JP3062975B2 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor deviceInfo
- Publication number
- JP3062975B2 JP3062975B2 JP3351066A JP35106691A JP3062975B2 JP 3062975 B2 JP3062975 B2 JP 3062975B2 JP 3351066 A JP3351066 A JP 3351066A JP 35106691 A JP35106691 A JP 35106691A JP 3062975 B2 JP3062975 B2 JP 3062975B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon concentration
- voltage
- semiconductor device
- pinch
- relationship
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体製造技術さらに
は半導体デバイスを製造する際における半導体基板の選
定方法に関し、例えばGaAsMESFET(砒化ガリ
ウム・メタル・セミコンダクタ・フィールド・イフェク
ト・トランジスタ)の製造に利用して好適な技術に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing technique and, more particularly, to a method for selecting a semiconductor substrate when manufacturing a semiconductor device, for example, for use in manufacturing a GaAs MESFET (gallium arsenide metal semiconductor field effect transistor). To a suitable technology.
【0002】[0002]
【従来の技術】MESFET等半導体デバイスの特性
は、使用する半導体基板の特性に依存する。従って、特
性の安定したGaAsMESFETを歩留まり良く製造
するには、使用するGaAsウェハの選定が重要であ
る。従来、GaAsMESFET(以下、単にFETと
称する)の製造に供するウェハの選定方法としては、ウ
ェハの表面に活性層およびショットキ電極を形成し、F
ETのピンチオフ電圧を測定して所定の範囲に入ってい
るウェハを使用する方法等が考えられている。しかし、
この方法では、ピンチオフ電圧を測定できるようになる
までにイオン注入や活性化アニール、フォトリソグラフ
ィ、電極材蒸着、パターニング等種々の工程を経なけれ
ばならないため、選定作業が非常に面倒で、かつ高度な
制御が必要である。一方、GaAsMESFETのピン
チオフ電圧等の特性はウェハの抵抗率に依存するところ
が大きい。そこで、ウェハの抵抗率に密接に関係する炭
素濃度を測定して所定の範囲に入っているものを使用す
るという簡易なウェハ選定方法も考えられている。2. Description of the Related Art The characteristics of a semiconductor device such as a MESFET depend on the characteristics of a semiconductor substrate to be used. Therefore, in order to manufacture GaAs MESFETs having stable characteristics with good yield, it is important to select a GaAs wafer to be used. Conventionally, as a method of selecting a wafer to be used for manufacturing a GaAs MESFET (hereinafter simply referred to as an FET), an active layer and a Schottky electrode are formed on the surface of the wafer,
A method of measuring the pinch-off voltage of the ET and using a wafer falling within a predetermined range has been considered. But,
In this method, various steps such as ion implantation, activation annealing, photolithography, electrode material deposition, and patterning must be performed before the pinch-off voltage can be measured. Control is necessary. On the other hand, the characteristics such as the pinch-off voltage of the GaAs MESFET largely depend on the resistivity of the wafer. Therefore, a simple wafer selection method has been considered in which a carbon concentration closely related to the resistivity of a wafer is measured and a carbon concentration within a predetermined range is used.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、ウェハ
の炭素濃度を測定して使用するウェハを選定するという
上記方法にあっては、実用的な炭素濃度の測定方法を用
いると測定精度が±0.3×1015cm−3と大きい
ため、選定されたウェハの炭素濃度のばらつきが比較的
大きく、歩留まりの大幅な向上は期待できない。一方、
ピンチオフ電圧を測定して所定の範囲に入っているもの
を使用するという選定方法にあっては、測定結果を得る
までに種々の工程が必要であるため、10mV程度のば
らつきは避けることができないという問題点がある。However, in the above-mentioned method of measuring the carbon concentration of a wafer and selecting a wafer to be used, the measurement accuracy can be reduced to ± 0. 0 by using a practical method of measuring the carbon concentration. Since it is as large as 3 × 10 15 cm −3 , the variation in the carbon concentration of the selected wafer is relatively large, and a significant improvement in yield cannot be expected. on the other hand,
In the selection method of measuring the pinch-off voltage and using a voltage falling within a predetermined range, various steps are required until a measurement result is obtained, so that a variation of about 10 mV cannot be avoided. There is a problem.
【0004】本発明は上記のような問題点に着目してな
されたもので、その目的とするところは、簡易な方法
で、特性の安定したGaAsMESFETを歩留まり良
く製造するのに好適なGaAsウェハを選定可能な技術
を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a GaAs wafer suitable for manufacturing a GaAs MESFET having stable characteristics with a high yield by a simple method. The purpose is to provide selectable technologies.
【0005】[0005]
【課題を解決するための手段】本発明者等は、ウェハの
活性層のシート抵抗の測定精度は炭素濃度の測定精度に
比べて高いことに着目し、表面にイオン注入を行なって
活性層を形成したGaAsウェハのシート抵抗を測定す
るとともに、そのGaAsウェハの炭素濃度を精度の高
い測定方法で測定して両者の測定値を比較した。その結
果、図2に示すように、GaAsウェハのシート抵抗と
炭素濃度との間には比例関係があることを見出した。ま
た、イオン注入条件が同一ならGaAsMESFETの
ピンチオフ電圧VpとGaAsウェハの炭素濃度との間
にも図1に示すように一定の関係がある。ただし、図1
には、ピンチオフ電圧Vpの代わりに、しきい値電圧V
th(=0.7−Vp)を用い、これを縦軸にまた炭素
濃度を横軸にとって両者の関係を示してある。なお、図
1に示したFETのイオン注入条件は、注入エネルギー
が70keV、注入量が1.5×1012cm-2である。The present inventors have noticed that the measurement accuracy of the sheet resistance of the active layer of the wafer is higher than the measurement accuracy of the carbon concentration, and ion-implanted the surface to form the active layer. The sheet resistance of the formed GaAs wafer was measured, and the carbon concentration of the GaAs wafer was measured by a highly accurate measuring method, and the measured values were compared. As a result, they found that there is a proportional relationship between the sheet resistance of the GaAs wafer and the carbon concentration, as shown in FIG. Further, if the ion implantation conditions are the same, there is a certain relationship between the pinch-off voltage Vp of the GaAs MESFET and the carbon concentration of the GaAs wafer as shown in FIG. However, FIG.
Has a threshold voltage V instead of the pinch-off voltage Vp.
Using th (= 0.7-Vp), the relationship is shown on the vertical axis and the carbon concentration on the horizontal axis. The ion implantation conditions of the FET shown in FIG. 1, the implantation energy is 70 keV, implantation dose is 1.5 × 10 12 cm- 2.
【0006】この発明は上記のような知見に基いてなさ
れたもので、半導体装置の製造に先立って同一のイオン
注入条件で活性層を形成した半導体基板(ウェハ)のシ
ート抵抗と炭素濃度との関係および活性層を有する半導
体基板の上に形成したFET(電界効果型トランジス
タ)のピンチオフ電圧と該半導体基板の炭素濃度との関
係を調べておいて、これらの関係から決定される所定の
シート抵抗値を有する半導体基板を電界効果型トランジ
スタ製造用基板として用いることを提案するものであ
る。上記の場合、望ましくは複数のイオン注入条件を設
定し、そのイオン注入条件ごとにFETのピンチオフ電
圧と半導体基板の炭素濃度との関係を調べておくように
する。The present invention has been made based on the above-described findings, and is based on the finding that the sheet resistance and carbon concentration of a semiconductor substrate (wafer) on which an active layer is formed under the same ion implantation conditions prior to the manufacture of a semiconductor device. The relationship and the relationship between the pinch-off voltage of an FET (field effect transistor) formed on a semiconductor substrate having an active layer and the carbon concentration of the semiconductor substrate are determined, and a predetermined sheet resistance determined from these relationships is determined. It is proposed to use a semiconductor substrate having a value as a substrate for manufacturing a field effect transistor. In the above case, preferably, a plurality of ion implantation conditions are set, and the relationship between the pinch-off voltage of the FET and the carbon concentration of the semiconductor substrate is checked for each of the ion implantation conditions.
【0007】[0007]
【作用】上記した手段によれば、予め得られているピン
チオフ電圧とウェハの炭素濃度との関係から目的とする
ピンチオフ電圧に対応する炭素濃度を求め、さらに予め
得られているシート抵抗と炭素濃度との関係から上記炭
素濃度に対応するシート抵抗を決定して、そのようなシ
ート抵抗値を有する半導体基板をFET製造用基板とし
て用いることにより、所定の特性を有するFETを歩留
まり良く製造することができる。また、目的とするピン
チオフ電圧あるいは活性層のイオン注入条件が確定され
ていない場合には、一旦種々のシート抵抗値を有する半
導体基板を用意してFETを製造して得られたFETに
ついてピンチオフ電圧を測定し、そのうち所望のピンチ
オフ電圧になったFETに使用した半導体基板を特定
し、以後その基板と同一のシート抵抗値を有する半導体
基板をFET製造用基板として用いることにより、所定
の特性を有するFETを歩留まり良く製造することがで
きる。According to the above means, the carbon concentration corresponding to the target pinch-off voltage is obtained from the relationship between the previously obtained pinch-off voltage and the carbon concentration of the wafer, and the sheet resistance and the carbon concentration obtained in advance are obtained. By determining the sheet resistance corresponding to the above carbon concentration from the relationship with the above, and using a semiconductor substrate having such a sheet resistance as a substrate for manufacturing FETs, it is possible to manufacture FETs having predetermined characteristics with high yield. it can. In addition, when the target pinch-off voltage or the ion implantation conditions of the active layer are not determined, the pinch-off voltage of the FET obtained by once preparing a semiconductor substrate having various sheet resistance values and manufacturing the FET is determined. By measuring and identifying the semiconductor substrate used for the FET having the desired pinch-off voltage, a semiconductor substrate having the same sheet resistance value as the substrate is used as a substrate for manufacturing the FET, so that the FET having predetermined characteristics is obtained. Can be manufactured with good yield.
【0008】[0008]
【実施例】液体封止チョクラルスキー法により、炭素濃
度の異なる10本のGaAs単結晶を育成し、各ロット
A,B,C,……Jをウェハに切断し、その中から任意
のウェハを1枚ずつ取り出して、それらのウェハ上に同
一プロセス条件にてMESFETを形成した。活性層
は、Si+をイオン種としてこれを70keVのエネル
ギーで、1.5×1012cm−2の注入量となるよう
に打込み、830℃の温度で10分間熱処理を行なって
形成した。ゲート電極材料は基板側よりTi(20n
m)/Pt(100nm)/Au(300nm)とし、
ゲート長は1μm、ゲート幅は5μm、ソース・ドレイ
ン間隔は4μmとした。また、ソース,ドレインのオー
ミック電極は基板側よりAu−Ge(100nm)/N
i(20nm)/Au(700nm)とした。The EXAMPLES Liquid Encapsulated Czochralski method, foster ten GaAs single crystal having different carbon concentrations, each lots A, B, C, and ...... J cut into wafers, any from among them The wafers were taken out one by one and MESFETs were formed on those wafers under the same process conditions. The active layer was formed by implanting Si + as an ion species at an energy of 70 keV so as to have an implantation amount of 1.5 × 10 12 cm −2 and performing a heat treatment at a temperature of 830 ° C. for 10 minutes. The gate electrode material is Ti (20n) from the substrate side.
m) / Pt (100 nm) / Au (300 nm)
The gate length was 1 μm, the gate width was 5 μm, and the distance between the source and the drain was 4 μm. The ohmic electrodes of the source and drain are Au-Ge (100 nm) / N from the substrate side.
i (20 nm) / Au (700 nm).
【0009】次に、上記条件で作成されたMESFET
のしきい値電圧Vthを測定した。図3にその測定結果
を示す。同図において、□印はウェハ(ロッド)ごとに
FETのしきい値電圧Vthを測定しその平均値をプロ
ットしたものである。なお、同図には、標準偏差値σを
もって、しきい値電圧のばらつきの範囲として示してあ
る。同図より、GaAs基板を無作為に選択してMES
FETを作成した場合には、しきい値電圧Vthは平均
値で0.52Vから0.73Vまで分散してしまうこと
が分かる。従って、目的とするしきい値電圧を0.62
5±0.025Vと仮定すると、この場合FETの歩留
まりは、約31.6%となる。なお図4には、上記条件
で作成されたMESFETのしきい値電圧Vth(=
0.7−Vp)と、使用したGaAs基板の炭素濃度と
の関係を示す。Next, the MESFET fabricated under the above conditions
Was measured for the threshold voltage Vth. FIG. 3 shows the measurement results. In the figure, the squares indicate the threshold voltage Vth of the FET measured for each wafer (rod) and the average value is plotted. In FIG. 3, the standard deviation value σ is shown as a range of the variation of the threshold voltage. From the figure, the GaAs substrate was randomly selected and the MES
It can be seen that when an FET is formed, the threshold voltage Vth is dispersed from an average value of 0.52 V to 0.73 V. Therefore, the target threshold voltage is set to 0.62
Assuming 5 ± 0.025V, the yield of the FET in this case is about 31.6%. FIG. 4 shows the threshold voltage Vth (=
0.7-Vp) and the carbon concentration of the used GaAs substrate.
【0010】次に、本発明方法を適用した場合について
説明する。まず、GaAsMESFETの目的とするピ
ンチオフ電圧Vpもしくはしきい値電圧Vthが決まっ
たなら、図4を用いて使用するウェハの炭素濃度を求め
る。例えば、目的とするしきい値電圧Vthが0.62
5±0.025Vならば、図4より、使用するウェハの
炭素濃度は1.8×1015cm−3以上で2.71×
1015cm−3以下でなければならないことが分か
る。Next, a case where the method of the present invention is applied will be described. First, when the target pinch-off voltage Vp or threshold voltage Vth of the GaAs MESFET is determined, the carbon concentration of the wafer to be used is determined using FIG. For example, if the target threshold voltage Vth is 0.62
If it is 5 ± 0.025V, it is understood from FIG. 4 that the carbon concentration of the wafer to be used is 1.8 × 10 15 cm −3 and 2.71 ×
It can be seen that it must be 10 15 cm −3 or less.
【0011】次に、図2より、炭素濃度が1.8×10
15cm−3〜2.71×1015cm−3の範囲にあ
るウェハのシート抵抗を求める。この場合、使用可能な
ウェハのシート抵抗は、2108Ω/□〜2158Ω/
□であることがわかる。上記10本のGaAs単結晶ロ
ットA,B,C,……Jの中から、シート抵抗が210
8Ω/□〜2158Ω/□であるものをさがしたとこ
ろ、C,F,H,Iの4本が該当していることが分かっ
た。従って、これらのロッドから切り出されたウェハを
用いてMESFETを作成した場合には、所望のしきい
値電圧Vth(0.625±0.025V)を有するF
ETの歩留まりは、図3より、58.8%となることが
分かる。これより、本発明方法を適用することによっ
て、FETの歩留まりが31.6%から58.8%に向
上することが分かる。Next, FIG. 2 shows that the carbon concentration is 1.8 × 10
The sheet resistance of the wafer in the range of 15 cm −3 to 2.71 × 10 15 cm −3 is determined. In this case, the sheet resistance of the usable wafer is 2108Ω / □ to 2158Ω /
It turns out that it is □. GaAs single crystal 10 present the B <br/> Tsu preparative A, B, C, among ...... J, the sheet resistance is 210
When a sample having a resistance of 8Ω / □ to 2158Ω / □ was searched for, it was found that four of C, F, H and I corresponded. Therefore, when a MESFET is manufactured using a wafer cut from these rods, the FES having a desired threshold voltage Vth (0.625 ± 0.025 V) is obtained.
The ET yield was 58 . It turns out that it becomes 8%. Thus, by applying the method of the present invention, the yield of FET is reduced from 31.6% to 58 . It turns out that it improves to 8%.
【0012】[0012]
【発明の効果】以上説明したように、この発明は、半導
体装置の製造に先立って同一のイオン注入条件で活性層
を形成した半導体基板(ウェハ)のシート抵抗と炭素濃
度との関係および活性層を有する半導体基板の上に形成
したFETのピンチオフ電圧と該半導体基板の炭素濃度
との関係を調べておいて、これらの関係から決定される
所定のシート抵抗値を有する半導体基板をFET製造用
基板として用いるようにしたので、予め得られているピ
ンチオフ電圧とウェハの炭素濃度との関係から目的とす
るピンチオフ電圧に対応する炭素濃度を求め、さらに予
め得られているシート抵抗と炭素濃度との関係から上記
炭素濃度に対応するシート抵抗を決定して、そのような
シート抵抗値を有する半導体基板をFET製造用基板と
して用いることにより、所定の特性を有するFETを歩
留まり良く製造することができるという効果がある。As described above, the present invention relates to the relationship between the sheet resistance and the carbon concentration of a semiconductor substrate (wafer) having an active layer formed under the same ion implantation conditions prior to the manufacture of a semiconductor device, and the active layer. The relationship between the pinch-off voltage of the FET formed on the semiconductor substrate having the above and the carbon concentration of the semiconductor substrate is examined, and the semiconductor substrate having a predetermined sheet resistance value determined from these relationships is used as the substrate for manufacturing the FET. Therefore, the carbon concentration corresponding to the target pinch-off voltage is obtained from the relationship between the previously obtained pinch-off voltage and the carbon concentration of the wafer, and the relationship between the previously obtained sheet resistance and the carbon concentration is obtained. To determine a sheet resistance corresponding to the above carbon concentration, and to use a semiconductor substrate having such a sheet resistance value as a substrate for FET production. Ri, there is an effect that can be produced with high yield FET having a predetermined property.
【図1】GaAsウェハのシート抵抗と炭素濃度との関
係を示す相関図である。FIG. 1 is a correlation diagram showing a relationship between a sheet resistance and a carbon concentration of a GaAs wafer.
【図2】GaAsMESFETのピンチオフ電圧Vpと
GaAsウェハの炭素濃度との関係を示す相関図であ
る。FIG. 2 is a correlation diagram showing a relationship between a pinch-off voltage Vp of a GaAs MESFET and a carbon concentration of a GaAs wafer.
【図3】実施例の条件で作成されたMESFETのしき
い値電圧Vthの測定結果を示す図である。FIG. 3 is a diagram showing a measurement result of a threshold voltage Vth of a MESFET created under the conditions of the example.
【図4】実施例の条件で作成されたMESFETのしき
い値電圧Vthの測定値と基板の炭素濃度の測定値との
関係を示す相関図である。FIG. 4 is a correlation diagram showing a relationship between a measured value of a threshold voltage Vth of a MESFET prepared under the conditions of the example and a measured value of a carbon concentration of a substrate.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/337 - 21/338 H01L 21/02 H01L 29/775 - 29/778 H01L 29/80 - 29/812 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/337-21/338 H01L 21/02 H01L 29/775-29/778 H01L 29/80-29 / 812
Claims (3)
ン注入条件で活性層を形成した半導体基板のシート抵抗
と炭素濃度との関係および活性層を有する半導体基板の
上に形成した電界効果型トランジスタのピンチオフ電圧
もしくはしきい値電圧と該半導体基板の炭素濃度との関
係を調べておいて、まず、目的とするピンチオフ電圧もしくはしきい値電圧
を決定し、この目的とするピンチオフ電圧もしくはしき
い値電圧に対応する炭素濃度を前記ピンチオフ電圧もし
くはしきい値電圧と炭素濃度との関係より求め、 さらに、該炭素濃度に対応するシート抵抗を前記シート
抵抗と炭素濃度との関係より決定し、 この 所定のシート抵抗値を有する半導体基板を電界効果
型トランジスタ製造用基板として用いることを特徴とす
る半導体装置の製造方法。1. A semiconductor device having an active layer formed under the same ion implantation conditions prior to the manufacture of a semiconductor device, the relationship between the sheet resistance and the carbon concentration, and a field effect transistor formed on the semiconductor substrate having the active layer. The relationship between the pinch-off voltage or the threshold voltage of the semiconductor substrate and the carbon concentration of the semiconductor substrate is examined , and the target pinch-off voltage or the threshold voltage is first determined.
And determine the desired pinch-off voltage or threshold
If the pinch-off voltage is higher than the carbon concentration corresponding to
Or the sheet resistance corresponding to the carbon concentration is determined from the relationship between the threshold voltage and the carbon concentration.
Determined from the relationship between the resistance and the carbon concentration, a method of manufacturing a semiconductor device, which comprises using a semiconductor substrate having the predetermined sheet resistance value as a field effect transistor fabrication substrate.
ことを特徴とする請求項1に記載の半導体装置の製造方The method of manufacturing a semiconductor device according to claim 1, wherein:
法。Law.
Tであることを特徴とする請求項1または請求項2に記3. The method according to claim 1, wherein
載の半導体装置の製造方法。Manufacturing method of the semiconductor device described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3351066A JP3062975B2 (en) | 1991-12-10 | 1991-12-10 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3351066A JP3062975B2 (en) | 1991-12-10 | 1991-12-10 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05160159A JPH05160159A (en) | 1993-06-25 |
JP3062975B2 true JP3062975B2 (en) | 2000-07-12 |
Family
ID=18414813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3351066A Expired - Lifetime JP3062975B2 (en) | 1991-12-10 | 1991-12-10 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3062975B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101566466B1 (en) | 2014-06-26 | 2015-11-16 | 대한민국 | Apparatus for disinfecting outdoor work shoes and boots |
FR3103558A1 (en) * | 2019-11-26 | 2021-05-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for evaluating a concentration |
-
1991
- 1991-12-10 JP JP3351066A patent/JP3062975B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101566466B1 (en) | 2014-06-26 | 2015-11-16 | 대한민국 | Apparatus for disinfecting outdoor work shoes and boots |
FR3103558A1 (en) * | 2019-11-26 | 2021-05-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Method for evaluating a concentration |
EP3828920A1 (en) * | 2019-11-26 | 2021-06-02 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for assessing a concentration |
US11761920B2 (en) | 2019-11-26 | 2023-09-19 | Commissariat à l'énergie atomique et aux énergies alternatives | Concentration estimation method |
Also Published As
Publication number | Publication date |
---|---|
JPH05160159A (en) | 1993-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anholt et al. | Experimental investigation of the temperature dependence of GaAs FET equivalent circuits | |
JP2893723B2 (en) | Method of manufacturing ohmic electrode | |
US4263605A (en) | Ion-implanted, improved ohmic contacts for GaAs semiconductor devices | |
JP3062975B2 (en) | Method for manufacturing semiconductor device | |
Baier et al. | FET characterization using gated-TLM structure | |
Lee et al. | Low field mobility in GaAs ion-implanted FET's | |
Stellwag et al. | Increased thermal generation rate in GaAs due to electron‐beam metallization | |
US5650335A (en) | Method of fabricating a semiconductor device including a process of adjusting fet characteristics after forming the fet | |
JPH0669300A (en) | Method for evaluating semiconductor substrate | |
Peczalski et al. | Modeling and characterization of ion-implanted GaAs MESFET's | |
US20020110938A1 (en) | Measurement and analysis of mercury-based pseudo-field effect transistors | |
Anholt et al. | A process and device model for GaAs MESFET technology: GATES | |
Lee et al. | Threshold voltage uniformity of MESFETs fabricated on GaAs and In-alloyed GaAs substrates | |
JPH0669240A (en) | Manufacture of semiconductor device | |
JPH05102271A (en) | Carrier concentration distribution measuring method of semiconductor | |
JP2881894B2 (en) | Resistor | |
Saravanan et al. | Influence of activation of Si29+ ion-implantation in GaAs on ohmic contact resistance and electrical performances of MESFETs | |
JPS6314509B2 (en) | ||
Feuerstein et al. | Ohmic contacts on n+‐and p+‐Si by ion implantation | |
Chen et al. | Effects of interface traps on the transconductance and drain current of InP MISFET's | |
Rogers | Ohmic Contacts to Gallium Arsenide | |
Karlova et al. | The Investigation of Ion Implantation as a Technique for Manufacturing GaAs Magneto-Sensitive Detectors | |
JPS6091651A (en) | Device model simulation method for gaas schottky junction type fet | |
JPS59123274A (en) | Manufacture of semicondcutor device | |
Cobbold | Theory of four-terminal double-diffused field-effect transistors |