JP3055350B2 - Operating method of barium-cerium type solid electrolyte fuel cell - Google Patents

Operating method of barium-cerium type solid electrolyte fuel cell

Info

Publication number
JP3055350B2
JP3055350B2 JP5075526A JP7552693A JP3055350B2 JP 3055350 B2 JP3055350 B2 JP 3055350B2 JP 5075526 A JP5075526 A JP 5075526A JP 7552693 A JP7552693 A JP 7552693A JP 3055350 B2 JP3055350 B2 JP 3055350B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
barium
cerium
temperature
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5075526A
Other languages
Japanese (ja)
Other versions
JPH06290802A (en
Inventor
昇 谷口
孝治 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP5075526A priority Critical patent/JP3055350B2/en
Publication of JPH06290802A publication Critical patent/JPH06290802A/en
Application granted granted Critical
Publication of JP3055350B2 publication Critical patent/JP3055350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、バリウムセリウム型固
体電解質燃料電池の起動方法および作動方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting and operating a barium-cerium solid electrolyte fuel cell.

【0002】[0002]

【従来の技術】バリウムセリウム型固体電解質燃料電池
は、他の固体電解質型燃料電池、特にジルコニア系固体
電解質に比べ、高出力放電が可能、長期信頼性が望める
などの特徴を有している。またバリウムセリウム型固体
電解質燃料電池において、高イオン伝導性の固体電解質
の開発や、これらの電解質に最適の電極の開発が盛んに
行われている。バリウムセリウム型固体電解質燃料電池
においては、現在要素技術の確立段階であり、電池の起
動方法や作動方法の検討はなされていない。一方、ジル
コニア系固体電解質では、一般的な立上げ方法(起動方
法)としては、燃料ガス、酸化ガスを、各々の極に供給
し1000℃まで昇温し、その後放電させている。立上
げ時の燃料ガスには、加湿された水素が一般的に用いら
れ、昇温後、都市ガスを改質したガスなどに切り換えら
れる。
2. Description of the Related Art A barium-cerium type solid electrolyte fuel cell has features such as higher output discharge and long-term reliability than other solid electrolyte type fuel cells, especially zirconia-based solid electrolytes. Further, in barium-cerium type solid electrolyte fuel cells, the development of solid electrolytes having high ionic conductivity and the development of electrodes optimal for these electrolytes have been actively conducted. In the barium-cerium type solid electrolyte fuel cell, the elemental technology is currently in the stage of establishment, and no study has been made on how to start or operate the cell. On the other hand, in a zirconia-based solid electrolyte, as a general start-up method (start-up method), a fuel gas and an oxidizing gas are supplied to each pole, the temperature is raised to 1000 ° C., and then discharge is performed. Humidified hydrogen is generally used as the fuel gas at the time of startup, and after the temperature is raised, the gas is switched to a gas obtained by reforming city gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記のよ
うにバリウムセリウム型固体電解質燃料電池において
は、現在要素技術の確立段階であり、電池の起動方法や
作動方法については、検討されていない。電池の起動時
において、工程の簡略化のためにも、好ましくは放電時
と同じガス組成で立上げることが好ましいが、バリウム
セリウム型固体電解質は、ある種の条件で炭酸ガスと反
応して電解質性能を下げてしまう。また、純粋な還元雰
囲気中では、バリウムセリウム型固体電解質は、還元、
分解する。そこで、バリウムセリウム型固体電解質燃料
電池においては、電池性能を劣化させることのない、起
動方法と作動方法が必要とされている。
However, as described above, the barium-cerium type solid electrolyte fuel cell is currently in the stage of establishing the elemental technology, and the method of starting and operating the cell has not been studied. At the time of starting the battery, it is preferable to start up with the same gas composition as at the time of discharging, for the sake of simplification of the process.However, the barium-cerium type solid electrolyte reacts with carbon dioxide gas under certain conditions, and Performance will be reduced. In a pure reducing atmosphere, the barium-cerium type solid electrolyte is reduced,
Decompose. Therefore, in a barium-cerium type solid electrolyte fuel cell, there is a need for a startup method and an operation method that do not degrade the cell performance.

【0004】本発明は、上記課題に鑑み、炭酸ガスとバ
リウムセリウム型固体電解質との反応性を明らかにし、
安定に電池の起動させる方法と、長期に渡り安定した作
動する運転方法を提案することを目的とする。
[0004] In view of the above problems, the present invention clarifies the reactivity between carbon dioxide and barium-cerium type solid electrolyte,
It is an object of the present invention to propose a method of stably starting a battery and an operation method of operating stably for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明は、燃料・空気両
極に供給するガス組成の炭酸ガス濃度を10%以下にす
ることを特徴とする運転方法である。望ましくは、供給
するガス組成中水蒸気を含まないことを特徴とする電池
起動方法および作動方法である。また、10%以上の炭
酸ガスを含む燃料ガスもしくは酸化ガスを電池に供給し
ている時、電池作動温度を800℃以上に保つことを特
徴とする運転方法である。
According to the present invention, there is provided an operation method characterized in that the concentration of carbon dioxide in a gas composition supplied to both fuel and air is reduced to 10% or less. Desirably, there are provided a battery start-up method and an operation method, wherein the supplied gas composition does not contain water vapor. Further, an operation method is characterized in that when a fuel gas or an oxidizing gas containing 10% or more of carbon dioxide gas is supplied to the battery, the operating temperature of the battery is maintained at 800 ° C. or more.

【0006】[0006]

【作用】上記解決手段においては、温度上昇過程におい
て炭酸ガス濃度を所定値以下にすると、バリウムセリウ
ム系酸化物が立方晶をとる。一旦立方晶をとると極めて
安定な構造になるので、雰囲気の影響を受けないように
なり、安定した電池放電が可能になる。
In the above means, when the concentration of carbon dioxide is reduced to a predetermined value or less in the course of the temperature rise, the barium-cerium-based oxide forms a cubic crystal. Once a cubic crystal is formed, the structure becomes extremely stable, so that it is not affected by the atmosphere and stable battery discharge is possible.

【0007】[0007]

【実施例】バリウムセリウム系固体電解質と炭酸ガスの
反応性を、雰囲気制御高温X線回折および示差熱重量分
析により解明し、その結果から燃料電池の起動方法およ
び作動条件を見い出した。また、実際にその条件により
電池を起動させ、また作動させることにより実証した。
EXAMPLES The reactivity between barium-cerium-based solid electrolyte and carbon dioxide gas was clarified by atmosphere controlled high-temperature X-ray diffraction and differential thermogravimetric analysis. From the results, the starting method and operating conditions of the fuel cell were found. In addition, the battery was actually activated under the conditions, and the operation was verified.

【0008】(実施例1) バリウムセリウム系固体電
解質と炭酸ガスの反応性を解析した。バリウムセリウム
酸化物のセリウムの20%をガドリニウムで置換した固
体電解質を用い、炭酸ガス濃度0%〜100%のヘリウ
ム混合ガスとの反応性を調べた。X線回折測定では、反
応生成物および相変化を室温から1100℃までの温度
領域で200℃おきに調べ、示差熱重量分析では、相変
化温度および炭酸ガス濃度と反応温度との関係を明らか
にした。図1に空気中昇温・降温のX線回折図を、図2
に100%炭酸ガス中昇温した時の回折図を、図3に1
0%炭酸ガス中昇温した時の回折図を示す。図4に、示
差熱分析結果を、図5に熱重量分析結果を示す。昇温
時、炭酸ガス濃度が10%以下の場合、固体電解質と炭
酸ガスとは反応しないことが分かった。また、同様に炭
酸ガス濃度20%の時、反応することを確認している。
空気中では、550℃付近で斜方晶から正方晶へ、80
0℃付近で立方晶に相変化した。空気中、一旦1100
℃まで昇温し、100%炭酸ガス雰囲気中で降温した時
の回折図を図6に示す。電解質が空気中昇温により安定
な立方晶になった場合、100%炭酸ガスでも反応しな
いことが分かった。以上の結果を相図として図7に示
す。図中固体電解質をBCGと表記している。炭酸ガス
濃度が、10%以下の範囲では、固体電解質は温度によ
り可逆的な相変化をし、炭酸ガス濃度が20%以上では
非可逆的に炭酸ガスと固体電解質とが反応する。
(Example 1) The reactivity between barium-cerium-based solid electrolyte and carbon dioxide gas was analyzed. Using a solid electrolyte in which 20% of cerium of barium / cerium oxide was replaced with gadolinium, reactivity with a helium mixed gas having a carbon dioxide gas concentration of 0% to 100% was examined. In X-ray diffraction measurement, the reaction product and phase change were examined every 200 ° C. in the temperature range from room temperature to 1100 ° C., and differential thermogravimetric analysis revealed the relationship between the phase change temperature and the concentration of carbon dioxide and the reaction temperature. did. FIG. 1 shows an X-ray diffraction diagram of heating and cooling in air, and FIG.
FIG. 3 shows a diffraction diagram when the temperature was raised in 100% carbon dioxide gas.
FIG. 4 shows a diffraction diagram when the temperature is raised in 0% carbon dioxide gas. FIG. 4 shows the results of differential thermal analysis, and FIG. 5 shows the results of thermogravimetric analysis. When the temperature was raised, it was found that when the carbon dioxide concentration was 10% or less, the solid electrolyte and the carbon dioxide did not react. In addition, it was also confirmed that the reaction occurred when the carbon dioxide gas concentration was 20%.
In air, the temperature changes from orthorhombic to tetragonal at around 550 ° C.
The phase changed to cubic at around 0 ° C. Once in air, 1100
FIG. 6 shows a diffraction diagram when the temperature was raised to 100 ° C. and the temperature was lowered in a 100% carbon dioxide gas atmosphere. It was found that when the electrolyte became stable cubic by heating in air, it did not react even with 100% carbon dioxide gas. The above results are shown in FIG. 7 as a phase diagram. In the figure, the solid electrolyte is described as BCG. When the carbon dioxide gas concentration is in the range of 10% or less, the solid electrolyte undergoes a reversible phase change depending on the temperature. When the carbon dioxide gas concentration is 20% or more, the carbon electrolyte and the solid electrolyte react irreversibly.

【0009】(実施例2) 上記実施例と同様に、バリ
ウムセリウム系固体電解質として、ディスプロニウムを
25%添加した酸化物について調べた結果、炭酸ガス濃
度が、18%以下の範囲では、この酸化物は温度により
可逆的な相変化をし、炭酸ガス濃度が20%以上では非
可逆的に炭酸ガスと反応することが分かった。(表1)
にバリウムセリウム系酸化物と炭酸ガスの反応濃度限界
を示す。バリウムセリウム系酸化物では、セリウムの一
部を希土類元素で置換することによりイオン導電率を高
めたりすることができる。しかしながら、置換量が30
%以下の範囲では、骨格となるバリウムセリウム酸化物
の反応性とあまり相違がないことが分かる。炭酸ガス濃
度が10%以下の範囲では、バリウムセリウム系酸化物
は温度により可逆的な相変化をし800℃付近で安定に
存在し、炭酸ガス濃度が20%以上では非可逆的に炭酸
ガスと反応し、電解質性能を劣化させてしまう。
Example 2 As in the above example, as a barium-cerium-based solid electrolyte, an oxide to which 25% of dispronium was added was examined. It has been found that the oxide undergoes a reversible phase change depending on the temperature, and irreversibly reacts with the carbon dioxide gas at a carbon dioxide gas concentration of 20% or more. (Table 1)
Fig. 3 shows the reaction concentration limit of barium-cerium-based oxide and carbon dioxide gas. In a barium-cerium-based oxide, ionic conductivity can be increased by substituting a part of cerium with a rare earth element. However, when the replacement amount is 30
%, The reactivity is not so different from the reactivity of barium-cerium oxide serving as a skeleton. When the concentration of carbon dioxide is 10% or less, the barium-cerium-based oxide undergoes a reversible phase change depending on the temperature and is stably present at around 800 ° C. Reacts and degrades electrolyte performance.

【0010】[0010]

【表1】 (実施例3) 上記実施例と同様に、バリウムセリウム
酸化物のセリウムの20%をガドリニウムで置換した固
体電解質と、白金電極を用い燃料電池を構成し、空気中
20℃/minの速度で800℃まで昇温し起動させ
た。起動後、酸化ガスとして空気、燃料ガスとしてメタ
ン改質模擬ガス(20%炭酸ガスと80%水素ガス)を
供給し800℃で保持した。電流密度100mA/cm
2で連続放電させた時の電圧の経時変化を図8に示す。
また、一度放電500h後にヒ−トダウンさせて再起動
させた。その際、両極に空気を供給し800℃まで昇温
した。その後、燃料極に改質模擬ガスを導入し放電させ
た。再起動させた後も安定に作動することが分かった。
本発明の運転方法が有効であり、電池が安定に作動する
ことが確認された。
[Table 1] (Example 3) A fuel cell was constructed using a platinum electrolyte and a solid electrolyte in which 20% of cerium of barium cerium oxide was replaced with gadolinium, as in the above-described example, and 800 in air at a rate of 20 ° C / min. The temperature was raised to 0 ° C. and started. After startup, air was supplied as an oxidizing gas, and a methane reforming simulation gas (20% carbon dioxide gas and 80% hydrogen gas) was supplied as a fuel gas, and the temperature was maintained at 800 ° C. Current density 100 mA / cm
FIG. 8 shows the change with time in the voltage when the battery was continuously discharged at 2 .
Also, after 500 hours of discharge, the heater was heated down and restarted. At that time, air was supplied to both electrodes and the temperature was raised to 800 ° C. Thereafter, a reforming simulation gas was introduced into the fuel electrode and discharged. It turned out to be stable even after restarting.
It was confirmed that the operation method of the present invention was effective and the battery operated stably.

【0011】(実施例4) 実際の燃料電池運転により
本発明の運転方法を実証した。バリウムセリウム酸化物
のセリウムの20%をユウロピウムで置換した固体電解
質と、白金電極を用い燃料電池を構成し、空気極に空気
を、燃料極に8%炭酸ガスを含むメタン改質ガスを供給
し、20℃/minの速度で800℃まで昇温し起動さ
せた。起動後、800℃で保持し、電流密度150mA
/cm2で連続放電させた。その時の電圧の経時変化を
図9に示す。また、一度放電1100h後にヒ−トダウ
ンさせて再起動させた。その際、燃料極に加湿(水蒸気
2%)した20%炭酸ガスを含む改質模擬ガスを導入し
800℃まで昇温した時、電解質は劣化し、放電を続け
ることがこんなんであった。
(Example 4) The operation method of the present invention was demonstrated by actual fuel cell operation. A fuel cell is constructed using a solid electrolyte in which 20% of cerium of barium cerium oxide is replaced with europium and a platinum electrode, and air is supplied to the air electrode, and methane reforming gas containing 8% carbon dioxide is supplied to the fuel electrode. The temperature was raised to 800 ° C. at a rate of 20 ° C./min to start up. After starting, hold at 800 ° C, current density 150mA
/ Cm 2 . FIG. 9 shows a temporal change of the voltage at that time. Also, after the discharge was performed for 1100 hours, the apparatus was heated down and restarted. At that time, when a reforming simulated gas containing 20% carbon dioxide gas humidified (water vapor 2%) was introduced into the fuel electrode and the temperature was raised to 800 ° C., the electrolyte was deteriorated and discharge continued.

【0012】上記実施例では起動および作動時の温度と
して800℃の例を示したが起動温度ならびに作動温度
は電池が作動する温度であれば他の温度でもよい。ま
た、実施例では、作動時の燃料ガス組成で炭酸ガス濃度
が20%までのものを用いているが、15%以下の炭酸
ガス濃度で起動させた場合、その後の両極にどのような
組成のガス、例えば50%炭酸ガスを含む混合ガスを導
入してもよい。また、(表1)のバリウムセリウム系酸
化物に限らず、他のバリウムセリウム系酸化物であって
もよい。さらに、作動状態とは所定温度で変動はあるも
のの平均的な温度がほぼ一定の状態をいう。また、ある
作動温度から異なる作動温度にシフトする過程は再起動
と考える。
In the above embodiment, the temperature at the time of starting and operating is 800 ° C., but the starting temperature and operating temperature may be other temperatures as long as the battery operates. In the embodiment, the fuel gas composition at the time of operation is such that the carbon dioxide gas concentration is up to 20%. A gas, for example, a mixed gas containing 50% carbon dioxide may be introduced. Further, the barium-cerium-based oxide is not limited to the barium-cerium-based oxide shown in Table 1, and may be another barium-cerium-based oxide. Further, the operating state refers to a state in which the average temperature is substantially constant although the temperature fluctuates at a predetermined temperature. The process of shifting from one operating temperature to a different operating temperature is considered to be a restart.

【0013】[0013]

【発明の効果】以上のように、本発明の運転方法によ
り、バリウムセリウム型固体電解質を用いた固体電解質
燃料電池の安定な放電と、電解質の劣化を抑制すること
による長期に渡る電池運転を可能にし得る。
As described above, the operation method of the present invention enables stable discharge of a solid electrolyte fuel cell using a barium cerium type solid electrolyte and long-term battery operation by suppressing deterioration of the electrolyte. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】空気中で昇温・降温した時の固体電解質の高温
X線回折図。
FIG. 1 is a high-temperature X-ray diffraction diagram of a solid electrolyte when the temperature is raised and lowered in air.

【図2】100%炭酸ガス中で昇温した時の固体電解質
の高温X線回折図。
FIG. 2 is a high-temperature X-ray diffraction diagram of a solid electrolyte when heated in 100% carbon dioxide gas.

【図3】10%炭酸ガス中で昇温した時の固体電解質の
高温X線回折図。
FIG. 3 is a high-temperature X-ray diffraction diagram of the solid electrolyte when heated in 10% carbon dioxide gas.

【図4】固体電解質の示差熱分析結果を示す図。FIG. 4 is a diagram showing the results of differential thermal analysis of a solid electrolyte.

【図5】固体電解質の熱重量分析結果を示す図。FIG. 5 is a diagram showing the results of thermogravimetric analysis of a solid electrolyte.

【図6】空気中で1100℃まで昇温した後100%炭
酸ガス雰囲気中で降温した時の固体電解質のX線回折
図。
FIG. 6 is an X-ray diffraction diagram of the solid electrolyte when the temperature is raised to 1100 ° C. in air and then lowered in a 100% carbon dioxide gas atmosphere.

【図7】固体電解質の模擬的な相図。FIG. 7 is a schematic phase diagram of a solid electrolyte.

【図8】電流密度100mA/cm2で連続放電させた
時の電圧の経時変化の特性図。
FIG. 8 is a characteristic diagram of a temporal change in voltage when a continuous discharge is performed at a current density of 100 mA / cm 2 .

【図9】電流密度150mA/cm2で連続放電させた
時の電圧の経時変化の特性図。
FIG. 9 is a characteristic diagram of a temporal change in voltage when a continuous discharge is performed at a current density of 150 mA / cm 2 .

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/12 H01M 8/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 8/12 H01M 8/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 起動状態、作動状態あるいは再起動状態
における温度上昇時に燃料・空気両極に供給するガス組
成の炭酸ガス濃度を10%以下にすることを特徴とする
バリウムセリウム型固体電解質燃料電池の運転方法。
1. A barium-cerium-type solid electrolyte fuel cell, characterized in that the carbon dioxide concentration of the gas composition supplied to the fuel and air electrodes at the time of temperature rise in a starting state, an operating state or a restarting state is 10% or less. how to drive.
【請求項2】 燃料・空気両極に供給するガス組成中に
水蒸気を含まないことを特徴とする請求項1記載のバリ
ウムセリウム型固体電解質燃料電池の運転方法
2. A method for operating a barium-cerium type solid electrolyte fuel cell according to claim 1, wherein water vapor is not contained in a gas composition supplied to both fuel and air electrodes.
【請求項3】 燃料・空気両極に供給するガスが、空気
であることを特徴とする請求項1記載のバリウムセリウ
ム型固体電解質燃料電池の運転方法。
3. The method for operating a barium-cerium type solid electrolyte fuel cell according to claim 1, wherein the gas supplied to both the fuel and air electrodes is air.
【請求項4】 10%以上の炭酸ガスを含む燃料ガスも
しくは酸化ガスを電池に供給するとき電池作動温度を8
00℃以上に保持することを特徴とするバリウムセリウ
ム型固体電解質燃料電池の運転方法。
4. When a fuel gas or an oxidizing gas containing 10% or more of carbon dioxide gas is supplied to a battery, the operating temperature of the battery is set to 8%.
A method for operating a barium-cerium type solid electrolyte fuel cell, wherein the temperature is maintained at 00 ° C or higher.
JP5075526A 1993-04-01 1993-04-01 Operating method of barium-cerium type solid electrolyte fuel cell Expired - Fee Related JP3055350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5075526A JP3055350B2 (en) 1993-04-01 1993-04-01 Operating method of barium-cerium type solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5075526A JP3055350B2 (en) 1993-04-01 1993-04-01 Operating method of barium-cerium type solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH06290802A JPH06290802A (en) 1994-10-18
JP3055350B2 true JP3055350B2 (en) 2000-06-26

Family

ID=13578766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5075526A Expired - Fee Related JP3055350B2 (en) 1993-04-01 1993-04-01 Operating method of barium-cerium type solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3055350B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922494A (en) * 1997-04-14 1999-07-13 Valence Technology, Inc. Stabilized electrolyte for electrochemical cells and batteries
CA2298850A1 (en) 1999-02-17 2000-08-17 Matsushita Electric Industrial Co., Ltd. Mixed ionic conductor and device using the same

Also Published As

Publication number Publication date
JPH06290802A (en) 1994-10-18

Similar Documents

Publication Publication Date Title
Baharuddin et al. Short review on cobalt-free cathodes for solid oxide fuel cells
JP5963840B2 (en) Method and apparatus for operating a solid electrolyte fuel cell stack using a mixed ionic / electronic conducting electrolyte
JP4873952B2 (en) Fuel cell system
JPH05307970A (en) Liquid fuel cell
JP2009016331A (en) Fuel cell acceleration activating device and method
JP2013206684A (en) Electrode activation method of solid oxide fuel cell
JP2010027298A (en) Fuel cell electric power generation system, its performance recovery method, and performance recovery program
JPS61135068A (en) Melt carbonate fuel battery
JPH10308230A (en) Power generating device for fuel cell
EP3171443B1 (en) Solid oxide fuel cell system
US5589287A (en) Molten carbonate fuel cell
CN103329324B (en) The method of operation of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
JP3055350B2 (en) Operating method of barium-cerium type solid electrolyte fuel cell
JP2003187847A (en) Method and device for operating solid polymer fuel cell
JPH09147897A (en) Solid high polymer fuel cell
JP4852241B2 (en) Operation method of fuel cell power generation system
JP2514748B2 (en) Method for starting molten carbonate fuel cell
JPH069143B2 (en) Fuel cell storage method
JP2003272677A (en) Solid oxide type fuel cell and cogeneration system using the same
JP5520905B2 (en) Operation method of fuel cell power generation system
JP2001148251A (en) Solid electrolyte and fuel cell using it
JP2004127678A (en) Secondary battery
JPS61269865A (en) Operation method of fuel cell
JP2003346864A (en) Anode supporting solid oxide fuel cell and its manufacturing method
JP2003504794A (en) High temperature fuel cell electrolyte, method of operating high temperature fuel cell, and high temperature fuel cell device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080414

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees