A CN1090162C (en) 1996-03-26 1997-01-15 Method for production of perfluorocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070294A JP3067633B2 (en) 1996-03-26 1996-03-26 Method for producing perfluorocarbon

Publications (2)

Publication Number Publication Date
JPH09255598A JPH09255598A (en) 1997-09-30
JP3067633B2 true JP3067633B2 (en) 2000-07-17

Family

ID=13427310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070294A Expired - Lifetime JP3067633B2 (en) 1996-03-26 1996-03-26 Method for producing perfluorocarbon

Country Status (7)

Country Link
JP (1) JP3067633B2 (en)
KR (1) KR100294570B1 (en)
CN (1) CN1090162C (en)
DE (1) DE19654719C2 (en)
GB (1) GB2311522B (en)
SG (1) SG99836A1 (en)
TW (1) TW509666B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093025A (en) * 2018-01-17 2020-08-04 쇼와 덴코 가부시키가이샤 Method for producing tetrafluoromethane
KR102657143B1 (en) * 2016-08-31 2024-04-11 최은서 A Storage Device Of Vinyl Roll For Portable

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780691A (en) * 1996-12-23 1998-07-14 Allied Signal Inc. Process for producing 1,1,1,2,3,3,3,-heptafluoroprane
KR100353491B1 (en) * 2000-02-22 2002-09-19 울산화학주식회사 Manufacturing method for perfluoroethane
WO2001098240A2 (en) * 2000-06-21 2001-12-27 Showa Denko K.K. Process for producing hexafluoroethane and use thereof
US6720464B2 (en) * 2000-08-30 2004-04-13 Showa Denko K.K. Production and use of octafluoropropane
JP4539793B2 (en) * 2000-08-30 2010-09-08 昭和電工株式会社 Octafluoropropane production method and use thereof
TWI288025B (en) * 2000-09-14 2007-10-11 Showa Denko Kk Adsorbent for purifying perfluorocarbon, process for producing same, high purity octafluoropropane and octafluorocyclobutane, and use thereof
US7064240B2 (en) 2001-02-23 2006-06-20 Showa Denko K.K. Process for producing perfluorocarbons and use thereof
JP4703865B2 (en) * 2001-02-23 2011-06-15 昭和電工株式会社 Method for producing perfluorocarbons and use thereof
KR100447804B1 (en) * 2001-07-09 2004-09-08 울산화학주식회사 Manufacturing method of high purity perfluoroprpane
CN103772136B (en) * 2012-10-24 2016-02-10 中化蓝天集团有限公司 The production technique of hexafluoroethane
CN109867586A (en) * 2017-12-04 2019-06-11 浙江省化工研究院有限公司 A kind of method of fluoroform resourcable transformation production carbon tetrafluoride
JP7198780B2 (en) * 2018-01-19 2023-01-04 昭和電工株式会社 Method for producing tetrafluoromethane
CN108114273B (en) * 2018-02-02 2020-12-22 南京大学 Perfluorocarbon albumin nanoparticles and preparation method and application thereof
EP3901123A4 (en) 2018-12-19 2022-10-05 Daikin Industries, Ltd. Production method for fluoro-ethane and production method for fluoro-olefin
CN113195443A (en) * 2018-12-19 2021-07-30 大金工业株式会社 Process for producing fluoroethane and process for producing fluoroolefin
JP6966712B2 (en) 2019-01-25 2021-11-17 ダイキン工業株式会社 Method for producing fluoroethane and method for producing fluoroolefin
CN111484389A (en) * 2020-04-16 2020-08-04 山东重山光电材料股份有限公司 Production process for co-producing high-purity electronic grade hydrogen fluoride and carbon fluoride
CN112614997B (en) * 2020-12-18 2022-07-01 中国民航大学 Preparation method of carbon fluoride anode material based on hydrogen bond organic framework material
CN112778077A (en) * 2021-01-18 2021-05-11 福建德尔科技有限公司 Micro-reactor based electronic stage C2F6Preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733715A (en) * 1986-03-20 1988-03-29 Hitachi Carbide Tools, Ltd. Cemented carbide sleeve for casting apparatus
DE3778324D1 (en) * 1986-12-01 1992-05-21 Tokuyama Soda Kk METHOD FOR PRODUCING ORGANIC PERFLUORO COMPOUNDS.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102657143B1 (en) * 2016-08-31 2024-04-11 최은서 A Storage Device Of Vinyl Roll For Portable
KR20200093025A (en) * 2018-01-17 2020-08-04 쇼와 덴코 가부시키가이샤 Method for producing tetrafluoromethane
KR102487699B1 (en) 2018-01-17 2023-01-12 쇼와 덴코 가부시키가이샤 Method for producing tetrafluoromethane

Also Published As

Publication number Publication date
KR100294570B1 (en) 2001-09-17
GB2311522B (en) 1999-09-29
TW509666B (en) 2002-11-11
GB2311522A (en) 1997-10-01
CN1161952A (en) 1997-10-15
KR970065493A (en) 1997-10-13
SG99836A1 (en) 2003-11-27
CN1090162C (en) 2002-09-04
GB9626079D0 (en) 1997-02-05
DE19654719C2 (en) 2000-09-28
DE19654719A1 (en) 1997-10-02
JPH09255598A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP3067633B2 (en) Method for producing perfluorocarbon
US5675046A (en) Process for producing perfluorocarbon
JP3130657B2 (en) Method for producing 1-chloro-1,1,3,3,3-pentafluoropropane and 1,1,1,3,3,3-hexafluoropropane
US7102039B2 (en) Production and use of octafluoropropane
JP4851463B2 (en) Method for producing carbonyl fluoride
JP2947158B2 (en) Production of hexafluoroethane
JP4378779B2 (en) Method for producing fluorine-containing ethane
CN1138734C (en) Method for preparing alkane hydrofluoride
AU2003209103B2 (en) Processes for purification and production of fluorocarbons
JP4539793B2 (en) Octafluoropropane production method and use thereof
RU2024474C1 (en) Method of synthesis of 1,1-dichloro-1-fluoroethane and a method of 1,1-dichloroethylene content decrease
EP0967191A1 (en) Method for producing perfluoro(n-Pentane)
AU672210B2 (en) Production of hydrofluoroalkanes
JP3159043B2 (en) Method for producing tetrafluoromethane
US5672788A (en) Two-step process for manufacturing 1,1-difluoroethane
KR100283711B1 (en) Method for preparing hexafluoroethane
JPH10310541A (en) Method for separating 1,1,1,3,3-pentafluoropropane
US6489523B1 (en) Process for producing hexafluoroethane and use thereof
WO2001098240A2 (en) Process for producing hexafluoroethane and use thereof
JP2003055277A (en) Method for producing hexafluoroethane and use thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140519

Year of fee payment: 14

EXPY Cancellation because of completion of term