JP3055645B2 - Suction type particle measurement method - Google Patents

Suction type particle measurement method

Info

Publication number
JP3055645B2
JP3055645B2 JP6220627A JP22062794A JP3055645B2 JP 3055645 B2 JP3055645 B2 JP 3055645B2 JP 6220627 A JP6220627 A JP 6220627A JP 22062794 A JP22062794 A JP 22062794A JP 3055645 B2 JP3055645 B2 JP 3055645B2
Authority
JP
Japan
Prior art keywords
probe
suction
fine particles
charged
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6220627A
Other languages
Japanese (ja)
Other versions
JPH0886735A (en
Inventor
征夫 渡辺
正治 白谷
郁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP6220627A priority Critical patent/JP3055645B2/en
Publication of JPH0886735A publication Critical patent/JPH0886735A/en
Application granted granted Critical
Publication of JP3055645B2 publication Critical patent/JP3055645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、微粒子が浮遊する気体
や液体の一部を吸引し、吸引した試料中の微粒子数や粒
径等を測定する方法に関する。特に周囲に対して異なっ
た電位にある空間中に浮遊している粒子や、浮遊してい
る帯電粒子を効率良く吸引測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sucking a part of gas or liquid in which fine particles are suspended, and measuring the number, the particle size, etc. of the fine particles in the sucked sample. In particular, the present invention relates to a method for efficiently suction-measuring particles floating in a space at a different potential with respect to the surroundings and charged particles floating.

【0002】[0002]

【従来の技術】半導体集積回路の製造プロセスにおいて
は、微細な粒子が表面に付着することで、回路の欠陥と
なり、製品の歩留まりが低下する。このため、処理チャ
ンバー等の所定の系内の微粒子の大きさや数を検出する
必要がある。
2. Description of the Related Art In the process of manufacturing a semiconductor integrated circuit, fine particles adhere to the surface of the semiconductor integrated circuit, thereby causing defects in the circuit and reducing the product yield. Therefore, it is necessary to detect the size and the number of fine particles in a predetermined system such as a processing chamber.

【0003】斯かる微粒子の検出を行う方法として、実
公平5−14198号公報等に開示される吸引式微粒子
測定方法が従来から知られている。この吸引式微粒子測
定方法は、常圧下に於て使用されることが前提となって
いた。
As a method for detecting such fine particles, a suction-type fine particle measuring method disclosed in Japanese Utility Model Publication No. 5-14198 has been conventionally known. This suction-type particle measurement method was premised on being used under normal pressure.

【0004】[0004]

【発明が解決しようとする課題】半導体集積回路の製造
プロセスにおけるCVDやエッチング工程等は、プラズ
マ雰囲気で行われる。一般にプラズマ領域の電位は周囲
にイオンシース(正イオンの多い領域)を作るので、そ
の結果周囲に対して正となっており、負に帯電した微粒
子はプラズマ領域内に閉じ込められている。そのため、
プラズマ領域の周囲は相対的に負の領域になっているの
で、図5に示すように、微粒子とプローブとの間には電
位の壁が存在することになり吸引しにくい。特に、半導
体集積回路の製造プロセスはCVDやエッチング工程等
を含め減圧雰囲気で行う場合が多く、もともと吸引しに
くいことともあり、従来の吸引式微粒子測定方法では正
確な測定に限界がある。
The CVD and etching steps in the semiconductor integrated circuit manufacturing process are performed in a plasma atmosphere. In general, the potential in the plasma region creates an ion sheath (region with a large amount of positive ions) around it, so that it is positive with respect to the surroundings, and negatively charged fine particles are confined in the plasma region. for that reason,
Since the periphery of the plasma region is a relatively negative region, as shown in FIG. 5, there is a potential wall between the microparticles and the probe, so that it is difficult to suck. In particular, the semiconductor integrated circuit manufacturing process is often performed in a reduced-pressure atmosphere including the CVD and etching steps, and it is originally difficult to suck. Thus, the conventional suction-type fine particle measurement method has a limit in accurate measurement.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
願は、帯電した微粒子を含む系内からプローブを介して
試料を吸引し、この試料を微粒子検出装置に導入して系
内の微粒子数や粒径を検出するようにした吸引式微粒子
測定方法であることを前提とし、第1発明にあっては、
プローブを微粒子の電荷と逆符号に帯電させた状態と、
同符号に帯電させた状態とを切換えて吸引を行うように
した
In order to solve the above-mentioned problems, the present application suctions a sample from a system containing charged fine particles via a probe, introduces the sample into a fine particle detection device, and counts the number of fine particles in the system. The first invention is based on the premise that the method is a suction-type fine particle measuring method for detecting the particle size and the particle size.
A state in which the probe is charged to the opposite sign to the charge of the fine particles,
Switch to a state charged to the same sign to perform suction
I did .

【0006】また第2発明にあっては、プローブを微粒
子の電荷と逆符号に帯電した状態と同符号に帯電した状
態との間で連続的に変化させつつ吸引を行うようにし
In the second invention, the probe is finely divided.
Charged to the opposite sign to the charge of the element and charged to the same sign
So that suction is performed while continuously changing between
Was .

【0007】[0007]

【作用】プローブを微粒子の電荷と逆符号に帯電させた
状態と、同符号に帯電させた状態とを切換えたり、プロ
ーブを微粒子の電荷と逆符号に帯電した状態と同符号に
帯電した状態との間で連続的に変化させたりすること
、電気的に微粒子をプローブ内に取り込むことができ
る。
[Function] The probe is charged to the opposite sign to the charge of the fine particles.
State and charged state with the same sign.
To the same sign as the charge
Continuous change between charged state
Thus, the fine particles can be electrically taken into the probe.

【0008】[0008]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明の前提となる吸引式微
粒子測定方法をプラズマ処理チャンバーに適用した状態
を示す図、図2は図1の要部拡大図、図3は本発明に係
る吸引式微粒子測定方法を説明した図、図4は別発明に
係る吸引式微粒子測定方法を説明した図である。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a view showing a state in which a suction type particle measuring method which is a premise of the present invention is applied to a plasma processing chamber, FIG. 2 is an enlarged view of a main part of FIG. 1 , and FIG.
FIG. 4 is a diagram illustrating a suction-type particle measuring method, and FIG.
FIG. 3 is a diagram illustrating such a suction-type particle measurement method .

【0009】図1は、本発明の前提となる吸引式微粒子
測定方法をプラズマ処理チャンバーに適用した状態を示
したものであり、図中1はプラズマ処理チャンバーであ
り、このプラズマ処理チャンバー1はベース2上に固定
され、ベース2にはチャンバー1内に臨む昇降可能なテ
ーブル3が設けられ、このテーブル3上に半導体ウェー
ハWが載置されている。
FIG . 1 shows a suction type fine particle as a premise of the present invention.
Shows the measurement method applied to the plasma processing chamber.
In the figure , reference numeral 1 denotes a plasma processing chamber. The plasma processing chamber 1 is fixed on a base 2, and the base 2 is provided with a vertically movable table 3 facing the inside of the chamber 1. A semiconductor wafer W is placed on the substrate.

【0010】また、チャンバー1の上部には反応ガス導
入管4が取り付けられ、チャンバー1の内部には電極5
が配置され、更にチャンバー1の側面には吸引式微粒子
測定装置10が取り付けられている。
A reaction gas introduction pipe 4 is attached to the upper part of the chamber 1, and an electrode 5 is provided inside the chamber 1.
Is arranged, and a suction type particle measuring device 10 is attached to the side surface of the chamber 1.

【0011】吸引式微粒子測定装置10は絶縁体11を
介して第1のプローブ12をチャンバー1の側面に貫通
せしめ、この第1のプローブ12に絶縁体13を介して
第2のプローブ14を接続し、この第2のプローブ14
を光散乱式微粒子計15に導入し、更に光散乱式微粒子
計15から導出されたプローブ14を図示しない吸引装
置につなげている。
The suction type particle measuring apparatus 10 allows a first probe 12 to penetrate the side surface of the chamber 1 via an insulator 11, and connects a second probe 14 to the first probe 12 via an insulator 13. And the second probe 14
Is introduced into the light scattering type fine particle meter 15, and the probe 14 derived from the light scattering type fine particle meter 15 is connected to a suction device (not shown).

【0012】光散乱式微粒子計15は、吸引した試料が
流れる透明セル16と、レーザビームを生成する光源1
7と、レーザービームをセル16中を流れる試料に照射
する光学系18と、試料中の微粒子によって散乱したレ
ーザービームを光学系19を介して受ける光電変換素子
20とを備え、光電変換素子20からの信号に基づいて
モニタなどに微粒子の数や粒径を表示する。尚、微粒子
計15としては光散乱式に限らず、光透過法、慣性法、
拡散法等の公知の方法を利用した各種装置を適用でき
る。
The light scattering type fine particle meter 15 includes a transparent cell 16 through which a sucked sample flows, and a light source 1 for generating a laser beam.
7, an optical system 18 for irradiating the sample flowing with the laser beam to the cell 16, and a photoelectric conversion element 20 for receiving the laser beam scattered by the fine particles in the sample via the optical system 19. The number and the particle size of the fine particles are displayed on a monitor or the like based on the signal of the above. In addition, the fine particle meter 15 is not limited to the light scattering type, but may be a light transmission method, an inertia method,
Various devices using a known method such as a diffusion method can be applied.

【0013】一方、絶縁体13を介して他の部材から電
気的に絶縁された第1のプローブ12には給電線21を
介して電位を付与するようにしている。例えば、図2に
示すように、プラズマ領域30内のマイナスに帯電した
微粒子31を測定する場合には第1のプローブ12の電
荷が正となるようにする。即ち、正の電荷を持つプラズ
マ領域の外側には負の電荷領域が形成され、この負の電
荷領域がプラズマ内に閉じ込められた負の電荷を持つ微
粒子が外に飛び出すのを妨げる電位勾配を形成してい
る。
On the other hand, a potential is applied to the first probe 12 which is electrically insulated from other members via the insulator 13 via a power supply line 21. For example, as shown in FIG. 2, when measuring the negatively charged fine particles 31 in the plasma region 30, the charge of the first probe 12 is set to be positive. In other words, a negative charge region is formed outside the positive charge plasma region, and this negative charge region forms a potential gradient that prevents the negative charge particles trapped in the plasma from jumping out. doing.

【0014】そこで、プローブ12の電荷を正にして、
しかもプラズマ領域とプローブ12との間の電位差をな
くすようにすることで、即ち電位勾配を緩和すること
で、負の電荷を持つ微粒子はスムーズにプローブ12に
吸引され、このプローブ12を介して微粒子計15に送
り込まれる。尚、32は正イオンであり、33は電子で
ある。
Therefore, by making the charge of the probe 12 positive,
Moreover, by eliminating the potential difference between the plasma region and the probe 12, that is, by reducing the potential gradient, the fine particles having a negative charge are smoothly attracted to the probe 12, and It is sent to a total of 15. Here, 32 is a positive ion, and 33 is an electron.

【0015】図3は、本発明に係る吸引式微粒子測定方
法を説明した図であり、この発明にあっては、微粒子と
プローブ12との間に電位的な障壁がなく、微粒子34
の電荷が正になっている場合を示している。この場合に
はプローブ12に電位を付与して、プローブ12の電荷
を微粒子の電荷と逆符号にすることで、電気的な吸引力
をも利用して微粒子をプローブに取り込むことができ
る。
FIG. 3 is a view for explaining the suction type particle measuring method according to the present invention. In the present invention, there is no potential barrier between the particles and the probe 12 and the particles 34
Shows a case where the electric charge of the is positive. In this case, by applying an electric potential to the probe 12 and setting the charge of the probe 12 to the opposite sign to the charge of the fine particles, the fine particles can be taken into the probe also by using the electric attraction force.

【0016】また、図3に示す方法にあっては、スイッ
チ22によってプローブ12の電荷が正・負切り換わる
ようにし、例えば一定時間プローブ12の電荷を負に
し、微粒子を取り込んだ後は、スイッチ22を切換えて
プローブ12の電荷を正にして積極的に微粒子の取り込
みを阻止する。尚、このときにはプローブ12への気体
の流れは存在するが、粒子は吸入されていない状態であ
る。このようにすることで、一定時間内での微粒子の測
定を正確に行うことができ、更には他のシステムとの同
期的な計測も可能になる。
In the method shown in FIG. 3, the charge of the probe 12 is switched between positive and negative by the switch 22. For example, after the charge of the probe 12 is made negative for a certain period of time and the fine particles are taken in, the switch is turned on. By switching 22, the electric charge of the probe 12 is made positive to positively prevent the capture of fine particles. At this time, there is a flow of gas to the probe 12, but no particles are sucked. This makes it possible to accurately measure fine particles within a certain period of time, and also to perform synchronous measurement with another system.

【0017】図4は別発明に係る吸引式微粒子測定方
法を説明した図であり、プローブ12の電位をプラスか
らマイナス、或いはマイナスからプラスへ掃引すること
で、プローブを微粒子の電荷と逆符号に帯電した状態と
同符号に帯電した状態との間で連続的に変化させつつ吸
引を行うことができるようにしている。このような構成
とすることで、粒子の帯電分布に依存して吸引効率が変
化するので、測定領域内の粒子の帯電状態を知ることが
できる。
[0017] FIG. 4 is a diagram illustrating the suction-type particle measuring method according to another invention, by sweeping the potential of the probe 12 from the plus or minus or from minus to plus, the probe of the particulate charge and opposite sign The suction can be performed while continuously changing between the charged state and the charged state. With such a configuration, since the suction efficiency changes depending on the charge distribution of the particles, the charged state of the particles in the measurement region can be known.

【0018】[0018]

【発明の効果】以上に説明した如く本願の第1発明によ
れば、プローブを微粒子の電荷と逆符号に帯電させた状
態と、同符号に帯電させた状態とを切換えて吸引を行う
ようにしたので、微粒子の吸引を意図的に遮断すること
ができ、したがって一定時間内での微粒子の測定を正確
に行うこと及び他のシステムとの同期的な計測も可能に
なる
As described above, according to the first aspect of the present invention, the probe is charged in the opposite sign to the charge of the fine particles.
Suction by switching between the state and the state charged to the same sign
Intentionally shut off the suction of fine particles.
And therefore accurate measurement of fine particles within a certain time
Measurement and synchronous measurement with other systems
Become .

【0019】また第2発明にあっては、プローブを微粒
子の電荷と逆符号に帯電した状態と同符号に帯電した状
態との間で連続的に変化させつつ吸引を行うようにした
ので、測定領域内の粒子の帯電状態を知ることができ
In the second invention, the probe is finely divided.
Charged to the opposite sign to the charge of the element and charged to the same sign
Suction is performed while continuously changing between states
So you can know the charged state of the particles in the measurement area
You .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の前提となる吸引式微粒子測定方法をプ
ラズマ処理チャンバーに適用した状態を示す図
FIG. 1 is a diagram showing a state in which a suction-type particle measuring method, which is a premise of the present invention, is applied to a plasma processing chamber.

【図2】図1の要部拡大図FIG. 2 is an enlarged view of a main part of FIG. 1;

【図3】発明に係る吸引式微粒子測定方法を説明した
FIG. 3 is a diagram illustrating a suction-type particle measuring method according to the present invention.

【図4】別発明に係る吸引式微粒子測定方法を説明した
FIG. 4 is a diagram illustrating a suction-type fine particle measurement method according to another invention.

【図5】帯電した微粒子と電位勾配との関係を示す模式
FIG. 5 is a schematic diagram showing a relationship between charged fine particles and a potential gradient.

【符号の説明】[Explanation of symbols]

1…プラズマ処理チャンバー、10…吸引式微粒子測定
装置、11,13…絶縁体、12…第1のプローブ、1
4…第2のプローブ、15…微粒子計。
DESCRIPTION OF SYMBOLS 1 ... Plasma processing chamber, 10 ... Suction type fine particle measuring device, 11, 13 ... Insulator, 12 ... First probe, 1
4: second probe, 15: fine particle meter.

フロントページの続き (56)参考文献 渡辺征夫、外1名、”プロセシングプ ラズマ中の微粒子”、プラズマ・核融合 学会誌、平成5年、第69巻、第7号、 p.752−763 近藤郁,”特集最新のパーティクル計 測技術 in−situパーティクルモ ニタリング(ドライプロセス)”、クリ ーンテクノロジー、平成6年7月、第4 巻、第7号、p19−21 (58)調査した分野(Int.Cl.7,DB名) G01N 15/00 - 15/14 G01N 1/22 JICSTファイル(JOIS)Continuation of the front page (56) References Masao Watanabe, et al., “Particles in Processing Plasma”, Journal of Plasma and Fusion Society, 1993, Vol. 69, No. 7, p. 752-763 Iku Kondo, “Special Issue on Latest Particle Measurement Technology in-situ Particle Monitoring (Dry Process)”, Clean Technology, July 1994, Volume 4, Issue 7, p19-21 (58 ) Fields surveyed (Int. Cl. 7 , DB name) G01N 15/00-15/14 G01N 1/22 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 帯電した微粒子を含む系内からプローブ
を介して試料を吸引し、この試料を微粒子検出装置に導
入して系内の微粒子数や粒径等を検出するようにした吸
引式微粒子測定方法において、前記プローブを微粒子の
電荷と逆符号に帯電させた状態と、同符号に帯電させた
状態とを切換えて吸引を行うようにしたことを特徴とす
る吸引式微粒子測定方法。
1. A suction type fine particle in which a sample is sucked from a system containing charged fine particles via a probe, and the sample is introduced into a fine particle detecting device to detect the number, particle size, etc. of the fine particles in the system. In the measurement method, the probe was charged to the opposite sign to the charge of the fine particles, and charged to the same sign.
A suction-type fine particle measurement method, wherein suction is performed by switching between states .
【請求項2】 帯電した微粒子を含む系内からプローブ
を介して試料を吸引し、この試料を微粒子検出装置に導
入して系内の微粒子数や粒径等を検出するようにした吸
引式微粒子測定方法において、前記プローブを微粒子の
電荷と逆符号に帯電した状態と同符号に帯電した状態と
の間で連続的に変化させつつ吸引を行うようにしたこと
を特徴とする吸引式微粒子測定方法。
2. A suction type fine particle in which a sample is sucked from a system containing charged fine particles via a probe, and the sample is introduced into a fine particle detecting device to detect the number, particle size, etc. of the fine particles in the system. In the measuring method, the probe is
The state charged to the opposite sign to the charge and the state charged to the same sign
Wherein the suction is performed while continuously changing the particle size between the two.
JP6220627A 1994-09-14 1994-09-14 Suction type particle measurement method Expired - Fee Related JP3055645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6220627A JP3055645B2 (en) 1994-09-14 1994-09-14 Suction type particle measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6220627A JP3055645B2 (en) 1994-09-14 1994-09-14 Suction type particle measurement method

Publications (2)

Publication Number Publication Date
JPH0886735A JPH0886735A (en) 1996-04-02
JP3055645B2 true JP3055645B2 (en) 2000-06-26

Family

ID=16753943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6220627A Expired - Fee Related JP3055645B2 (en) 1994-09-14 1994-09-14 Suction type particle measurement method

Country Status (1)

Country Link
JP (1) JP3055645B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324231B4 (en) * 2003-05-28 2007-06-14 Zeidler, J. Joachim Iso-electrostatic probe for the removal of charged particles and ions from gas streams

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
渡辺征夫、外1名、"プロセシングプラズマ中の微粒子"、プラズマ・核融合学会誌、平成5年、第69巻、第7号、p.752−763
近藤郁,"特集最新のパーティクル計測技術 in−situパーティクルモニタリング(ドライプロセス)"、クリーンテクノロジー、平成6年7月、第4巻、第7号、p19−21

Also Published As

Publication number Publication date
JPH0886735A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
Selwyn et al. Rastered laser light scattering studies during plasma processing: Particle contamination trapping phenomena
EP0727659A3 (en) Method and apparatus for analyzing minute foreign substances, and process for manufacturing semiconductor or LCD elements
CN101137889A (en) Method and apparatus of measuring thin film sample and method and apparatus of fabricating thin film sample
JPH05340885A (en) Particle inspecting method
JP2002214124A (en) Material evaluation method and device by charged particle emission detection
JP2008519260A (en) Ion balance monitor
JP3055645B2 (en) Suction type particle measurement method
JP3225579B2 (en) Static electricity measuring device
JPH06194320A (en) Method and equipment for inspecting mirror face substrate in semiconductor manufacturing line and method for manufacturing
CN103954537A (en) Dry type particle granularity measuring method
JPH0521561A (en) Method and equipment for detecting foreign matter on mirror wafer and method and equipment for analyzing the foreign matter
JP2006270111A (en) Method for inspecting semiconductor device and its equipment
JP3145978B2 (en) Ion implanter
JP3121960B2 (en) Pollutant monitoring device for clean room
CN109470626A (en) A kind of dust free room particulate contamination micro control system
JPH0456245A (en) Rise of mass production in semiconductor manufacturing process, inspection of foreign substance in mass production line and device thereof
KR20030091426A (en) manufacturing equipment having the particle detector
JPH01116434A (en) Apparatus for monitoring cleanliness degree of atmosphere
Park et al. Real-time detection of airborne dust particles using paddle-type silicon cantilevers
JP2003344264A (en) Method and apparatus for measuring characteristic of thin film material based on detected charge carrier
JP2002195959A (en) Method for inspecting semiconductor device
JP2004327595A (en) Evaluation method of pin hole defect
JPH08316178A (en) Fabrication method of semiconductor device
JP3494904B2 (en) Semiconductor device manufacturing method and manufacturing apparatus
JPH03286546A (en) Surface light/voltage measurement device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees