JP3059806B2 - Superconducting element and manufacturing method thereof - Google Patents

Superconducting element and manufacturing method thereof

Info

Publication number
JP3059806B2
JP3059806B2 JP03336896A JP33689691A JP3059806B2 JP 3059806 B2 JP3059806 B2 JP 3059806B2 JP 03336896 A JP03336896 A JP 03336896A JP 33689691 A JP33689691 A JP 33689691A JP 3059806 B2 JP3059806 B2 JP 3059806B2
Authority
JP
Japan
Prior art keywords
superconducting
particles
oxide superconductor
film
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03336896A
Other languages
Japanese (ja)
Other versions
JPH05183208A (en
Inventor
穣 高井
修一 吉川
順信 善里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPH05183208A publication Critical patent/JPH05183208A/en
Application granted granted Critical
Publication of JP3059806B2 publication Critical patent/JP3059806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電磁波センサー、SQU
IDなどのジョセフソン素子、ボロメータなどに用いら
れる超電導素子並びにその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave sensor,
The present invention relates to a superconducting element used for a Josephson element such as an ID, a bolometer, and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電磁波センサー、特に数十GHzオーダ
の超高周波帯の電磁波を検出するセンサーとして、超電
導体を用いたものが極めて高い感度を示すことから注目
されている。特に数年前に発見されたYBa2Cu3
7-x(以下YBaCuOと略す)などで代表される酸化
物超電導体は液体窒素が示す77K程度の比較的高い温
度で超電導状態となるので、応用範囲が広がるものとし
て期待が寄せられている。
2. Description of the Related Art As an electromagnetic wave sensor, in particular, a sensor using a superconductor as a sensor for detecting an electromagnetic wave in an ultra-high frequency band on the order of several tens of GHz has attracted attention because of its extremely high sensitivity. In particular, YBa 2 Cu 3 O discovered several years ago
Oxide superconductors represented by 7-x (hereinafter abbreviated as YBaCuO) enter a superconducting state at a relatively high temperature of about 77 K, which is indicated by liquid nitrogen, and are therefore expected to have a wide range of applications.

【0003】この超電導体を用いたジョセフソン素子
は、例えば特開平3−79091号公報に示されてい
る。ところで、一般に数十GHzオーダから数THzオ
ーダの超高周波帯の電磁波を検出する電磁波センサーと
しては、素子端子間の常伝導抵抗値が高い方が検出感度
が良いとされているが、特開平3−79091号公報に
示されているようなジョセフソン素子では素子の抵抗値
が低く、電磁波センサーとしては余り高感度を期待する
ことはできなかった。また、SQUIDやボロメータ等
の他の超電導素子においても同様の問題があった。
A Josephson device using this superconductor is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-79091. As an electromagnetic wave sensor for detecting an electromagnetic wave in an ultrahigh frequency band on the order of several tens of GHz to several THz, it is generally considered that the higher the normal conduction resistance between element terminals is, the better the detection sensitivity is. In a Josephson device as disclosed in JP-A-79091, the resistance value of the device was low, and it was not possible to expect high sensitivity as an electromagnetic wave sensor. In addition, other superconducting elements such as SQUIDs and bolometers have the same problem.

【0004】また、ブリッジ型ジョセフソン薄膜素子に
おいて、基板のステップエッジを利用したジョセフソン
接合(SEJJ;Step Edge Josephson Junction)や結
晶方位の異なる結晶面を接合したバイクリスタルのジョ
セフソン接合(バイクリスタルJJ;Bicrystal Joseph
son Junction)、あるいは、多粒界における粒界ジョセ
フソン接合(GBJJ;Grain Boudary Josephson Junc
tion)などのブリッジ部や結晶面接合部及び粒界部にお
ける酸素欠損による素子劣化が問題となっていた。
In a bridge type Josephson thin film element, a Josephson junction (SEJJ) using a step edge of a substrate or a Josephson junction of a bicrystal in which crystal planes having different crystal orientations are bonded are used. JJ: Bicrystal Joseph
son Junction) or a grain boundary Josephson junction (GBJJ; Grain Boudary Josephson Junc
element degradation due to oxygen deficiency in a bridge portion, a crystal surface junction, and a grain boundary portion.

【0005】[0005]

【発明が解決しようとする課題】本発明は、斯る問題を
鑑み、薄膜形成又は厚膜形成、あるいはバルク加工され
た希土類酸化物超電導体のその粒子界面に高抵抗材料が
介在する高インピーダンスの超電導素子及びその製造方
法、また、ブリッジ型ジョセフソン薄膜素子等のブリッ
ジ部における酸素欠損による素子劣化を防ぐことができ
る超電導素子及びその製造方法を提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a high-impedance high-resistance material in which a high-resistance material is interposed at the particle interface of a thin-film or thick-film formed or bulk-processed rare-earth oxide superconductor. An object of the present invention is to provide a superconducting element and a method for manufacturing the same, and a superconducting element capable of preventing element deterioration due to oxygen deficiency in a bridge portion such as a bridge type Josephson thin film element and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明に係る超電導素子
は、酸化物超電導体からなる基体上の所望の領域に下記
の条件を満たす原材料からなる高抵抗膜を積層形成した
ことを特徴とする超電導素子、 1)希土類元素系酸化物超電導体粒子に酸素を供給する
か、若しくは超電導体粒子から酸素を奪取しないこと、 2)電気伝導度が上記希土類元素系酸化物超電導体のそ
れより低いこと、であり、上記原材料がBi23である
ことを特徴とする。
The superconducting element according to the present invention is characterized in that a high-resistance film made of a raw material satisfying the following conditions is laminated on a desired region on a substrate made of an oxide superconductor. A superconducting element, 1) supplying oxygen to the rare earth element-based oxide superconductor particles, or not depriving the superconducting particles of oxygen, 2) having an electric conductivity lower than that of the rare earth element-based oxide superconductor. , Wherein the raw material is Bi 2 O 3 .

【0007】[0007]

【0008】[0008]

【作用】本発明によれば、希土類元素系酸化物超電導体
と高抵抗材料とを希土類元素系酸化物超電導体が溶融し
ない温度下で同時に熱処理することで高抵抗材料のみが
溶融又は蒸発し、希土類元素系酸化物超電導体粒子間の
粒界に高抵抗材料からなる粒界層を介在させることがで
き、素子の抵抗値が高い超電導素子が得られ、数十GH
zから数THzの超高周波帯の電磁波を検出するセンサ
ーとして好適な高い端子間抵抗値を示す超電導素子が提
供される。
According to the present invention, only the high-resistance material is melted or evaporated by simultaneously heat-treating the rare-earth-element-based oxide superconductor and the high-resistance material at a temperature at which the rare-earth-element-based oxide superconductor does not melt, A grain boundary layer made of a high-resistance material can be interposed at a grain boundary between the rare-earth-element-based oxide superconductor particles, and a superconducting element having a high resistance value of the element can be obtained, and several tens of GH can be obtained.
A superconducting element exhibiting a high inter-terminal resistance suitable as a sensor for detecting an electromagnetic wave in an ultrahigh frequency band from z to several THz is provided.

【0009】また、希土類元素系酸化物超電導体からな
る基体上の所望の領域に、超電導体粒子に酸素を供給す
るか、若しくは超電導体粒子から酸素を奪取しない高抵
抗材料からなる保護膜をブリッジ型ジョセフソン薄膜素
子等のブリッジ部に熱処理なしに積層形成することで、
特に熱処理時に生じるこのブリッジ部の粒界領域におけ
る酸素欠損による素子劣化を防ぐことができる。
In addition, a protective film made of a high-resistance material which does not supply oxygen to the superconductor particles or takes oxygen from the superconductor particles is bridged to a desired region on the substrate made of the rare earth element oxide superconductor. By laminating the bridge part of the Josephson thin film element without heat treatment,
In particular, it is possible to prevent element deterioration due to oxygen deficiency in the grain boundary region of the bridge portion which occurs during the heat treatment.

【0010】[0010]

【実施例】[第1実施例]はじめに、本発明の超電導素
子の構造について説明する。
[First Embodiment] First, the structure of a superconducting element of the present invention will be described.

【0011】図1は本発明超電導素子からなるジョセフ
ソン素子を用いた電磁波センサーの一例を示す斜視図で
あり、1はMgO、SrTiO3、結晶化ガラスなどの
結晶系絶縁性基板、2はこの基板1表面に設けられた超
電導膜で、例えばYBaCuO系の希土類元素系酸化物
超電導材料を主構成要素として構成されている。この超
電導膜2の中央部の幅を狭くして電磁波センサーとして
機能する幅10〜50μm、長さ200〜300μm、
厚み50μm程度のサイズをもつセンサー部3が、また
幅広くなっているその両端部は0.1〜1μm厚程度の
金等からなる出力用電極(内側)4a、4a、バイアス
電流用電極(外側)4b、4bがそれぞれ構成されてい
る。
FIG. 1 is a perspective view showing an example of an electromagnetic wave sensor using a Josephson element comprising the superconducting element of the present invention, wherein 1 is a crystalline insulating substrate such as MgO, SrTiO 3 , crystallized glass, and 2 The superconducting film provided on the surface of the substrate 1 is mainly composed of, for example, a YBaCuO-based rare earth oxide superconducting material. A width of 10 to 50 μm, a length of 200 to 300 μm, which functions as an electromagnetic wave sensor by reducing the width of the central portion of the superconducting film 2;
The sensor section 3 having a thickness of about 50 μm is widened, and both ends thereof are output electrodes (inside) 4 a and 4 a made of gold or the like having a thickness of about 0.1 to 1 μm, and a bias current electrode (outside). 4b and 4b are respectively constituted.

【0012】ここでこの超電導膜2の具体的な構成につ
いて説明しておく。この膜2は図2に拡大して示すよう
に、YBaCuO系の希土類元素系酸化物超電導材料を
素材とする平均粒径数μmの超電導体粒子5、5・・・
を主材とし、その粒子5、5・・・間隙の粒界には、膜
厚約1000Å、若しくはそれより薄い層厚の粒界層6
を介在している。この粒界層6は、主にYBaCuOの
BaとBi23が結合したBi−Ba−O系酸化物(高
抵抗材料)、続いて一部のBaが抜けたYBaCuO、
そしてBi23(高抵抗材料)とが含まれて成る。これ
らの高抵抗材料からなる粒界層6は超電導膜2の超電導
体粒子5、5・・・の界面の抵抗を大きくして素子特性
を向上させるためのものである。
Here, a specific configuration of the superconducting film 2 will be described. As shown in an enlarged scale in FIG. 2, the film 2 is made of a YBaCuO-based rare-earth oxide superconducting material and has superconductor particles 5, 5.
The grain boundary layer 6 having a thickness of about 1000 Å or less is formed on the grain boundaries of the particles 5, 5...
Intervening. The grain boundary layer 6 is mainly made of a Bi—Ba—O-based oxide (high-resistance material) in which Ba and Bi 2 O 3 of YBaCuO are bonded, followed by YBaCuO from which a part of Ba is removed.
And Bi 2 O 3 (high resistance material). The grain boundary layer 6 made of such a high-resistance material is for increasing the resistance of the interface between the superconductor particles 5, 5,... Of the superconducting film 2 to improve the device characteristics.

【0013】次に、第1実施例の超電導素子及びその製
造方法について詳細に説明する。
Next, the superconducting element of the first embodiment and a method of manufacturing the same will be described in detail.

【0014】先ず、本実施例で用いた希土類元素系酸化
物超電導材料の製造方法について説明する。
First, a method of manufacturing the rare-earth-element-based oxide superconducting material used in this embodiment will be described.

【0015】従来周知の共沈法及びその生成物の焼成に
よりYBaCuOからなる超電導体粒子の焼結体を形成
する。即ち、硝酸イットリウムY(NO33・3.5H
2O、硝酸バリウムBa(NO32、硝酸銅Cu(N
32・2H2Oをそれぞれ水に溶解し、Y、Ba、C
uがモル比で1:2:3になるように混合する。つい
で、蓚酸H224・2H2Oの水溶液をBa元素2モル
に対し7モル加えて反応させる。尚、この際アンモニア
水NH4OHを滴下してpH調整してpH=4〜7、具
体的にはpH=4.6とし、Y、Ba、Cuの組成比が
1:2:3になるようにする。この反応により生ずる沈
殿物をろ過した後、十分乾燥して超電導素体の粉末を得
る。
A sintered body of superconductor particles made of YBaCuO is formed by a conventionally well-known coprecipitation method and firing of the product. That is, yttrium nitrate Y (NO 3 ) 3 .3.5H
2 O, barium nitrate Ba (NO 3 ) 2 , copper nitrate Cu (N
O 3) 2 · 2H 2 O were each dissolved in water, Y, Ba, C
Mix so that u becomes 1: 2: 3 in molar ratio. Then, 7 mol of an aqueous solution of oxalic acid H 2 C 2 O 4 .2H 2 O is added to 2 mol of Ba element to cause a reaction. At this time, the pH was adjusted by adding ammonia water NH 4 OH dropwise to adjust pH = 4 to 7, specifically pH = 4.6, and the composition ratio of Y, Ba, and Cu became 1: 2: 3. To do. The precipitate generated by this reaction is filtered and then sufficiently dried to obtain a superconductor powder.

【0016】このようにして得られる粉末を、1次焼成
として、大気中において830〜880℃で9時間焼成
する。この実施例では870℃で9時間焼成した。この
焼成により粒径1μm以下の粉末粒子を得る。この粉末
粒子を約2トン/cm2の圧力で、所望の大きさの成形
体に形成する。
The powder thus obtained is fired in the atmosphere at 830 to 880 ° C. for 9 hours as primary firing. In this example, baking was performed at 870 ° C. for 9 hours. By this firing, powder particles having a particle size of 1 μm or less are obtained. The powder particles are formed at a pressure of about 2 ton / cm 2 into a compact having a desired size.

【0017】この成形体を、2次焼成として、YBaC
uOの結晶粒が成長する900〜1000℃、本実施例
では酸素雰囲気下において温度925℃で8時間焼成し
て、粒径1μm以下のYBaCuO超電導体粒子からな
る焼結体(超電導相率98%)を形成する。
This molded body is subjected to secondary firing to obtain YBaC
A sintered body made of YBaCuO superconductor particles having a particle diameter of 1 μm or less (superconducting phase ratio: 98%) is fired at 900 to 1000 ° C. in which uO crystal grains grow, in this example, at 925 ° C. for 8 hours in an oxygen atmosphere. ) Is formed.

【0018】図1に示すジョセフソン素子における超電
導膜2は、溶融状態にある酸化ビスマス溶液(融点81
7℃)にYBaCuOの上述の方法により作製した超電
導体粒子を浸漬し、900℃で48時間、O2雰囲気中
でアニール処理した後、室温まで徐冷して得られたバル
クを所定の形状に切断、研摩して形成される。この時、
超電導体YBaCuOは、融点1000℃以上をもつた
め溶融せず、溶融状態にある酸化ビスマス溶液が超電導
体粒子の粒界層に浸透し、超電導膜2は図2に示す構造
を形成する。
The superconducting film 2 in the Josephson element shown in FIG. 1 is made of a bismuth oxide solution (melting point 81) in a molten state.
7 ° C.), immersed the superconductor particles of YBaCuO prepared by the above method, annealed at 900 ° C. for 48 hours in an O 2 atmosphere, and gradually cooled to room temperature to obtain a bulk having a predetermined shape. It is formed by cutting and polishing. At this time,
Since the superconductor YBaCuO has a melting point of 1000 ° C. or higher, it does not melt, and the bismuth oxide solution in a molten state permeates the grain boundary layer of the superconductor particles, and the superconducting film 2 forms the structure shown in FIG.

【0019】ここで粒界層6を形成する原材料に要求さ
れる条件としては、1)YBaCuOを素材とする超電
導体粒子5、5・・・に酸素を供給するか、若しくは超
電導体粒子5、5・・・から酸素を奪取しないこと、
2)融点が上記YBaCuOを素材とする超電導体粒子
5、5・・・のそれより低いこと、3)電気伝導度が上
記YBaCuOを素材とする超電導体粒子5、5・・・
のそれより低いこと、の3点が挙げられる。
Here, the conditions required for the raw material forming the grain boundary layer 6 are as follows: 1) supply oxygen to the superconductor particles 5, 5,... Made of YBaCuO, or Do not take oxygen from 5 ...
2) the melting point is lower than that of the superconducting particles 5, 5,... Made of YBaCuO; 3) the superconductivity particles 5, 5,.
Lower than that of the three.

【0020】特に、1)は、原材料が溶融されて作成さ
れる溶融液が少なくとも超電導体界面で反応する時以外
は酸素を奪取しない、即ち酸化物超電導体は酸素を奪わ
れないため超電導特性は保持される。
In particular, 1) does not deprive oxygen except at least when the melt produced by melting the raw materials reacts at the superconductor interface, that is, the oxide superconductor does not deprive oxygen, and thus has a superconducting property. Will be retained.

【0021】又、2)は、超電導特性を破壊せずに粒界
層を形成するために必要である。
Further, 2) is necessary for forming a grain boundary layer without destroying superconducting characteristics.

【0022】更に3)は、この原材料が粒界層を構成す
る材料となるために不可欠である。
Further, 3) is indispensable because this raw material becomes a material constituting the grain boundary layer.

【0023】この粒界層6を形成する原材料として、上
記したBi23は、下記する表1に示すように、温度が
低下するに従って酸素含有量が減少し、即ち酸素を外部
に供給する性質を有しており、1)の条件を満たす。ま
た融点は上記したように817℃であり、また3)の条
件である電気伝導度は、YBaCuOが臨界温度オンセ
ットにおいて100〜1000S/cm(比抵抗:10
-3〜10-2Ω・cm)に比べて、1.6×10-4S/c
m(比抵抗:6250Ω・cm)と低く、要求条件を全
て満たしている。
As a raw material for forming the grain boundary layer 6, the above-mentioned Bi 2 O 3 has an oxygen content that decreases as the temperature decreases, that is, supplies oxygen to the outside, as shown in Table 1 below. It has properties and satisfies the condition of 1). Further, the melting point is 817 ° C. as described above, and the electrical conductivity under the condition of 3) is that YBaCuO is 100 to 1000 S / cm (specific resistance: 10
1.6 × 10 −4 S / c compared to −3 to 10 −2 Ω · cm)
m (specific resistance: 6250 Ω · cm), which satisfies all the required conditions.

【0024】[0024]

【表1】 [Table 1]

【0025】このようにして形成された超電導膜2は、
図2に示すように粒径数μmのYBaCuOを素材とす
る超電導体粒子5、5・・・の間隙に厚み約1000Å
以下の粒界層6中に高抵抗材料であるBi23のほか、
更にBiBaO2.77等からなる高抵抗材料のBi−Ba
−O系酸化物が主に介在された構成であり、このような
構成の超電導膜2は、超電導の近接効果により、恰も粒
界層をトンネル現象のように電子が流れる状態となり、
ジョセフソン接合を有するジョセフソン素子としての特
性を示し、電磁波センサーのセンサー部3として要求さ
れる特性を全て満たしている。
The superconducting film 2 thus formed is
As shown in FIG. 2, the thickness of the superconductor particles 5, 5...
In the following grain boundary layer 6, in addition to Bi 2 O 3 which is a high resistance material,
Further, Bi-Ba of a high resistance material made of BiBaO 2.77 or the like is used.
The superconducting film 2 having such a configuration is mainly in the form of an intervening -O-based oxide, and the superconducting film 2 has a state in which electrons flow through the grain boundary layer like a tunnel phenomenon due to the proximity effect of superconductivity.
It shows the characteristics as a Josephson element having a Josephson junction, and satisfies all the characteristics required for the sensor unit 3 of the electromagnetic wave sensor.

【0026】[第2実施例]次に、第2実施例の超電導
素子及びその製造方法について詳細に説明する。
[Second Embodiment] Next, a superconducting element of a second embodiment and a method of manufacturing the same will be described in detail.

【0027】第1実施例と同様の方法により作製した酸
化物超電導体の焼結体を乳鉢にてすり潰して1〜5μm
程度の粉末状にした後、この粉末状焼結体に粒径1μm
以下の粉末状のBi23(総量に対して15wt%以下
の混合比)を添加し、更に乳鉢にてすり潰して均一に混
合した粒径1〜2μm程度の混合粉末(混合物)を作製
する。その後、この混合粉末を約2トン/cm2の圧力
で、YBaCuO超電導体からなる超電導体粒子とBi
23粒子が均一に混合した約10mm×5mm×1mm
の成形体(混合物)を形成する。図3に、この成形体の
要部概要を示す拡大断面図を示す。5はYBaCuO超
電導体からなる超電導体粒子を、7はBi23からなる
高抵抗材料の粒子を示す。
The oxide superconductor sintered body produced by the same method as in the first embodiment was ground in a mortar and weighed 1 to 5 μm.
After the powdery sintered body has a particle size of 1 μm
The following powdered Bi 2 O 3 (mixing ratio of 15 wt% or less based on the total amount) was added, and further ground in a mortar to uniformly mix to prepare a mixed powder (mixture) having a particle size of about 1 to 2 μm. . Thereafter, the mixed powder is mixed with a superconductor particle made of YBaCuO superconductor and Bi at a pressure of about 2 ton / cm 2.
Approximately 10 mm x 5 mm x 1 mm with 2 O 3 particles uniformly mixed
To form a molded product (mixture). FIG. 3 is an enlarged sectional view showing an outline of a main part of the molded body. Reference numeral 5 denotes superconductor particles made of a YBaCuO superconductor, and 7 denotes particles of a high-resistance material made of Bi 2 O 3 .

【0028】尚、YBaCuO超電導体粒子5、5・・
・からなる粉末焼結体は、共沈法以外の従来周知の方法
で形成してもよく、適宜変更可能である。
The YBaCuO superconductor particles 5, 5,...
May be formed by a conventionally well-known method other than the coprecipitation method, and can be appropriately changed.

【0029】続いて、電気炉内において、この成形体を
直径1mmのジルコニアからなる粒子を敷き詰めた上に
載置した状態で、酸素雰囲気中、例えば室温から900
〜940℃まで約3時間で昇温し、900〜940℃で
約3〜48時間保持した後、約100℃/hrで室温迄
徐冷して熱処理を行って熱処理成形体を得るのである。
即ち、この熱処理によって、成形体中のBi23粒子が
溶融されて酸化ビスマス溶融液になるので、結果的に、
YBaCuO超電導体からなる超電導体粒子がこの酸化
ビスマス溶液に浸漬されることになり、図2に示す構造
となる。
Subsequently, in an electric furnace, the compact is placed on a bed of particles made of zirconia having a diameter of 1 mm.
After raising the temperature to about 940 ° C. in about 3 hours, maintaining the temperature at 900 to 940 ° C. for about 3 to 48 hours, and gradually cooling to room temperature at about 100 ° C./hr, a heat treatment is performed to obtain a heat-treated molded body.
That is, by this heat treatment, the Bi 2 O 3 particles in the compact are melted to form a bismuth oxide melt, and as a result,
Superconductor particles made of a YBaCuO superconductor are immersed in this bismuth oxide solution, and the structure shown in FIG. 2 is obtained.

【0030】図4に混合比15wt%の示差熱分析、並
びその際の重量変化の測定結果を示す。この時の測定条
件は、温度の変化速度は10℃/min、試料重量は7
2.336mg、酸素ガス雰囲気(80ml/min)
である。
FIG. 4 shows the differential thermal analysis at a mixing ratio of 15 wt% and the measurement results of the weight change at that time. The measurement conditions at this time are as follows: the temperature change rate is 10 ° C./min, and the sample weight is 7
2.336mg, oxygen gas atmosphere (80ml / min)
It is.

【0031】この図から930℃で熱量変化(a)及び
重量変化(b)が起こっており、化学変化が顕著に起こ
っていることが判る。尚、この測定では熱電対の設定
上、試料温度は十数℃低くなるので、実際は940℃よ
り若干高い温度で化学反応が起こっているのである。こ
の結果、成形体を950℃(3時間保持)で熱処理を行
う場合、この成形体に超電導特性が出現しないのであ
る。又、成形体を900℃以下(48時間保持)で熱処
理を行う場合、この成形体は脆くなってしまい素子とし
て不都合となる。
From this figure, it can be seen that the calorie change (a) and the weight change (b) occur at 930 ° C., and that the chemical change is remarkable. In this measurement, the temperature of the sample is lowered by more than ten degrees Celsius due to the setting of the thermocouple, so that the chemical reaction actually occurs at a temperature slightly higher than 940 degrees Celsius. As a result, when the compact is heat-treated at 950 ° C. (holding for 3 hours), no superconducting properties appear in the compact. Further, when the molded body is subjected to a heat treatment at 900 ° C. or lower (held for 48 hours), the molded body becomes brittle, which is inconvenient as an element.

【0032】従って、YBaCuO超電導体からなる超
電導体粒子を酸化ビスマス溶液に浸漬するための熱処理
保持温度は、900℃より高い方が望ましく、且つ94
0℃以下の温度範囲で行う必要があることが判る。
Therefore, the heat treatment holding temperature for immersing the superconductor particles composed of the YBaCuO superconductor in the bismuth oxide solution is desirably higher than 900 ° C.
It can be seen that it is necessary to carry out in a temperature range of 0 ° C. or less.

【0033】図5〜図9に、混合粉末中のBi23の混
合比(Bi23/混合粉末の重量百分率)がそれぞれ
0、5、10、15、20wt%である該混合粉末から
作成された熱処理成形体(940℃で3時間保持)の抵
抗−温度特性を示す。
[0033] 5-9 (weight percentage of Bi 2 O 3 / powder mixture) the mixing ratio of Bi 2 O 3 in the mixed powder is the mixed powder is 0,5,10,15,20Wt% respectively 5 shows resistance-temperature characteristics of a heat-treated molded body (held at 940 ° C. for 3 hours) prepared from the above.

【0034】これらの図から、混合比0〜10wt%か
らの熱処理成形体は良好な超電導特性が得られ、更に混
合比15wt%でも臨界温度近傍で若干裾を引いている
ものの超電導特性に実用上問題がないことが判る。一
方、混合比20wt%からの熱処理成形体は明確な臨界
温度が見られず、良好な超電導特性が得られないことが
判る。従って、混合粉末中のBi23の混合比は、15
wt%以下でなければならない。
From these figures, it can be seen that the heat-treated molded body with a mixing ratio of 0 to 10 wt% has good superconducting properties, and even at a mixing ratio of 15 wt%, although it has a slight tail near the critical temperature, the superconducting properties are not practical. It turns out that there is no problem. On the other hand, in the heat-treated molded body with a mixing ratio of 20 wt%, a clear critical temperature is not seen, and it can be seen that good superconducting properties cannot be obtained. Therefore, the mixing ratio of Bi 2 O 3 in the mixed powder is 15
wt% or less.

【0035】また、図10に異なる混合比から作製され
る超電導膜とオンセット時での比抵抗ρの関係を示す。
FIG. 10 shows the relationship between the superconducting films formed from different mixing ratios and the specific resistance ρ at the time of onset.

【0036】この図から混合比が大きくなるほど比抵抗
ρ、即ち素子にした際の素子抵抗Rnが大きくなること
が判る。従って、実用可能な超電導特性を示す混合比が
15wt%以下のうち、大きい混合比のものから作製さ
れるジョセフソン素子の特性がより良好になるのであ
る。
From this figure, it can be seen that as the mixing ratio increases, the specific resistance ρ, that is, the element resistance Rn when the element is formed, increases. Therefore, the characteristics of the Josephson element manufactured from a mixture having a large mixture ratio out of the mixture ratio showing the practicable superconducting characteristics of 15 wt% or less are improved.

【0037】次に、上述のようにして得られた熱処理成
形体(熱処理保持温度:900℃より高く940℃以
下)を用いて第1実施例と同じ電磁波センサーを作成し
た。即ち、MgO、結晶化ガラス等の絶縁基板1上に前
記熱処理成形体を例えば融点400℃程度のPb系低融
点ガラスで溶融固化して、または樹脂等で接合した後、
該熱処理成形体を研摩し、所望の形状に加工して図1に
示す電磁波センサーが得られるのである。
Next, the same electromagnetic wave sensor as that of the first embodiment was prepared by using the heat-treated molded body obtained as described above (heat-treatment holding temperature: higher than 900 ° C. and lower than 940 ° C.). That is, after the heat-treated molded body is melt-solidified with, for example, a Pb-based low-melting glass having a melting point of about 400 ° C. on an insulating substrate 1 such as MgO or crystallized glass, or joined with a resin or the like,
The heat-treated molded body is polished and processed into a desired shape to obtain the electromagnetic wave sensor shown in FIG.

【0038】図11(a)と(b)にそれぞれ超電導膜
2(混合比15wt%)と比較例(混合比0wt%)の
SEM分析の結果を示す断面図を示す。
FIGS. 11A and 11B are sectional views showing the results of SEM analysis of the superconducting film 2 (mixing ratio: 15 wt%) and the comparative example (mixing ratio: 0 wt%), respectively.

【0039】このようにして形成された超電導膜は、図
11(a)に示す如く粒径数μmのYBaCuOを素材
とする超電導体粒子の間隙に厚み約1000Å以下の粒
界層が介在した形状になっている。
The superconducting film thus formed has a shape in which a grain boundary layer having a thickness of about 1000 mm or less is interposed between the gaps of the superconducting particles made of YBaCuO having a particle size of several μm as shown in FIG. It has become.

【0040】この粒界層6には、超電導体粒子YBaC
uOからのBaとBi23とが結合した高抵抗材料であ
るBiBaO2.77等のBi−Ba−O系酸化物が主に含
まれ、続いて、その超電導体粒子の存在する内側に一部
のBaの抜けたYBaCuO等(Y2Ba1Cu1X、C
uO及びY23)が、外側には高抵抗材料であるBi 2
3が順に多く構成していることが、X線分析より判明
した。
The grain boundary layer 6 includes superconductor particles YBaC
Ba and Bi from uOTwoOThreeIs a high-resistance material combined with
BiBaO2.77Bi-Ba-O-based oxides such as
Rare, followed by a part inside the presence of its superconductor particles
Such as YBaCuO (YTwoBa1Cu1OX, C
uO and YTwoOThree), But on the outside Bi, which is a high resistance material Two
OThreeX-ray analysis reveals that there are many components in order
did.

【0041】このような構成の超電導膜2は、超電導の
近接効果により、恰も粒界層をトンネル現象のように電
子が流れる状態となり、ジョセフソン接合を有するジョ
セフソン素子としての特性を示し、電磁波センサーのセ
ンサー部3として要求される特性を全て満たしている。
例えば、高抵抗材料からなる界面層を有しない従来の電
磁波センサーの素子抵抗Rn(50K)は0.1Ω程度
であるのに比べて、本実施例の電磁波センサーのRn
(50K)は混合比5wt%で0.2〜0.3Ωと改善
される。更に混合比10wt%ではRn(50K)が3
Ω程度と非常に高くなるので、素子と空間伝搬電磁波と
のインピーダンス損失の減少又は素子自体の電磁波検出
感度の向上により素子感度Rvが100V/Wと大きく
なり、GaAsショットキーからなる半導体センサ(3
00K)より特性が良好となるのである。更に、混合比
が大きい15wt%では、Rnが5〜13Ωと混合比1
0wt%よりRvが大きくなる。
The superconducting film 2 having such a structure has a state in which electrons flow as if by a tunneling phenomenon through the grain boundary layer due to the proximity effect of superconductivity, and exhibited characteristics as a Josephson element having a Josephson junction. It satisfies all the characteristics required for the sensor unit 3 of the sensor.
For example, the element resistance Rn (50K) of the conventional electromagnetic wave sensor having no interface layer made of a high-resistance material is about 0.1Ω, whereas the element resistance Rn of the electromagnetic wave sensor of the present embodiment is about 0.1Ω.
(50K) is improved to 0.2 to 0.3Ω at a mixing ratio of 5 wt%. Further, at a mixing ratio of 10 wt%, Rn (50K) becomes 3
Ω, the element sensitivity Rv increases to 100 V / W due to a reduction in impedance loss between the element and the space-propagating electromagnetic wave or an improvement in the electromagnetic wave detection sensitivity of the element itself, and a semiconductor sensor (3) made of GaAs Schottky.
00K), the characteristics are better. Further, at a high mixing ratio of 15 wt%, Rn is 5 to 13Ω and the mixing ratio is 1
Rv becomes larger than 0 wt%.

【0042】又、本実施例の超電導膜は熱処理保持温度
が900℃より高く940℃以下で熱処理を行っている
ので、第1実施例の超電導膜に比べて脆弱でないのでよ
り望ましい。
Since the superconducting film of this embodiment is heat-treated at a heat treatment holding temperature higher than 900 ° C. and not higher than 940 ° C., it is more preferable because it is not brittle as compared with the superconducting film of the first embodiment.

【0043】以上の説明においては超電導膜は、YBa
CuOの超電導体粒子の溶融酸化ビスマス溶液浸漬工程
及び徐冷工程を経て得られたバルクを所定の形状に切
断、研摩して形成するタイプ、あるいは、YBaCuO
の超電導体粒子とBi23粉末を混合し、成形工程、熱
処理工程及び徐冷工程を経て得られたバルクを、所定の
形状に切断、研摩して形成するタイプなど、所謂バルク
タイプについて説明したが、薄膜構成のものでも実現で
きる。
In the above description, the superconducting film is made of YBa
A type in which a bulk obtained through a immersion step and a slow cooling step of a molten bismuth oxide solution of superconducting particles of CuO is cut and polished into a predetermined shape, or YBaCuO
Description of the so-called bulk type, such as a type in which a superconductor particle is mixed with Bi 2 O 3 powder, and a bulk obtained through a molding step, a heat treatment step, and a slow cooling step is cut and polished into a predetermined shape to form the bulk. However, it can also be realized with a thin film configuration.

【0044】具体的には、MgO基板にYBaCuO薄
膜をマグネトロンスパッタ、イオンビームスパッタ、レ
ーザビームスパッタなどの方法で20μmの厚みで形成
した後、そのYBaCuO薄膜上にBi23の薄膜を種
々のスパッタリング法を用いて10〜20μmの厚みに
被着せしめ、900℃程度の熱処理を施すことによっ
て、図2に示すように粒径数μmのYBaCuOを素材
とする超電導体粒子5、5・・・の間隙に厚み約100
0Å、若しくはそれ以下の厚みのBi−Ba−O系酸化
物、Baの抜けたYBaCuO及びBi23等を主成分
とする高抵抗材料からなる粒界層6が形成された構成を
得ることができる。
More specifically, a YBaCuO thin film is formed on an MgO substrate to a thickness of 20 μm by a method such as magnetron sputtering, ion beam sputtering, or laser beam sputtering, and then a thin film of Bi 2 O 3 is formed on the YBaCuO thin film. By applying a heat treatment at about 900 ° C. by applying a thickness of 10 to 20 μm using a sputtering method, as shown in FIG. 2, the superconductor particles 5, 5. About 100
Obtaining a structure in which a grain boundary layer 6 made of a high-resistance material mainly composed of a Bi-Ba-O-based oxide having a thickness of 0 ° or less, YBaCuO and Bi 2 O 3 from which Ba has been removed, is obtained. Can be.

【0045】[第3実施例]次に、第3実施例の超電導
素子及びその製造方法について詳細に説明する。
[Third Embodiment] Next, a superconducting element of a third embodiment and a method of manufacturing the same will be described in detail.

【0046】第2実施例において、基板上に希土類酸化
物超電導体からなる超電導薄膜、高抵抗材料からなる高
抵抗膜を順次被着形成した後、熱処理を行って超電導体
粒子の界面に高抵抗材料を介在させてジョセフソン素子
等の超電導素子を形成する場合、熱処理時において高抵
抗材料が蒸発するので、超電導体粒子の界面に所望量の
高抵抗材料を介在させるためには、高抵抗膜の膜厚、熱
処理温度制御等の各種条件の設定が困難であるといった
問題がある。
In the second embodiment, a superconducting thin film made of a rare-earth oxide superconductor and a high-resistance film made of a high-resistance material are sequentially formed on a substrate, and then heat-treated to form a high-resistance film on the interface of the superconductor particles. When a superconducting element such as a Josephson element is formed with a material interposed, the high-resistance material evaporates during the heat treatment, so that a desired amount of the high-resistance material is interposed at the interface between the superconductor particles. It is difficult to set various conditions such as film thickness and heat treatment temperature control.

【0047】そこで、第3実施例では、熱処理時におけ
る高抵抗材料の蒸発を防ぎながら、薄膜形成された希土
類酸化物超電導体のその粒子界面に高抵抗材料を容易に
介在させることが可能な超電導素子の製造方法を説明す
る。図12に第3実施例に係わる超電導素子の製造工程
を示す。
Therefore, in the third embodiment, a superconducting material capable of easily interposing a high resistance material at the particle interface of a rare earth oxide superconductor formed as a thin film while preventing evaporation of the high resistance material during heat treatment. A method for manufacturing the device will be described. FIG. 12 shows a manufacturing process of the superconducting element according to the third embodiment.

【0048】最初に、上面が(100)結晶面となるM
gO基板又は上面が(110)結晶面となるSrTiO
3基板等の6mm×6mm×1mm程度の絶縁基板31
を準備する。
First, the M having the (100) crystal plane on the upper surface
gO substrate or SrTiO whose upper surface is a (110) crystal plane
Insulating substrate 31 of about 6 mm x 6 mm x 1 mm such as 3 substrates
Prepare

【0049】次に、図12(a)に示すように、金属マ
スクを介してイオンビームスパッタ法により前記絶縁基
板21上面に幅1mm、長さ5mm、厚さ300〜10
00Åで、例えば500Å厚程度の高抵抗材料であるB
23からなる高抵抗膜23を形成する。この成膜は、
所望の酸化ビスマスからなるターゲットを用い、例えば
Arガス圧:2×10-4Torr、基板温度:室温、成
膜速度:2000Å/hrの条件で行われる。
Next, as shown in FIG. 12A, a width of 1 mm, a length of 5 mm, and a thickness of 300 to 10 mm is formed on the upper surface of the insulating substrate 21 by ion beam sputtering through a metal mask.
B, which is a high resistance material having a thickness of about 500
A high resistance film 23 made of i 2 O 3 is formed. This film is
The target is made of a desired bismuth oxide target, for example, under the conditions of Ar gas pressure: 2 × 10 −4 Torr, substrate temperature: room temperature, and film formation rate: 2000 ° / hr.

【0050】続いて、図12(b)に示すように、前記
高抵抗膜23上にレジストをスピンコート法により塗布
し、直径約1μmで相互の間隔が約1μmである点状の
パターンをもつ金属マスクを介して露光・現像して、上
記高抵抗膜23上に例えば直径約1μmで相互の間隔が
約1μmである点状のレジストパターンを作成した後、
イオンビームエッチング法によりエッチングを行って、
高抵抗膜23を高抵抗材料が直径約1μmで相互の間隔
約1μmに分散配置された形状の高抵抗膜23sを形成
する。図13は、この分散配置された形状の高抵抗膜2
3sを示すの拡大図である。
Subsequently, as shown in FIG. 12B, a resist is applied on the high resistance film 23 by a spin coating method, and has a dot-like pattern having a diameter of about 1 μm and a mutual interval of about 1 μm. After exposing and developing through a metal mask, a dot-like resist pattern having a diameter of about 1 μm and an interval of about 1 μm is formed on the high-resistance film 23, for example,
Etching by ion beam etching method,
The high-resistance film 23s is formed of a high-resistance film 23s having a shape in which high-resistance materials are distributed about 1 μm in diameter and about 1 μm apart from each other. FIG. 13 shows the high-resistance film 2 having the distributed shape.
It is an enlarged view of 3s.

【0051】その後、図12(c)に示すように、電磁
波センサーの形状に対応したマスクを介してイオンビー
ムスパッタ法により高抵抗膜23s上にYBaCuOか
らなる0.3〜1μm厚程度、例えば0.5μm厚の超
電導薄膜22を形成して素子ウエハー24を形成する。
この成膜は、YBa2Cu4.57-xからなるターゲット
を用い、例えば全ガス圧比:2×10-4Torr(流量
比、Arガス:O2ガス=2:1) 、基板温度:670
〜700℃、成膜速度:2000Å/hrの条件で作成
される。尚、上記高抵抗膜と超電導薄膜の膜厚の値等は
超電導特性と素子抵抗が良好であるYBaCuOとBi
23との混合比の範囲となるように適宜選択してよい。
Thereafter, as shown in FIG. 12 (c), about 0.3 to 1 μm thick, for example, 0 to 1 μm of YBaCuO is formed on the high resistance film 23s by ion beam sputtering through a mask corresponding to the shape of the electromagnetic wave sensor. An element wafer 24 is formed by forming a superconducting thin film 22 having a thickness of 0.5 μm.
For this film formation, a target made of YBa 2 Cu 4.5 O 7-x is used, for example, a total gas pressure ratio: 2 × 10 −4 Torr (flow rate ratio, Ar gas: O 2 gas = 2: 1), and a substrate temperature: 670.
It is formed under the conditions of -700 ° C. and a film forming rate of 2000 ° / hr. The values of the thicknesses of the high-resistance film and the superconducting thin film are determined based on YBaCuO and Bi having good superconducting characteristics and element resistance.
It may be appropriately selected so as to be in the range of the mixing ratio with 2 O 3 .

【0052】上述のように形成された素子ウエハー24
は、電気炉内において、酸素雰囲気中、例えば室温から
所定の温度まで約3時間で昇温し、この温度で約3〜5
時間保持した後、約100℃/hrで室温迄徐冷する。
この場合、所定の温度とは、Bi23の融点(817
℃)より高く、反応が起こって超電導特性が失われる温
度より低い温度(940℃)である。この熱処理によっ
て、高抵抗膜23を構成するBi23が溶融されて酸化
ビスマス溶液になるので、YBaCuO超電導体粒子が
この酸化ビスマス溶液に浸漬されて超電導薄膜22が得
られるのである。
The element wafer 24 formed as described above
Is heated in an electric furnace in an oxygen atmosphere, for example, from room temperature to a predetermined temperature in about 3 hours.
After holding for a time, it is gradually cooled to room temperature at about 100 ° C./hr.
In this case, the predetermined temperature is the melting point of Bi 2 O 3 (817
° C) and lower than the temperature at which the reaction takes place and the superconductivity is lost (940 ° C). By this heat treatment, Bi 2 O 3 constituting the high-resistance film 23 is melted into a bismuth oxide solution, so that the YBaCuO superconductor particles are immersed in the bismuth oxide solution, and the superconducting thin film 22 is obtained.

【0053】尚、このように薄膜形成法によって超電導
膜を形成する場合、Bi23の融点から940℃までの
範囲で熱処理を行ってもよいが、超電導薄膜が剥離する
惧れがあるので、上限を940℃より20℃程度低い温
度までの範囲で、特に超電導粒子が粒成長して抵抗が小
さくなる惧れのない900℃以下の温度で熱処理を行う
のが望ましい。
When the superconducting film is formed by the thin film forming method as described above, heat treatment may be performed in the range from the melting point of Bi 2 O 3 to 940 ° C., but the superconducting thin film may be peeled off. It is preferable to perform the heat treatment at an upper limit in a range from 940 ° C. to a temperature lower by about 20 ° C., particularly at a temperature of 900 ° C. or less, at which there is no fear that the superconducting particles grow and reduce the resistance.

【0054】続いて、熱処理を行った素子ウエハー24
を所定の形状に切断して図1に示す電磁波センサーを作
成する。
Subsequently, the heat-treated element wafer 24
Is cut into a predetermined shape to produce the electromagnetic wave sensor shown in FIG.

【0055】ここで、上記高抵抗膜を構成するBi23
は、その溶融液が温度の低下に従って酸素含有量が減少
し、即ち酸素を外部に供給する性質を有しており、また
融点はYBaCuOが1000℃以上であるのに対し8
17℃であり、また電気伝導度は、YBaCuOが10
0〜1000S/cm(比抵抗:10-3〜10-2Ω・c
m)に比べて、1.6×10-4S/cm(比抵抗:62
50Ω・cm)と低いという特性をもつ。従って、高抵
抗材料が溶融されて作成される溶融液が少なくとも超電
導体界面で反応する時以外は少なくとも酸素を奪取しな
いため、酸化物超電導体の組成は変わらず、又、高抵抗
材料が溶融される際に、超電導体は溶融されないので、
酸化物超電導体の構造も変わらないので、超電導特性は
損なわれない。更に、高抵抗材料は電気伝導度が低く、
超電導素子の粒界層を構成する材料として適しているの
である。
Here, Bi 2 O 3 forming the high resistance film is used.
Has the property that the oxygen content of the melt decreases as the temperature decreases, that is, oxygen is supplied to the outside. The melting point of YBaCuO is higher than 1000 ° C.
17 ° C., and the electric conductivity was 10% for YBaCuO.
0 to 1000 S / cm (specific resistance: 10 -3 to 10 -2 Ω · c
1.6 × 10 −4 S / cm (specific resistance: 62)
(50 Ω · cm). Therefore, since the molten liquid created by melting the high-resistance material does not take at least oxygen except at least when reacting at the superconductor interface, the composition of the oxide superconductor does not change, and the high-resistance material is melted. The superconductor is not melted when
Since the structure of the oxide superconductor does not change, the superconductivity is not impaired. Furthermore, high resistance materials have low electrical conductivity,
It is suitable as a material constituting a grain boundary layer of a superconducting element.

【0056】このようにして形成された超電導膜22
は、図2に示すように粒径数μmのYBaCuOを素材
とする超電導体粒子5、5・・・の間隙に高抵抗材料の
粒界層6としてのBi23、超電導体YBaCuOのB
aとBi23が結合したBiBaO2.77等のBi−Ba
−O系酸化物及びYBaCuOのBaが抜けたYBaC
uOが主に介在された構成である。このような構成の超
電導膜2は、超電導体と常電導体が多数接合する粒界結
合型のジョセフソン接合を有するジョセフソン素子とし
ての特性を示し、電磁波センサーのセンサー部3として
素子抵抗Rnが10Ω程度、素子感度Rvが1000V
/W程度の良好な特性になるのである。
The superconducting film 22 thus formed
As shown in FIG. 2, Bi 2 O 3 as a grain boundary layer 6 of a high-resistance material and B of superconductor YBaCuO are interposed between gaps of superconductor particles 5 made of YBaCuO having a particle size of several μm.
Bi-Ba such as BiBaO 2.77 in which a is bonded to Bi 2 O 3
-O-based oxide and YBaC from which Ba of YBaCuO is removed
In this configuration, uO is mainly interposed. The superconducting film 2 having such a configuration exhibits characteristics as a Josephson element having a grain boundary coupling type Josephson junction in which a large number of superconductors and normal conductors are joined, and the element resistance Rn is used as the sensor unit 3 of the electromagnetic wave sensor. About 10Ω, element sensitivity Rv is 1000V
/ W.

【0057】尚、高抵抗材料が分散配置された高抵抗膜
23sは、高抵抗材料が不均一に分散されていても効果
があるが、上記実施例のように均一に分散されている方
が、熱処理時に高抵抗材料の溶融液が超電導薄膜により
均一に拡散されるので望ましい。又、分散された高抵抗
材料は円形点状でなくともよく、適宜変更でき、例えば
メッシュ状でもよい。
The high-resistance film 23s in which the high-resistance material is dispersed is effective even if the high-resistance material is non-uniformly dispersed. However, it is preferable that the high-resistance material is uniformly dispersed as in the above embodiment. This is desirable because the melt of the high-resistance material is uniformly diffused by the superconducting thin film during the heat treatment. Further, the dispersed high-resistance material does not have to have a circular dot shape, but can be changed as appropriate. For example, a mesh shape may be used.

【0058】又、高抵抗膜23に超電導薄膜を直接形成
するようにしてもよいが、上述のように高抵抗膜を高抵
抗材料が分散配置された形状にすると、熱処理時に酸化
ビスマス溶融液が超電導薄膜中に放射状に拡散して超電
導体粒子が均一に浸漬されるので望ましく、又主に基板
の表面に超電導薄膜が形成できるので、超電導特性の劣
化を抑えることができ、更に超電導体と高抵抗材料を所
望の混合比にするのに、高抵抗膜23に比べて、分散配
置された形状の高抵抗膜23sは膜厚を厚くできるの
で、膜厚制御が容易になるので望ましい。
Further, a superconducting thin film may be directly formed on the high-resistance film 23. However, if the high-resistance film has a shape in which the high-resistance material is dispersed as described above, the bismuth oxide melt during heat treatment is formed. Desirably, the superconducting particles are diffused radially into the superconducting thin film so that the superconducting particles are uniformly immersed. Also, since the superconducting thin film can be formed mainly on the surface of the substrate, deterioration of the superconducting characteristics can be suppressed, and furthermore, the superconducting material and In order to make the resistance material a desired mixing ratio, the high resistance film 23s in the form of being dispersed and arranged can be made thicker than the high resistance film 23, so that the film thickness can be easily controlled.

【0059】上記実施例では、基板として絶縁基板を用
いたが、超電導体からなる基板上に絶縁膜を形成したも
のを用いてもよく、適宜変更が可能である。
In the above embodiment, the insulating substrate is used as the substrate. However, an insulating film formed on a substrate made of a superconductor may be used and can be appropriately changed.

【0060】又、高抵抗膜及び超電導薄膜の成膜方法
は、上記スパッタリング法に限らず、MOCVD法、C
VD法、又は蒸着法等の各種薄膜形成技術を適宜用いる
ことができ、更に、高抵抗材料及び超電導体の粉末をそ
れぞれ分散させたペーストをスクーリン印刷・焼成して
形成してもよく、適宜変更可能である。
The method for forming the high-resistance film and the superconducting thin film is not limited to the sputtering method, but may be MOCVD, C
Various thin film forming techniques such as a VD method or a vapor deposition method can be used as appropriate, and a paste in which a high-resistance material and a superconductor powder are dispersed may be formed by screen printing and firing, or may be changed as appropriate. It is possible.

【0061】本発明の超電導素子の製造方法では、高抵
抗材料からなる高抵抗膜上に超電導薄膜を形成するの
で、熱処理時に溶融又は蒸発する高抵抗材料は超電導薄
膜を構成する超電導体粒子の界面に被着され、超電導膜
から高抵抗材料の蒸発等を防止できる。この結果、高抵
抗な界面層を容易に形成できるのである。特に、この高
抵抗膜を高抵抗材料が分散配置された形状にすると高抵
抗材料が超電導薄膜中に均一に拡散されるので望まし
い。
In the method for manufacturing a superconducting element according to the present invention, a superconducting thin film is formed on a high-resistance film made of a high-resistance material. To prevent evaporation of the high-resistance material from the superconducting film. As a result, a high-resistance interface layer can be easily formed. In particular, it is desirable to form the high-resistance film into a shape in which the high-resistance material is dispersed, since the high-resistance material is uniformly diffused into the superconducting thin film.

【0062】[第4実施例]次に、第4実施例の超電導
素子及びその製造方法について詳細に説明する。
[Fourth Embodiment] Next, a superconducting element of a fourth embodiment and a method of manufacturing the same will be described in detail.

【0063】第4実施例では、薄膜構成からなる他の具
体的な構造例として、図14に示す如く、(1)基板の
ステップエッジを利用したSEJJ(図14(a))、
(2)異なる結晶方位の結晶を接合したバイクリスタル
JJ(図14(b))、(3)多粒界GBJJ(図14
(c))、などのブリッジ部分の保護膜としての効果を
得るBi23薄膜を使用した構造の超電導素子及びその
製造方法について説明する。
In the fourth embodiment, as another specific structural example having a thin film structure, as shown in FIG. 14, (1) SEJJ using a step edge of a substrate (FIG. 14A),
(2) Bicrystal JJ in which crystals having different crystal orientations are joined (FIG. 14B), and (3) Multi-grain boundary GBJJ (FIG. 14)
(C)) A superconducting element having a structure using a Bi 2 O 3 thin film which can provide an effect as a protective film for a bridge portion as described above, and a method of manufacturing the same will be described.

【0064】電磁波センサやSQUID用の素子に応用
される酸化物超電導体からなるブリッジ型ジョセフソン
薄膜素子の劣化原因として、人工粒界領域等における酸
素欠損、不純物吸着、あるいは、ヒートサイクルによる
クラック発生が考えられる。
As a cause of deterioration of the bridge type Josephson thin film element composed of an oxide superconductor applied to an electromagnetic wave sensor or an element for SQUID, oxygen deficiency, impurity adsorption, or crack generation due to a heat cycle in an artificial grain boundary region or the like. Can be considered.

【0065】ここで、保護膜として用いるBi23は、
1)超電導体粒子に酸素を供給するか、若しくは超電導
体粒子から酸素を奪取しないこと、2)電気伝導度が上
記希土類元素系酸化物超電導体のそれより低いこと。の
諸条件を満たす材料であるため、クラックの発生しやす
いブリッジ部分を覆うようにこのBi23の薄膜を上述
の手法により形成すると、例えばブリッジ部分における
酸素の膜外放出を阻止でき、Ic(臨界電流)、Tc
(臨界温度)、Rn(素子抵抗)の低下に現れるブリッ
ジ型ジョセフソン薄膜素子の素子特性の劣化を防止する
ことができる。
Here, Bi 2 O 3 used as a protective film is
1) Supplying oxygen to the superconductor particles or not taking oxygen from the superconductor particles; 2) Electric conductivity is lower than that of the rare earth element-based oxide superconductor. Therefore, if this Bi 2 O 3 thin film is formed by the above-described method so as to cover a bridge portion where cracks are likely to occur, it is possible to prevent, for example, the out-of-film release of oxygen at the bridge portion, and Ic (Critical current), Tc
(Critical temperature) and deterioration of element characteristics of the bridge type Josephson thin film element, which are caused by a decrease in Rn (element resistance).

【0066】図14にブリッジ型ジョセフソン薄膜素子
のブリッジ部における保護膜としての効果を得ることの
できる具体例を示す。
FIG. 14 shows a specific example in which an effect as a protective film in a bridge portion of a bridge type Josephson thin film element can be obtained.

【0067】まず、第1実施例と同様の方法により、Y
BaCuOからなる酸化物超電導体を用いて、1500
〜2000Åの厚さのブリッジ型ジョセフソン薄膜素子
32、42、52を基板31、41、51上に形成す
る。続いて、この素子のセンサー部となるブリッジ部に
Bi23膜33、43、53からなる保護膜を形成す
る。Bi23膜はRFマグネトロン又はイオンビームス
パッタリング等により、超電導体YBaCuO膜上の酸
素欠損、及びクラックの発生しやすいブリッジ部分等所
望の領域に、成膜基板温度を室温で積層形成する。室温
で成膜することで、下地のYBaCuO膜表面からの酸
素欠損を最低限に抑え、又成膜時のBi23の蒸発を防
ぐこともできる。この時、Bi23膜の膜厚は、500
Å程度に制御して積層する。この膜厚は、熱膨張係数の
差による応力を無視できる程度のものである。
First, in the same manner as in the first embodiment, Y
Using an oxide superconductor made of BaCuO, 1500
Bridge-type Josephson thin-film devices 32, 42, and 52 having a thickness of about 2000 mm are formed on the substrates 31, 41, and 51. Subsequently, a protective film composed of Bi 2 O 3 films 33, 43 and 53 is formed on a bridge portion serving as a sensor portion of this element. The Bi 2 O 3 film is formed by RF magnetron or ion beam sputtering or the like at a room temperature of a film forming substrate at a desired area such as a bridge portion where oxygen vacancies and cracks are easily generated on the superconductor YBaCuO film. By forming the film at room temperature, oxygen vacancies from the surface of the underlying YBaCuO film can be minimized, and evaporation of Bi 2 O 3 during film formation can be prevented. At this time, the thickness of the Bi 2 O 3 film is 500
制 御 Laminate by controlling to about. This film thickness is such that the stress due to the difference in thermal expansion coefficient can be ignored.

【0068】図14(a)は、結晶方向(100)のM
gO等からなるステップ状の基板31に結晶方向(00
1)のYBaCuOからなるジョセフソン素子32を形
成したの場合(SEJJ)であり、その斜視図(a1)
とそのII−II’断面図(a2)を示す。このステップの
エッジ部分eに異なる結晶方位の接合部が形成される。
従来、この接合部の粒界部分fに酸素欠損等の欠陥が多
く生じていた。この部分にBi23膜33を設けると、
この膜は、超電導体粒子に酸素を供給するか、若しくは
超電導体粒子から酸素を奪取しない材料により構成され
ているため、酸化物超電導体の酸素欠損を抑制し、その
結果、ジョセフソン素子の素子特性の劣化を防ぐことが
できる。
FIG. 14A shows the M direction in the crystal direction (100).
The crystallographic direction (00) is applied to the step-shaped substrate 31 made of gO or the like.
1) The case where the Josephson element 32 made of YBaCuO is formed (SEJJ), and its perspective view (a1).
And its II-II 'sectional view (a2) are shown. A junction having a different crystal orientation is formed at the edge portion e of this step.
Conventionally, many defects such as oxygen deficiency have occurred in the grain boundary portion f of this joint. When the Bi 2 O 3 film 33 is provided in this portion,
Since this film is made of a material that does not supply oxygen to the superconductor particles or does not deprive the superconductor particles of oxygen, oxygen deficiency of the oxide superconductor is suppressed, and as a result, the element of the Josephson element Deterioration of characteristics can be prevented.

【0069】図14(b)は、平坦な基板41上の異な
る結晶方位h,lを有するYBaCuO膜42を接合し
た人工粒界に適用した場合(バイクリスタルJJ)であ
り、その断面図を示す。やはりこの場合もこの粒界部分
bに酸素欠損等の欠陥が生じやすい。しかし、この部分
にBi23膜43を設けることで、同様に超電導素子の
劣化を防ぐことができる。
FIG. 14B is a cross-sectional view of a case where the YBaCuO film 42 having different crystal orientations h and l on a flat substrate 41 is applied to an artificial grain boundary (bicrystal JJ). . Also in this case, defects such as oxygen vacancies are likely to occur in the grain boundary portion b. However, by providing the Bi 2 O 3 film 43 in this portion, similarly, the deterioration of the superconducting element can be prevented.

【0070】図14(c)は、基板51上のYBaCu
Oからなるグラニュラ超電導体(多粒界GBJJ)によ
り形成された超電導素子52上にBi23膜53を保護
膜として形成した場合であり、その平面図を示す。この
場合も、グラニュラ超電導体の粒界における酸素欠損を
防ぎ、同様に超電導素子の劣化を防ぐことができる。
FIG. 14C shows the YBaCu on the substrate 51.
This is a plan view in which a Bi 2 O 3 film 53 is formed as a protective film on a superconducting element 52 formed by a granular superconductor made of O (multi-grain boundary GBJJ). Also in this case, oxygen deficiency at the grain boundary of the granular superconductor can be prevented, and similarly, deterioration of the superconducting element can be prevented.

【0071】このように、第4実施例においてBi23
膜等の高抵抗膜を超電導素子の酸素欠損による劣化を防
止する保護膜として用いる場合、酸化物超電導体はYB
aCuOなど希土類元素系酸化物超電導体に限らず、B
i系(Bi2Sr2Ca1Cu2X等)、あるいはTl系
(Tl2Ba2Ca2Cu3X等)の場合においても、同
様の超電導素子の劣化を防ぐ効果が得られる。
As described above, in the fourth embodiment, Bi 2 O 3
When a high-resistance film such as a film is used as a protective film for preventing deterioration of a superconducting element due to oxygen deficiency, the oxide superconductor is made of YB
aCuO and other rare-earth oxide superconductors
i based (Bi 2 Sr 2 Ca 1 Cu 2 O X , etc.), or even in the case of Tl system (Tl 2 Ba 2 Ca 2 Cu 3 O X , etc.), the effect of preventing the deterioration of the same superconductive element is obtained.

【0072】以上、第1〜4実施例では、超電導体粒子
としてYBaCuOを用いたが、YBaCuOに限るこ
となく、Yを他の希土類元素に代えたEuBaCuO、
HoBaCuO、ErBaCuOなどの種々の希土類元
素系酸化物超電導体を適宜用いることができる。
As described above, in the first to fourth embodiments, YBaCuO is used as the superconductor particles. However, the present invention is not limited to YBaCuO, but EuBaCuO, in which Y is replaced with another rare earth element,
Various rare earth element-based oxide superconductors such as HoBaCuO and ErBaCuO can be used as appropriate.

【0073】又、高抵抗材料として、第1〜4実施例で
用いたBi23以外に、MoO3も用いられる。このM
oO3も金属の酸化物であってYBaCuOからの酸素
の奪取はなく、融点は795℃、又、電気伝導度は約
1.0×10-4S/cmであり、高抵抗材料に適してい
る。更に、Bi23、MoO3以外に、SbO、Pb
O、B23、PtO2等も同様に高抵抗材料として用い
ることができるであろう。
As a high resistance material, MoO 3 is used in addition to Bi 2 O 3 used in the first to fourth embodiments. This M
oO 3 is also a metal oxide, does not take oxygen from YBaCuO, has a melting point of 795 ° C., and an electric conductivity of about 1.0 × 10 −4 S / cm, and is suitable for high-resistance materials. I have. Further, in addition to Bi 2 O 3 and MoO 3 , SbO, Pb
O, B 2 O 3 , PtO 2, etc. could also be used as high resistance materials as well.

【0074】本発明の超電導素子の製造方法は、上記電
磁波センサーに限らず、SQUID等の他のジョセフソ
ン素子、更にはボロメータ等の他の超電導素子にも使用
できる。
The method for manufacturing a superconducting element of the present invention is not limited to the above-mentioned electromagnetic wave sensor, but can be used for other Josephson elements such as SQUIDs and also for other superconducting elements such as bolometers.

【0075】[0075]

【発明の効果】本発明の超電導素子及びその製造方法に
よれば、酸化物超電導体からなる基体上の所望の領域に
下記の条件を満たす原材料からなる高抵抗膜を積層形成
したことを特徴とする超電導素子、 1)希土類元素系酸化物超電導体粒子に酸素を供給する
か、若しくは超電導体粒子から酸素を奪取しないこと、 2)電気伝導度が上記希土類元素系酸化物超電導体のそ
れより低いこと、であり、上記原材料がBi23である
ので、高い粒子間抵抗値を示すジョセフソン素子が提供
され、数十GHzから数THzの超高周波帯の電磁波を
検出する高感度電磁波センサーを実現することができ
る。
According to the superconducting element and the method of manufacturing the same of the present invention, a high-resistance film made of a raw material satisfying the following conditions is laminated on a desired region on a substrate made of an oxide superconductor. 1) Supplying oxygen to the rare earth element-based oxide superconductor particles or not taking oxygen from the superconductor particles; 2) Electric conductivity lower than that of the rare earth element-based oxide superconductor Since the raw material is Bi 2 O 3 , a Josephson element exhibiting a high interparticle resistance is provided, and a high-sensitivity electromagnetic wave sensor for detecting an electromagnetic wave in an ultrahigh frequency band of several tens of GHz to several THz is provided. Can be realized.

【0076】又、本発明の超電導素子の製造方法によれ
ば、高抵抗材料からなる高抵抗膜上に超電導薄膜を形成
することで、熱処理時に溶融又は蒸発する高抵抗材料は
超電導薄膜を構成する超電導体粒子の界面に被着されて
高抵抗な界面層を容易に形成できる。
According to the method for manufacturing a superconducting element of the present invention, a superconducting thin film is formed on a high-resistance film made of a high-resistance material, so that the high-resistance material that melts or evaporates during heat treatment constitutes the superconducting thin film. A high-resistance interface layer that is adhered to the interface of the superconductor particles can be easily formed.

【0077】さらに、本発明の超電導素子の製造方法に
よれば、Bi23の薄膜をブリッジ型ジョセフソン薄膜
素子のブリッジ部分の保護膜として用いることで、素子
の劣化を防ぐことができる。
Further, according to the method for manufacturing a superconducting element of the present invention, deterioration of the element can be prevented by using the Bi 2 O 3 thin film as a protective film for the bridge portion of the bridge type Josephson thin film element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の超電導素子のの構造を示す斜
視図である。
FIG. 1 is a perspective view showing a structure of a superconducting element according to an embodiment of the present invention.

【図2】本発明の超電導素子の要部概要を示す拡大断面
図である。
FIG. 2 is an enlarged sectional view showing an outline of a main part of a superconducting element of the present invention.

【図3】本発明の第2実施例に係わる超電導素子の製造
工程の要部概要を示す拡大断面図である。
FIG. 3 is an enlarged sectional view showing an outline of a main part of a manufacturing process of a superconducting element according to a second embodiment of the present invention.

【図4】本発明に係わる超電導膜の示差熱分析及びその
質量変化を示す図である。
FIG. 4 is a diagram showing a differential thermal analysis of a superconducting film according to the present invention and a change in mass thereof.

【図5】本発明の比較例の超電導膜の抵抗−温度特性の
関係を示す図である。
FIG. 5 is a diagram showing a relationship between resistance and temperature characteristics of a superconducting film of a comparative example of the present invention.

【図6】本発明に係わる超電導膜の抵抗−温度特性の関
係を示す図である。
FIG. 6 is a diagram showing a relationship between resistance and temperature characteristics of a superconducting film according to the present invention.

【図7】本発明に係わる超電導膜の抵抗−温度特性の関
係を示す図である。
FIG. 7 is a diagram showing a resistance-temperature characteristic relationship of a superconducting film according to the present invention.

【図8】本発明に係わる超電導膜の抵抗−温度特性の関
係を示す図である。
FIG. 8 is a diagram showing a relationship between resistance-temperature characteristics of a superconducting film according to the present invention.

【図9】本発明に係わる超電導膜の抵抗−温度特性の関
係を示す図である。
FIG. 9 is a diagram showing a resistance-temperature characteristic relationship of a superconducting film according to the present invention.

【図10】本発明に係わる超電導膜の比抵抗とBi23
の添加量の関係を示す図である。
FIG. 10 shows the specific resistance and Bi 2 O 3 of the superconducting film according to the present invention.
It is a figure which shows the relationship of the addition amount of.

【図11】本発明に係わる超電導膜と比較例の断面を示
す図である。
FIG. 11 is a diagram showing a cross section of a superconducting film according to the present invention and a comparative example.

【図12】本発明の第3実施例に係わる超電導素子の製
造工程を示す工程図である。
FIG. 12 is a process chart showing a manufacturing process of a superconducting element according to a third embodiment of the present invention.

【図13】本発明の第3実施例に係わる高抵抗膜の分散
配置を示す拡大図である。
FIG. 13 is an enlarged view showing a distributed arrangement of high-resistance films according to a third embodiment of the present invention.

【図14】本発明の第4実施例に係わる超電導素子の構
造を示す図である。
FIG. 14 is a view showing a structure of a superconducting element according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 超電導膜 3 センサー部 5 超電導体粒子 6 粒界層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Superconducting film 3 Sensor part 5 Superconducting particle 6 Grain boundary layer

フロントページの続き (51)Int.Cl.7 識別記号 FI C23C 14/08 H01B 12/06 ZAA H01B 12/06 ZAA H01L 39/22 ZAAD H01L 39/22 ZAA C04B 35/00 ZAA (56)参考文献 特開 平1−215007(JP,A) 特開 平2−192402(JP,A) 特開 昭64−10676(JP,A) 特開 平1−138770(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 39/24 C01G 1/00 C01G 3/00 C04B 35/00 C23C 14/06 C23C 14/08 H01B 12/06 H01L 39/22 H01L 39/02 H01L 39/00 Continued on the front page (51) Int.Cl. 7 Identification symbol FI C23C 14/08 H01B 12/06 ZAA H01B 12/06 ZAA H01L 39/22 ZAAD H01L 39/22 ZAA C04B 35/00 ZAA (56) References Features JP-A-1-215007 (JP, A) JP-A-2-192402 (JP, A) JP-A-64-10676 (JP, A) JP-A-1-138770 (JP, A) (58) Int.Cl. 7 , DB name) H01L 39/24 C01G 1/00 C01G 3/00 C04B 35/00 C23C 14/06 C23C 14/08 H01B 12/06 H01L 39/22 H01L 39/02 H01L 39/00

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化物超電導体からなる基体上の所望の
領域に下記の条件を満たす原材料からなる高抵抗膜を積
層形成したことを特徴とする超電導素子、 1)希土類元素系酸化物超電導体粒子に酸素を供給する
か、若しくは超電導体粒子から酸素を奪取しないこと、 2)電気伝導度が上記希土類元素系酸化物超電導体のそ
れより低いこと、であり、 上記原材料がBi23であることを特徴とする超電導素
子。
1. A superconducting element characterized in that a high resistance film made of a raw material satisfying the following conditions is laminated on a desired region on a substrate made of an oxide superconductor. 1) A rare earth element-based oxide superconductor Supplying oxygen to the particles or not depriving the superconducting particles of oxygen; 2) electric conductivity is lower than that of the rare earth oxide superconductor; and the raw material is Bi 2 O 3 . A superconducting element, comprising:
【請求項2】 希土類元素系酸化物超電導体粒子間の粒
界に高抵抗材料からなる粒界層を介在させる超電導素子
の製造方法であつて、該希土類元素系酸化物超電導体粒
子を、それが溶融しない温度下において、下記の条件を
満たす原材料の溶融液に浸漬する工程と、徐冷する工程
と、を順に備えたことを特徴とする超電導素子の製造方
法、 1)超電導体粒子に酸素を供給するか、若しくは超電導
体粒子から酸素を奪取しないこと、 2)融点が上記希土類元素系酸化物超電導体のそれより
低いこと、 3)電気伝導度が上記希土類元素系酸化物超電導体のそ
れより低いこと。
2. A method for manufacturing a superconducting element in which a grain boundary layer made of a high-resistance material is interposed at a grain boundary between rare earth element-based oxide superconductor particles, the method comprising the steps of: A method of manufacturing a superconducting element, comprising: a step of immersing in a melt of a raw material satisfying the following conditions at a temperature at which the superconducting particles do not melt; 2) the melting point is lower than that of the rare earth oxide superconductor, and 3) the electric conductivity of the rare earth oxide superconductor. Lower.
【請求項3】 希土類元素系酸化物超電導体粒子間の粒
界に高抵抗材料からなる粒界層を介在させる超電導素子
の製造方法であつて、基板上に下記の条件を満たす原材
料からなる高抵抗膜と該希土類元素系酸化物超電導体か
らなる超電導薄膜とを順次積層形成する工程と、該希土
類元素系酸化物超電導体粒子が溶融しない温度下におい
て熱処理する工程と、徐冷する工程と、を順に備えたこ
とを特徴とする超電導素子の製造方法、 1)希土類元素系酸化物超電導体粒子に酸素を供給する
か、若しくは超電導体粒子から酸素を奪取しないこと、 2)融点が上記希土類元素系酸化物超電導体のそれより
低いこと、 3)電気伝導度が上記希土類元素系酸化物超電導体のそ
れより低いこと。
3. A method of manufacturing a superconducting element in which a grain boundary layer made of a high-resistance material is interposed at a grain boundary between rare-earth-element-based oxide superconductor particles, comprising a substrate made of a raw material satisfying the following conditions. A step of sequentially laminating a resistive film and a superconducting thin film made of the rare-earth element-based oxide superconductor, a step of performing a heat treatment at a temperature at which the rare-earth-based oxide superconductor particles do not melt, and a step of gradually cooling; A) a method for manufacturing a superconducting element, which comprises: 1) supplying oxygen to the rare earth element-based oxide superconductor particles or not removing oxygen from the superconductor particles; and 2) melting point of the rare earth element. 3) The electric conductivity is lower than that of the rare earth oxide superconductor.
【請求項4】 上記高抵抗膜は上記原材料を分散配置し
た形状であることを特徴とする請求項3記載の超電導素
子の製造方法。
4. The method according to claim 3, wherein the high resistance film has a shape in which the raw materials are dispersed.
【請求項5】 上記原材料がBi23であることを特徴
とする請求項2、3又は4記載の超電導素子の製造方
法。
5. The method according to claim 2, wherein said raw material is Bi 2 O 3 .
【請求項6】 上記希土類元素系酸化物超電導体粒子が
上記原材料の溶融液に浸漬される温度、及び上記熱処理
の工程において上記原材料が溶融状態となる温度が、9
00℃より高く且つ940℃以下であることを特徴とす
る請求項2、3、4又は5記載の超電導素子の製造方
法。
6. A temperature at which the rare-earth-element-based oxide superconductor particles are immersed in a melt of the raw material, and a temperature at which the raw material is in a molten state in the heat treatment step is 9.
The method for producing a superconducting element according to claim 2, wherein the temperature is higher than 00 ° C and equal to or lower than 940 ° C.
【請求項7】 上記原材料と上記希土類元素系酸化物超
電導体の総量に対する上記原材料の混合比が、0wt%
を含まず、15wt%以下であることを特徴とする請求
項2、3、4、5又は6記載の超電導素子の製造方法。
7. A mixing ratio of the raw material to the total amount of the raw material and the rare earth oxide superconductor is 0 wt%.
7. The method for manufacturing a superconducting element according to claim 2, wherein the content is not more than 15 wt%.
JP03336896A 1991-07-10 1991-12-19 Superconducting element and manufacturing method thereof Expired - Lifetime JP3059806B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP16980191 1991-07-10
JP25387391 1991-10-01
JP3-253873 1991-10-28
JP3-169801 1991-10-28
JP28155791 1991-10-28
JP3-281557 1991-10-28

Publications (2)

Publication Number Publication Date
JPH05183208A JPH05183208A (en) 1993-07-23
JP3059806B2 true JP3059806B2 (en) 2000-07-04

Family

ID=27323240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03336896A Expired - Lifetime JP3059806B2 (en) 1991-07-10 1991-12-19 Superconducting element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3059806B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100983818B1 (en) * 2009-09-02 2010-09-27 한국전자통신연구원 Resistive materials for bolometer, bolometer for infrared detector using the materials, and method for preparing the same
JP6991330B2 (en) * 2018-06-26 2022-02-03 三菱電機株式会社 Electromagnetic wave detector and electromagnetic wave detector array

Also Published As

Publication number Publication date
JPH05183208A (en) 1993-07-23

Similar Documents

Publication Publication Date Title
US4316785A (en) Oxide superconductor Josephson junction and fabrication method therefor
JP2907832B2 (en) Superconducting device and manufacturing method thereof
JP3059806B2 (en) Superconducting element and manufacturing method thereof
EP0341148A2 (en) A semiconductor substrate having a superconducting thin film
EP0323342B1 (en) A semiconductor substrate having a superconducting thin film
JP3167454B2 (en) Superconducting element and manufacturing method thereof
JPH05110149A (en) Oxide superconducting device
JP2544390B2 (en) Oxide superconducting integrated circuit
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2639961B2 (en) Superconducting element manufacturing method
JP3379533B2 (en) Method for manufacturing superconducting device
JP3813493B2 (en) Composite board
EP0471292B1 (en) Substrate for superconducting devices
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2559413B2 (en) Oxide superconducting integrated circuit
JPS63259980A (en) Oxide superconductor film
JP3038485B2 (en) Bi-based oxide superconducting thin film
JP3323278B2 (en) Method for manufacturing superconducting device
JPH0677544A (en) Oxide superconducting device
JPH01183175A (en) Superconducting 3-terminal element
JPH0831623B2 (en) Superconducting joining device
JPH0667787B2 (en) Thin film type superconducting element
JPH0653630B2 (en) Thin film type superconducting element
JPH06140681A (en) Manufacture of oxide superconductive element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A02 Decision of refusal

Effective date: 20050301

Free format text: JAPANESE INTERMEDIATE CODE: A02